International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 - JANUARY 2026.

Detection and assessment of Distributed
Denial of Service Attacks using honeypots

Bhavya A.R*1, Nagamma*?

CSE, AKASH INSTITUTE OF ENGINEERING AND TECHNOLGOY, DEVANAHALLI, BANGLORE,
INDIA

CSE, AKASH INSTITUTE OF ENGINEERING AND TECHNOLGOY, DEVANAHALLI, BANGLORE,
INDIA

Abstract—

This project addresses the problem of safely detecting and
analysing malicious login attempts and common web attacks
such as brute force, SQL injection, and XSS on a web
application. It does this by using a realistic Instagram-like fake
login page as a honeypot, which captures all login attempts along
with IP address, username, password, and time, then classifies
them as normal or different attack types using predefined
detection rules. The project work carried out includes designing
the phishing-style frontend Ul, developing the Flask backend
with attack detection logic, creating a SQLite database for
structured logging, integrating Telegram bot and Twilio SMS
for real-time alerts, and implementing a secured dashboard
accessible only with special credentials. The dashboard displays
the collected attack data in an Excel-style table and visualizes
the distribution of attacks with charts (bar or doughnut)
showing counts and percentages, making analysis easier.

The outcome of the project is a fully functional web-based
honeypot and monitoring system that demonstrates how
attackers can be trapped using a familiar Ul and how defenders
can log, classify, and visualize suspicious activities for awareness
and research. It provides a practical learning platform for web
security, phishing risks, logging, alerting, and basic threat
intelligence generation. Future work can extend this system into
a richer honeynet by adding more fake pages and services,
including advanced detection for other attack vectors
(command injection, directory traversal, credential stuffing),
integrating IP geolocation and world maps, exporting logs for
SIEM or machine learning analysis, and deploying the solution
on a public cloud server to observe real-world attack traffic over
a longer period.

Index terms — DDOS attack, Honepots, Attacks, Python,
Phishing, Security, Networking

I. INTRODUCTION

The proposed project is a honeypot-based “Instagram-style”
web security system designed to attract, detect, and analyze
malicious login activity in a safe, controlled environment. It
presents users with a fake social media login page that closely
resembles a real Instagram login, encouraging attackers to
attempt credential guessing or inject malicious payloads.
Behind this realistic interface, a Flask-based backend
captures every login attempt, recording details such as IP
address, username, password, timestamp, and a classified

29

attack type (Normal, Brute Force, SQL Injection, or XSS) in
a structured SQL.ite database.

Not just about catching intruders, the setup keeps watch using
layers - spotting threats, sounding alarms, then showing what
happened. When one address tries too many times, custom
rules catch it; sneaky code attempts get caught by pattern
checks in form inputs. A warning jumps out instantly through
Telegram or SMS once something odd shows up. Only
admins see the control screen, where rows of data sit like
spreadsheets beside live graphs built with Chart.js, mapping
how attacks spread and shift over time. That mix turns it into
more than software - it teaches how break-ins work, how traps
respond, how defences learn.

Il. RELATED WORK

This project lives in cybersecurity, focusing on web app
protection along with honeypot setups. Its niche? Web
security mechanisms paired with deceptive trap systems
meant to catch attackers off guard

Tricking hackers often means setting up something that looks
real but isn’t. A pretend login page, much like Instagram, can
draw them in without warning. Once they bite, everything
slows down - movement watched, every click noted. Instead
of stopping at the door, let them walk right through. What
happens next reveals how they think. Fake setups act like
quiet observers, hidden in plain sight. Safety comes from
distance, not confrontation. Watching teaches more than
blocking ever could.

A fresh approach begins here - building a full system online
that looks like Instagram'’s sign-in screen. This setup pulls in
suspicious visitors by pretending to be real. Watching them
happens safely inside locked conditions. Every step, from
drawing plans to making it work, gets handled carefully.
Instead of rushing, each piece fits slowly into place. The goal
stays clear throughout: learn how intruders behave when they
think no one sees.

