
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 – JANUARY 2026.

29

Abstract—
This project addresses the problem of safely detecting and

analysing malicious login attempts and common web attacks

such as brute force, SQL injection, and XSS on a web

application. It does this by using a realistic Instagram-like fake

login page as a honeypot, which captures all login attempts along

with IP address, username, password, and time, then classifies

them as normal or different attack types using predefined

detection rules. The project work carried out includes designing

the phishing-style frontend UI, developing the Flask backend

with attack detection logic, creating a SQLite database for

structured logging, integrating Telegram bot and Twilio SMS

for real-time alerts, and implementing a secured dashboard

accessible only with special credentials. The dashboard displays

the collected attack data in an Excel-style table and visualizes

the distribution of attacks with charts (bar or doughnut)

showing counts and percentages, making analysis easier.

The outcome of the project is a fully functional web-based

honeypot and monitoring system that demonstrates how

attackers can be trapped using a familiar UI and how defenders

can log, classify, and visualize suspicious activities for awareness

and research. It provides a practical learning platform for web

security, phishing risks, logging, alerting, and basic threat

intelligence generation. Future work can extend this system into

a richer honeynet by adding more fake pages and services,

including advanced detection for other attack vectors

(command injection, directory traversal, credential stuffing),

integrating IP geolocation and world maps, exporting logs for

SIEM or machine learning analysis, and deploying the solution

on a public cloud server to observe real-world attack traffic over

a longer period.

Index terms — DDOS attack, Honepots, Attacks, Python,

Phishing, Security, Networking

I. INTRODUCTION

The proposed project is a honeypot-based “Instagram-style”

web security system designed to attract, detect, and analyze

malicious login activity in a safe, controlled environment. It

presents users with a fake social media login page that closely

resembles a real Instagram login, encouraging attackers to

attempt credential guessing or inject malicious payloads.

Behind this realistic interface, a Flask-based backend

captures every login attempt, recording details such as IP

address, username, password, timestamp, and a classified

attack type (Normal, Brute Force, SQL Injection, or XSS) in

a structured SQLite database.

Not just about catching intruders, the setup keeps watch using

layers - spotting threats, sounding alarms, then showing what

happened. When one address tries too many times, custom

rules catch it; sneaky code attempts get caught by pattern

checks in form inputs. A warning jumps out instantly through

Telegram or SMS once something odd shows up. Only

admins see the control screen, where rows of data sit like

spreadsheets beside live graphs built with Chart.js, mapping

how attacks spread and shift over time. That mix turns it into

more than software - it teaches how break-ins work, how traps

respond, how defences learn.

II. RELATED WORK

This project lives in cybersecurity, focusing on web app

protection along with honeypot setups. Its niche? Web

security mechanisms paired with deceptive trap systems

meant to catch attackers off guard

Tricking hackers often means setting up something that looks

real but isn’t. A pretend login page, much like Instagram, can

draw them in without warning. Once they bite, everything

slows down - movement watched, every click noted. Instead

of stopping at the door, let them walk right through. What

happens next reveals how they think. Fake setups act like

quiet observers, hidden in plain sight. Safety comes from

distance, not confrontation. Watching teaches more than

blocking ever could.

A fresh approach begins here - building a full system online

that looks like Instagram's sign-in screen. This setup pulls in

suspicious visitors by pretending to be real. Watching them

happens safely inside locked conditions. Every step, from

drawing plans to making it work, gets handled carefully.

Instead of rushing, each piece fits slowly into place. The goal

stays clear throughout: learn how intruders behave when they

think no one sees.

Starting with Python and Flask, the system builds backend

processes that respond to sign-in attempts. When someone

tries to log in, it checks for suspicious behavior like repeated

Detection and assessment of Distributed

Denial of Service Attacks using honeypots
Bhavya A.R#1, Nagamma#2

CSE, AKASH INSTITUTE OF ENGINEERING AND TECHNOLGOY, DEVANAHALLI, BANGLORE,

INDIA

CSE, AKASH INSTITUTE OF ENGINEERING AND TECHNOLGOY, DEVANAHALLI, BANGLORE,

INDIA

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 – JANUARY 2026.

