
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)  
ISSN: 0976-1353 Volume 31 Issue 05 – September 2025. 

 

52 
 

ANALYSIS OF COMMUNITY DETECTION 

ALGORITHMS: GIRVAN–NEWMAN, K-

CLIQUES, AND CHINESE WHISPERS 

D. Dhanalakshmi
#1

 , G. Rajendran*
2
 

 

#1
Research Scholar, Periyar University, Salem -11 and Assistant Professor of Computer Science and  

Applications, Vivekanandha College of Arts and Sciences for Women(Autonomous), Tiruchengode, Namakkal, 

Tamilnadu, India. 
#2

Associate Professor and Head, Department of Computer Science, Govt. Arts and Science College, 

Modakkurichi, Erode, Tamilnadu, India 

Abstract - Community detection plays a crucial role in 

understanding the structural organization of complex 

networks such as social, biological, and information systems. 

This paper provides a comprehensive analysis of three 

prominent community detection algorithms—Girvan–

Newman (GN), K-Cliques, and Chinese Whispers (CW)—

focusing on their methodologies, computational 

complexities, and effectiveness in various network scenarios. 

The Girvan–Newman algorithm, based on edge betweenness 

and hierarchical clustering, efficiently identifies well-

separated communities but is limited by its high 

computational cost and inability to detect overlapping 

structures. The K-Cliques algorithm leverages clique 

percolation to uncover overlapping communities, making it 

suitable for real-world networks with dense 

interconnections, albeit with significant computational 

expense for large graphs. In contrast, the Chinese Whispers 

algorithm utilizes local label propagation for rapid, 

unsupervised clustering, excelling in scalability and 

execution speed but lacking in modularity and overlap 

detection. Experimental comparisons using modularity (Q), 

Normalized Mutual Information (NMI), and execution time 

(T) demonstrate distinct trade-offs between accuracy, 

scalability, and community overlap detection. The results 

highlight that while GN is ideal for small hierarchical 

networks, K-Cliques are best for overlapping community 

detection, and CW is preferable for large-scale, real-time 

applications. 

Index Terms- Community Detection, Girvan–Newman 

Algorithm, K-Cliques, Chinese Whispers, Overlapping 

Communities, Graph Clustering, Network Analysis, 

Modularity, Normalized Mutual Information (NMI), 

Execution Time, Label Propagation, Clique Percolation, 

Scalability. 

I. INTRODUCTION 

In recent years, the study of complex networks has 

become one of the most significant areas of research in 

data science, social computing, and artificial intelligence. 

Networks are powerful tools for modeling relationships 

among entities—ranging from social interactions and 

biological processes to information systems and 

communication infrastructures. Within these networks, 

communities or clusters represent groups of nodes that 

are more densely connected to each other than to the rest 
of the network[1] [2]. Detecting such communities is 

crucial for understanding the underlying structural and 

functional organization of the system. Community 

detection algorithms aim to uncover these modular 

structures by analyzing topological patterns in the 

network. They help identify influential groups in social 

networks, functional modules in biological systems, or 

related documents in citation networks[3]. However, due 

to the diversity and scale of real-world networks, 

designing efficient and accurate community detection 

methods remains a challenging problem. Factors such as 

overlapping communities, hierarchical organization, and 
dynamic network evolution make the task even more 

complex. Over the years, several algorithms have been 

developed to address these challenges, each based on 

distinct theoretical principles and computational 

strategies. Among them, three representative methods 

stand out for their conceptual clarity and broad 

applicability—Girvan–Newman (GN), K-Cliques, and 

Chinese Whispers (CW) algorithms. 

 The Girvan–Newman algorithm identifies 

communities through edge betweenness centrality, 

progressively removing edges that bridge different 

communities. It is highly effective for detecting 

hierarchical structures in small to medium-sized 

networks but computationally expensive for large-

scale graphs. 

 The K-Cliques algorithm uses clique percolation to 

identify overlapping communities, where nodes can 

belong to multiple clusters. This makes it ideal for 

real-world social or biological networks with 

complex overlapping relationships. 

 The Chinese Whispers algorithm, on the other hand, 

employs local label propagation for fast, 

unsupervised community detection. It is particularly 

suitable for large and dynamic datasets due to its 

simplicity and scalability. 