Starting with Python and Flask, the system builds backend
processes that respond to sign-in attempts. When someone
tries to log in, it checks for suspicious behavior like repeated

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 - JANUARY 2026.

failures. Patterns tied to brute force attacks get flagged
automatically. If signs of

Web attack detection: Focusing on identifying brute force,
SQL injection, and XSS attacks at the login layer using input
inspection and IP-based rate analysis.

Security monitoring and incident response: Logging all
attempts in a database, generating real time alerts via
messaging and SMS, and providing a dashboard for security
analysis and decision making.

Educational / research security tools: Serving as a teaching
and experimentation platform to study attacker patterns and
demonstrate practical web security concepts using a full-stack
implementation.

I11. Existing System

A trap hidden in plain sight - that is what this setup becomes
for anyone probing too hard. Instead of just locking doors, it
watches hands reaching for the knob. Fake login pages
shaped like familiar apps draw in those who should not be
there. Every keystroke typed by intruders gets recorded -
time, IP, password choice - all stored cold and clear. Unlike
heavy defenses slowing down real users, this one sits quiet
until something stirs. It speaks only when needed, sending
word through messages the moment suspicion spikes. Real
usernames stay locked away while impostor attempts pile up
behind glass. Charts grow quietly in the background, showing
rhythms of attacks across days. Rows of logs display where
each try came from, painting maps without labels. Tools
buried inside spot known tricks: forced entries, script
injections, sneaky redirects. Nothing runs live beyond the
decoy; no risk spreads to actual servers. Alerts land fast - not
later, not maybe - but now, straight to phones and screens.
The whole thing installs without drama, works alone, adapts
silently. Watching instead of shouting, learning more with
every failed breach.

V. Proposed System

The honeypot-based “Instagram-style” security project has A
realistic-looking fake login screen appears, built to mirror an
actual social media sign-in. Its layout copies Instagram
closely, aiming to trick those with bad intentions. The setup
pulls attention through familiar colors and spacing. Every
detail follows common patterns people expect when logging
in. It operates quietly, waiting for someone up to no good to
step forward. Visual cues match what users see daily online.
This mimicry works because it feels normal at first glance.
Trust builds quickly through resemblance, not promises.
Deception hides in plain sight, shaped like something
harmless.

The honeypot-based “Instagram-style” security project has
the following objectives:

A realistic-looking fake login screen appears, built to mirror
an actual social media sign-in. Its layout copies Instagram
closely, aiming to trick those with bad intentions. The setup
pulls attention through familiar colors and spacing. Every

30

detail follows common patterns people expect when logging
in. It operates quietly, waiting for someone up to no good to
step forward. Visual cues match what users see daily online.
This mimicry works because it feels normal at first glance.
Trust builds quickly through resemblance, not promises.
Deception hides in plain sight, shaped like something
harmless.

Client / Attacker,
Scowser (O]

HTTP(S requests
Fake instagram Login Ut
{HTML 7 €SS tomplacesy

vy
L —
S
Flask Web Honeypot Server
(Instagram-style Login +

gra 2in Honepot)

o8

Alerting Module
(Tetagram + Twio

!

Fig 1: Data Flow Diagram

V. Methodology
The Deception Front-End

The process begins when a client or Attacker accesses the
system via a web browser. The Flask Web Server serves a "Fake
Instagram Login UL." This is a social engineering trap designed to
look indistinguishable from the real Instagram login page. Because
it is a honeypot, any interaction with this page is inherently
suspicious, as no legitimate users should be directed here.

Attack Detection & Processing

Once a user submits a form, the data is passed to the Honeypot
Logic & Attack Detection Module. Unlike a real login page that
verifies credentials, this module inspects the payload for common
web vulnerabilities:

SQL Injection (SQL.i): Detecting attempts to bypass the login via
database queries.

Cross-Site Scripting (XSS): Identifying malicious scripts injected
into input fields.

Logging and Management
The system handles the captured data through two channels:

SQLite DB: A lightweight database that stores "Attack Logs,"
providing a historical record of every interaction for forensic
analysis.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 - JANUARY 2026.

Admin Dashboard: A secured, authenticated Flask route that
allows the system administrator to visualize attack trends and view
logs in a human-readable format.