30

failures. Patterns tied to brute force attacks get flagged

automatically. If signs of

Web attack detection: Focusing on identifying brute force,

SQL injection, and XSS attacks at the login layer using input

inspection and IP-based rate analysis.

Security monitoring and incident response: Logging all

attempts in a database, generating real time alerts via

messaging and SMS, and providing a dashboard for security

analysis and decision making.

Educational / research security tools: Serving as a teaching

and experimentation platform to study attacker patterns and

demonstrate practical web security concepts using a full-stack

implementation.

III. Existing System

A trap hidden in plain sight - that is what this setup becomes

for anyone probing too hard. Instead of just locking doors, it

watches hands reaching for the knob. Fake login pages

shaped like familiar apps draw in those who should not be

there. Every keystroke typed by intruders gets recorded -

time, IP, password choice - all stored cold and clear. Unlike

heavy defenses slowing down real users, this one sits quiet

until something stirs. It speaks only when needed, sending

word through messages the moment suspicion spikes. Real

usernames stay locked away while impostor attempts pile up

behind glass. Charts grow quietly in the background, showing

rhythms of attacks across days. Rows of logs display where

each try came from, painting maps without labels. Tools

buried inside spot known tricks: forced entries, script

injections, sneaky redirects. Nothing runs live beyond the

decoy; no risk spreads to actual servers. Alerts land fast - not

later, not maybe - but now, straight to phones and screens.

The whole thing installs without drama, works alone, adapts

silently. Watching instead of shouting, learning more with

every failed breach.

IV. Proposed System

The honeypot-based “Instagram-style” security project has A

realistic-looking fake login screen appears, built to mirror an

actual social media sign-in. Its layout copies Instagram

closely, aiming to trick those with bad intentions. The setup

pulls attention through familiar colors and spacing. Every

detail follows common patterns people expect when logging

in. It operates quietly, waiting for someone up to no good to

step forward. Visual cues match what users see daily online.

This mimicry works because it feels normal at first glance.

Trust builds quickly through resemblance, not promises.

Deception hides in plain sight, shaped like something

harmless.

The honeypot-based “Instagram-style” security project has

the following objectives:

A realistic-looking fake login screen appears, built to mirror

an actual social media sign-in. Its layout copies Instagram

closely, aiming to trick those with bad intentions. The setup

pulls attention through familiar colors and spacing. Every

detail follows common patterns people expect when logging

in. It operates quietly, waiting for someone up to no good to

step forward. Visual cues match what users see daily online.

This mimicry works because it feels normal at first glance.

Trust builds quickly through resemblance, not promises.

Deception hides in plain sight, shaped like something

harmless.

Fig 1: Data Flow Diagram

V. Methodology

The Deception Front-End

 The process begins when a client or Attacker accesses the

system via a web browser. The Flask Web Server serves a "Fake

Instagram Login UI." This is a social engineering trap designed to

look indistinguishable from the real Instagram login page. Because

it is a honeypot, any interaction with this page is inherently

suspicious, as no legitimate users should be directed here.

Attack Detection & Processing

Once a user submits a form, the data is passed to the Honeypot

Logic & Attack Detection Module. Unlike a real login page that

verifies credentials, this module inspects the payload for common

web vulnerabilities:

SQL Injection (SQLi): Detecting attempts to bypass the login via

database queries.

Cross-Site Scripting (XSS): Identifying malicious scripts injected

into input fields.

Logging and Management

 The system handles the captured data through two channels:

SQLite DB: A lightweight database that stores "Attack Logs,"

providing a historical record of every interaction for forensic

analysis.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 – JANUARY 2026.

31

Admin Dashboard: A secured, authenticated Flask route that

allows the system administrator to visualize attack trends and view

logs in a human-readable format.

Real-Time Alerting Pipeline

 To ensure immediate response, the system utilizes an Alerting

Module integrated with third- party APIs:

Telegram/Twilio: The system uses the Telegram Bot API and

Twilio Gateway to push instant notifications.