Each of these algorithms demonstrates unique strengths 

and limitations depending on network topology, size, and 

density[4]. While the Girvan–Newman method 
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emphasizes accuracy and hierarchy, K-Cliques focus on 

overlapping modularity, and Chinese Whispers prioritize 

speed and scalability. Thus, a comparative analysis of 

these methods provides deeper insight into their 

applicability across different domains and network 

conditions. 

This paper presents a detailed comparison of the Girvan–

Newman, K-Cliques, and Chinese Whispers algorithms in 

terms of their approaches, computational complexities, 

modularity performance, NMI scores, and execution time. 

The goal is to evaluate their efficiency and suitability for 
various types of network data. The study also discusses 

the advantages, trade-offs, and best-use scenarios of each 

algorithm, offering a comprehensive understanding of 

their behavior in real-world applications. 

II. RELATED WORKS 

Community detection has been a central topic in network 

science, with extensive research focusing on identifying 

hidden structures within complex graphs. Over the past 
two decades, numerous algorithms have been developed, 

each adopting different strategies to reveal community 

boundaries and overlapping structures. These approaches 

can generally be categorized into hierarchical, clique-

based, and label-propagation methods, which form the 

foundation of the algorithms compared in this paper—

Girvan–Newman (GN), K-Cliques, and Chinese Whispers 

(CW). 

The Girvan–Newman algorithm, introduced by Girvan 

and Newman (2002), marked a major breakthrough in 

community detection by proposing an edge-betweenness-

based hierarchical clustering approach. The algorithm 

assumes that edges connecting distinct communities have 

higher betweenness values, as they lie on many of the 

shortest paths between nodes. By iteratively removing 
these high-betweenness edges, the network gradually 

splits into distinct communities [5]. Subsequent studies 

by Newman (2004) and Fortunato (2010) have 

emphasized the algorithm’s ability to uncover 

hierarchical structures and its strong interpretability. 

However, despite its accuracy, its computational 

complexity of O(n³) restricts its scalability to large 

networks, making it suitable primarily for small to 

medium datasets such as social, citation, and biological 

networks [6]. 

In contrast, clique-based methods emerged to address the 

limitation of non-overlapping partitions. The K-Cliques 

algorithm, introduced by Palla et al. (2005), is based on 

clique percolation, which allows the detection of 

overlapping communities—a key characteristic of many 
real-world networks. In this method, communities are 

defined as chains of k-cliques (fully connected subgraphs 

of k nodes) that share k–1 nodes. This approach reflects 

the natural overlap seen in social networks, where 

individuals often belong to multiple groups [7]. 

Subsequent research, including Evans (2010) and Xie et 

al. (2013), demonstrated that clique-based methods 

effectively capture dense substructures but suffer from 

high computational costs, especially when identifying 

larger cliques in sparse networks. Despite these 

challenges, K-Cliques remain widely adopted in 

biological systems, citation analysis, and overlapping 

community studies [8]. 

The Chinese Whispers algorithm, proposed by Biemann 

(2006), represents a shift toward label propagation and 

stochastic clustering techniques. It operates by assigning 

unique labels to nodes and iteratively updating them 

based on neighboring labels and edge weights. Unlike 
deterministic methods, CW introduces randomness in 

label updates, leading to faster convergence and improved 

scalability [9]. Research by Cordasco and Gargano (2010) 

and Raghavan et al. (2007) compared CW to other label 

propagation algorithms and confirmed its linear-time 

complexity (O(n+m)), making it suitable for large-scale, 

real-time, and dynamic networks such as natural language 

processing (NLP) and social media analysis. However, 

CW produces non-overlapping communities and may 

yield slightly lower modularity and NMI scores compared 

to hierarchical or clique-based algorithms [10].Beyond 
these three major techniques, researchers have explored 

several other paradigms for community detection, 

including modularity optimization (Blondel et al., 2008; 

the Louvain method), spectral clustering (Newman, 

2006), genetic algorithms (Pizzuti, 2008), and deep 

learning-based methods (Cavallari et al., 2017). These 

approaches extend the applicability of community 

detection to high-dimensional and dynamic environments. 