Real-Time Alerting Pipeline

To ensure immediate response, the system utilizes an Alerting
Module integrated with third- party APIs:

Telegram/Twilio: The system uses the Telegram Bot APl and
Twilio Gateway to push instant notifications.

End-to-End Notification: The administrator receives an SMS or a
Telegram message on their Mobile Phone the moment a high-
severity attack is detected, allowing for real-time monitoring of the
threat landscape.

VI. Module Description
Start and Initialize System
Start the Flask web application.

Configure the SQL.ite database and create the Attack Log table
with fields: id, IP, username, password, time, attack_type.

Initialize an in-memory attempt tracker map to store recent login
times per IP.

Set brute force parameters BRUTE FORCE THRESHOLD and
BRUTE FORCE TIME WINDOW.

Configure Telegram bot token and chat ID.

Configure Twilio account SID, auth token, Twilio phone number,
and defender mobile number.

Display Honeypot Login Page

» When the user sends a GET request to /, render the Instagram-
style login page with normal Ul (no trap message).

Handle Login Submission (Honeypot Logic)

When a POST request is sent to /, read username and password
from the form and get the client IP and current time.

If username=="BHARATH" and password=="Amol&12485", treat
it as a valid admin login and redirect to the /dashboard page.

Otherwise, update the attempt tracker for this IP:

Remove timestamps older than
BRUTE_FORCE_TIME_WINDOW.

Add the current timestamp to the list for this IP.

Initialize attack type as "Normal".

31

Generate and Send Alerts

Build a text message including IP address, username, time, and (if
any) detected attack type.

Send the message to Telegram using the Telegram Bot API for
every login attempt.

If attack_type is not "Normal”, send an SMS alert using Twilio to
the configured defender phone number.

Log Attempt to Database

Insert a new record into the Attack Log table with IP, username,
password, time, and attack_type.

Render Response Page

If attack_type is "Normal", re-render the Instagram-style login
page so the attacker sees a normal failure.

If attack_type is "Brute Force Attack", "SQL Injection", or "XSS
Attack”, render the full-screen trap view that shows “You got
trapped” with the laughing emoji on the gradient background.
Dashboard View (Admin Only)

When a GET request is sent to /dashboard, query the database to
get:

Latest 100 attack logs.

Total number of logged attempts.

Number of unique IPs.

Counts of each attack type (Brute Force, SQL Injection, XSS).
Render the dashboard page with:

An “Attack Summary” section showing the counts.

An Excel-style HTML table showing IP, username, password,
time, and attack type for each log entry.

A Chart.js doughnut chart that visualizes the counts of each attack
type and displays percentages for each slice.

VIl. CONCLUSIONS

The honeypot-based ‘“Instagram-style” security project
successfully shows how a realistic decoy web application can
be used to safely study attacker behavior, detect common web
attacks, and generate useful security insights in real time. By
imitating a familiar social media login interface, the system
attracts attackers without exposing real user accounts or
production systems, and logs every interaction with IP
address, username, password, timestamp, and attack
classification into a structured SQLite database. This

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 32 Issue 01 - JANUARY 2026.

approach follows established honeypot principles: the goal is
not just to trick attackers, but to observe and learn from their
techniques to improve security.

From an implementation perspective, the project delivers a
complete full-stack solution using a compact and practical
technology stack. Python with Flask handles routing, input
processing, attack detection, database operations, and
integration with external messaging services, while HTML
and CSS provide a convincing fake login Ul, trap screen, and
a clean admin dashboard. JavaScript with Chart.js adds
interactive charts that visualize the distribution of brute force,
SQL injection, and XSS attacks, turning raw logs into easily
understandable patterns. Custom detection logic tracks
repeated attempts from the same IP to detect brute force and
uses regular expressions to flag SQL injection and XSS
payloads, covering three major web attack categories. Each
classified attempt triggers immediate notifications via
messaging and SMS, tying detection, logging, and alerting
into a lightweight monitoring pipeline suitable for labs and
small environments.

In conclusion, the project meets its objectives by providing
a realistic decoy login environment, robust attack detection,
comprehensive logging, real-time alerting, and clear
visualization in a simple, deployable design. It demonstrates
how modest tools can be combined into a practical
cybersecurity and educational platform, reinforcing key
concepts such as honeypots, web attack detection,
monitoring, and incident awareness, while leaving room for
future extensions like additional attack signatures or
integration with larger security monitoring systems.