End-to-End Notification: The administrator receives an SMS or a

Telegram message on their Mobile Phone the moment a high-

severity attack is detected, allowing for real-time monitoring of the

threat landscape.

VI. Module Description

Start and Initialize System

Start the Flask web application.

Configure the SQLite database and create the Attack Log table

with fields: id, IP, username, password, time, attack_type.

Initialize an in-memory attempt tracker map to store recent login

times per IP.

Set brute force parameters BRUTE FORCE THRESHOLD and

BRUTE FORCE TIME WINDOW.

Configure Telegram bot token and chat ID.

Configure Twilio account SID, auth token, Twilio phone number,

and defender mobile number.

 Display Honeypot Login Page

• When the user sends a GET request to /, render the Instagram-

style login page with normal UI (no trap message).

Handle Login Submission (Honeypot Logic)

When a POST request is sent to /, read username and password

from the form and get the client IP and current time.

If username=="BHARATH" and password=="Amol&12485", treat

it as a valid admin login and redirect to the /dashboard page.

Otherwise, update the attempt tracker for this IP:

Remove timestamps older than

BRUTE_FORCE_TIME_WINDOW.

Add the current timestamp to the list for this IP.

Initialize attack type as "Normal".

Generate and Send Alerts

Build a text message including IP address, username, time, and (if

any) detected attack type.

Send the message to Telegram using the Telegram Bot API for

every login attempt.

If attack_type is not "Normal", send an SMS alert using Twilio to

the configured defender phone number.

Log Attempt to Database

Insert a new record into the Attack Log table with IP, username,

password, time, and attack_type.

Render Response Page

If attack_type is "Normal", re-render the Instagram-style login

page so the attacker sees a normal failure.

If attack_type is "Brute Force Attack", "SQL Injection", or "XSS

Attack", render the full-screen trap view that shows “You got

trapped” with the laughing emoji on the gradient background.

Dashboard View (Admin Only)

When a GET request is sent to /dashboard, query the database to

get:

Latest 100 attack logs.

Total number of logged attempts.

Number of unique IPs.

Counts of each attack type (Brute Force, SQL Injection, XSS).

Render the dashboard page with:

An “Attack Summary” section showing the counts.

An Excel-style HTML table showing IP, username, password,

time, and attack type for each log entry.

A Chart.js doughnut chart that visualizes the counts of each attack

type and displays percentages for each slice.

VII. CONCLUSIONS

The honeypot-based “Instagram-style” security project

successfully shows how a realistic decoy web application can

be used to safely study attacker behavior, detect common web

attacks, and generate useful security insights in real time. By

imitating a familiar social media login interface, the system

attracts attackers without exposing real user accounts or

production systems, and logs every interaction with IP

address, username, password, timestamp, and attack

classification into a structured SQLite database. This

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 – JANUARY 2026.

32

approach follows established honeypot principles: the goal is

not just to trick attackers, but to observe and learn from their

techniques to improve security.

From an implementation perspective, the project delivers a

complete full-stack solution using a compact and practical

technology stack. Python with Flask handles routing, input

processing, attack detection, database operations, and

integration with external messaging services, while HTML

and CSS provide a convincing fake login UI, trap screen, and

a clean admin dashboard. JavaScript with Chart.js adds

interactive charts that visualize the distribution of brute force,

SQL injection, and XSS attacks, turning raw logs into easily

understandable patterns. Custom detection logic tracks

repeated attempts from the same IP to detect brute force and

uses regular expressions to flag SQL injection and XSS

payloads, covering three major web attack categories. Each

classified attempt triggers immediate notifications via

messaging and SMS, tying detection, logging, and alerting

into a lightweight monitoring pipeline suitable for labs and

small environments.

In conclusion, the project meets its objectives by providing

a realistic decoy login environment, robust attack detection,

comprehensive logging, real-time alerting, and clear

visualization in a simple, deployable design. It demonstrates

how modest tools can be combined into a practical

cybersecurity and educational platform, reinforcing key

concepts such as honeypots, web attack detection,

monitoring, and incident awareness, while leaving room for

future extensions like additional attack signatures or

integration with larger security monitoring systems.

Support for additional attack types

Extend detection beyond brute force, SQL injection, and XSS

to include patterns like command injection, directory

traversal, CSRF indicators, and credential stuffing so the

honeypot can capture a wider range of real-world attacks.

GeoIP and location-based insights

Integrate IP geolocation to display attacker countries/regions

and simple maps or country-wise statistics on the dashboard,

helping to understand geographical trends in malicious

activity.

Integration with external security tools

Add options to export logs (CSV/JSON/syslog) or send

events to external security platforms (e.g., SIEM/SOC tools),

allowing the honeypot data to be correlated with other

security logs in larger environments.

Scalable multi-instance honeynet

Deploy multiple honeypot instances (different ports,

domains, or containers) and aggregate logs into a central

dashboard, effectively turning the system into a small

honeynet with broader visibility.

Advanced reporting and analytics

Provide downloadable reports (e.g., Excel or PDF)

summarizing attack volume, time- based trends, top attacking

IPs, and most frequent payloads, supporting periodic security

reviews and presentations.

Role-based and secure admin access

Replace single hardcoded admin credentials with proper

authentication and role-based access (admin, read-only

analyst), improving security and making the dashboard

usable by multiple team members.

Operational hardening and deployment improvements

Harden the deployment with HTTPS, reverse proxies,

containerization (e.g., Docker), and environment-based

configuration so the honeypot is safer to run in lab or cloud

environments and easier to move between systems.

REFERENCES

[1] M. Abu Ahad et al., “Dynamic

Interactive Honeypot for Web Application

Security,” International Journal of Wireless and

Mobile Computing, vol. 14, no. 6, 2024. [Online].

Available:

https://www.mecspress.org/ijwmt/ijwmt-v14-

n6/IJWMT-V14-N6-1.pdf

[2] M. Nunes, P. Figueiredo, and N.

Neves, “Web Application Risk Awareness with

High Interaction Honeypots,” in Proc. INForum –

Simpósio de Informática, 2010. [Online].

Available:

https://www.dpss.inescid.pt/~mpc/pubs/nunes-

inforum10.pdf

[3] “Dynamic Interactive Honeypot for

Web Application Security (HTML Version),”

International Journal of Wireless and Mobile

Computing, 2024. [Online]. Available:

https://www.mecs-press.org/ijwmt/ijwmt-

v14n6/v14n6-1.html

[4] “From Risk Awareness to Security

Controls: Benefits of Honeypots to Web

Application Security,” International Workshop on

Business Applications of Security (IBWAS), 2010.

[Online]. Available: https://repositorio-

cientifico.essatla.pt/bitstream/20.500.12253/537/1/

IBWAS2010.pdf

[5] M. A. F. Noor et al., “Securing Web

Applications Against XSS and SQL Injection

Attacks Using a CNN– LSTM Deep Learning

Model,” Applied Sciences, 2024. [Online].

Available:

https://pmc.ncbi.nlm.nih.gov/articles/PMC107998

87/

[6] P. K. Sahu and S. S. Behera, “An

Approach to Detect and Prevent SQL Injection and

XSS Attacks,” International Journal of

Engineering Trends and Technology, vol. 71, no. 8,

2023. [Online]. Available:

https://ijettjournal.org/Volume-71/Issue-8/IJETT-

V71I8P219.pdf

[7] S. R. Pawar and P. K. Shukla, “An

Approach for Detecting and Preventing SQL

Injection Attack Using Query Sanitization,”

International Journal of Computer Trends and

Technology, vol. 49, no. 4, 2017. [Online].

Available:

https://www.ijcttjournal.org/Volume49/number-

4/IJCTT-V49P139.pdf

[8] A. Mookhey, “Detection of SQL

Injection and Cross-site Scripting Attacks,” Black

Hat USA Whitepaper, 2004. [Online]. Available:

https://www.blackhat.com/presentations/bh-usa-

04/bh-us-04-mookhey/old/bh-us04-

mookhey_whitepaper.pdf