Support for additional attack types

Extend detection beyond brute force, SQL injection, and XSS
to include patterns like command injection, directory
traversal, CSRF indicators, and credential stuffing so the
honeypot can capture a wider range of real-world attacks.
GeolP and location-based insights

Integrate IP geolocation to display attacker countries/regions
and simple maps or country-wise statistics on the dashboard,
helping to understand geographical trends in malicious
activity.

Integration with external security tools

Add options to export logs (CSV/JSON/syslog) or send
events to external security platforms (e.g., SIEM/SOC tools),
allowing the honeypot data to be correlated with other
security logs in larger environments.

Scalable multi-instance honeynet

Deploy multiple honeypot instances (different ports,
domains, or containers) and aggregate logs into a central
dashboard, effectively turning the system into a small
honeynet with broader visibility.

Advanced reporting and analytics

Provide downloadable reports (e.g., Excel or PDF)
summarizing attack volume, time- based trends, top attacking
IPs, and most frequent payloads, supporting periodic security
reviews and presentations.

Role-based and secure admin access

Replace single hardcoded admin credentials with proper
authentication and role-based access (admin, read-only
analyst), improving security and making the dashboard
usable by multiple team members.

32

Operational hardening and deployment improvements
Harden the deployment with HTTPS, reverse proxies,
containerization (e.g., Docker), and environment-based
configuration so the honeypot is safer to run in lab or cloud
environments and easier to move between systems.

REFERENCES
[1] M. Abu Ahad et al, “Dynamic
Interactive Honeypot for Web Application

Security,” International Journal of Wireless and
Mobile Computing, vol. 14, no. 6, 2024. [Online].
Auvailable:
https://www.mecspress.org/ijwmt/ijwmt-v14-
n6/IIWMT-V14-N6-1.pdf

[2] M. Nunes, P. Figueiredo, and N.
Neves, “Web Application Risk Awareness with
High Interaction Honeypots,” in Proc. INForum —
Simpésio de Informéatica, 2010. [Online].
Available:
https://www.dpss.inescid.pt/~mpc/pubs/nunes-
inforum10.pdf

[3] “Dynamic Interactive Honeypot for
Web Application Security (HTML Version),”
International Journal of Wireless and Mobile
Computing, 2024. [Online]. Available:
https://www.mecs-press.org/ijwmt/ijwmt-
v14n6/v14n6-1.html

[4] “From Risk Awareness to Security
Controls: Benefits of Honeypots to Web
Application Security,” International Workshop on
Business Applications of Security (IBWAS), 2010.
[Online]. Available: https://repositorio-
cientifico.essatla.pt/bitstream/20.500.12253/537/1/
IBWAS2010.pdf

[5] M. A. F. Noor et al., “Securing Web
Applications Against XSS and SQL Injection
Attacks Using a CNN- LSTM Deep Learning
Model,” Applied Sciences, 2024. [Online].
Auvailable:
https://pmc.ncbi.nim.nih.gov/articles/PMC107998
87/

[6] P. K. Sahu and S. S. Behera, “An
Approach to Detect and Prevent SQL Injection and
XSS Attacks,” International Journal of
Engineering Trends and Technology, vol. 71, no. 8,
2023. [Online]. Auvailable:
https://ijettjournal.org/\Volume-71/Issue-8/IJETT-

V7118P219.pdf

[7] S. R. Pawar and P. K. Shukla, “An
Approach for Detecting and Preventing SQL
Injection Attack Using Query Sanitization,”
International Journal of Computer Trends and
Technology, vol. 49, no. 4, 2017. [Online].
Available:
https://www.ijcttjournal.org/VVolume49/number-
4/1JCTT-V49P139.pdf

[8] A. Mookhey, “Detection of SQL
Injection and Cross-site Scripting Attacks,” Black
Hat USA Whitepaper, 2004. [Online]. Available:
https://www.blackhat.com/presentations/bh-usa-
04/bh-us-04-mookhey/old/bh-us04-
mookhey_whitepaper.pdf