Nonetheless, traditional algorithms such as GN, K-

Cliques, and CW remain foundational benchmarks due to 

their interpretability and well-understood mathematical 

formulations[11] [12] [13]. Overall, the existing literature 
demonstrates that while Girvan–Newman excels in 

precision and hierarchical analysis, K-Cliques effectively 

handle overlapping structures, and Chinese Whispers 

provide scalability for large datasets. The comparative 

evaluation of these three methods, as presented in this 

study, contributes to a deeper understanding of their 

trade-offs, computational performance, and practical 

applications across different network domains. 

III. COMMUNITY DETECTION METHODS 

3.1. Girvan-Newman Algorithm 

The Girvan-Newman (GN) algorithm is a hierarchical 

community detection method that identifies communities 

by progressively removing edges with the highest edge 

betweenness centrality. Introduced by Girvan and 

Newman [14], it is based on the idea that edges 

connecting different communities have high betweenness 

scores, meaning they are frequently used in shortest paths 

between nodes. By iteratively removing these high-

betweenness edges, the network is gradually split into 
smaller, densely connected communities. 

Girvan-Newman Algorithm: 

Step 1: Compute Edge Betweenness Centrality (EBC) 
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 Edge betweenness centrality measures how 

frequently an edge appears in the shortest paths 

between all pairs of nodes in the network. 

 The betweenness score for an edge e is given by: 

𝐸𝐵 𝑒 =  
𝜎𝑠𝑡 (𝑒)

𝜎𝑠𝑡
𝑠≠𝑡

 

Where, σst  is the total number of shortest paths between 

nodes s and t. σst(e) is the number of shortest paths that 

pass through edge e. High betweenness edges act as 

bridges between communities and are the first candidates 

for removal. 

Step 2: Identify and Remove the Edge with the Highest 

Betweenness 

 Find the edge e∗ with the highest betweenness 

score: 

𝑒∗ = arg 𝑚𝑎𝑥𝑒𝐸𝐵(𝑒) 

 Remove e∗ from the network: 

𝐺 ′ = 𝐺 − 𝑒∗ 

 Recompute the edge betweenness scores after 

each removal. 

Step 3: Repeat Until the Network is Partitioned into 

Communities 

 Continue removing the highest betweenness 

edges until the graph breaks into disjoint 

components (communities). 

 The process stops when all edges with high 

betweenness are removed, leaving clusters of 

nodes that are densely connected internally. 

Step 4: Evaluate the Community Structure Using 

Modularity 

 To determine the best partitioning, the algorithm 

calculates modularity (Q) at each step. 

 Modularity is a measure of the quality of a 

partition, defined as: 

𝑄 =
1

2𝑚
  𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
 𝛿(𝐶𝑖 , 𝐶𝑗 )

𝑖𝑗

 

Where, Aij  is the adjacency matrix. ki  and kj  are the 
degrees of nodes i and j. m is the total number of edges in 

the network. δ(Ci,Cj) is 1 if i and j are in the same 

community, otherwise 0. The partition with the highest 

modularity value is chosen as the optimal community 

structure. 

The GN algorithm is a hierarchical clustering method that 

detects communities in a network by progressively 

removing edges with high Edge Betweenness Centrality 

(EBC). The underlying assumption is that edges 

connecting different communities act as bridges, 

frequently appearing in shortest paths between nodes. By 

iteratively removing these high-betweenness edges, the 
network gradually splits into densely connected 

communities. 

The algorithm begins by computing the EBC, which 

quantifies how often an edge is used in shortest paths 
between all pairs of nodes. Edges with high betweenness 

scores are removed first, as they are likely to be inter-

community links. After each removal, the edge 

betweenness scores are recomputed, ensuring that the 

next edge to be removed remains the most critical for 

community separation. This iterative process continues 

until the network is completely partitioned into distinct 

communities. To determine the best community structure, 

the algorithm evaluates modularity (Q) at each step. 

Modularity measures how well-defined the detected 

communities are compared to a randomly connected 
network. The partition with the highest modularity is 

selected as the final community structure, ensuring 

optimal separation of groups [15]. Despite its 

effectiveness in detecting well-separated communities, 

the Girvan-Newman algorithm has some significant 

limitations. The biggest drawback is its computational 

complexity of O(n3), making it unsuitable for large 

networks. Additionally, because edges are removed, the 

network structure is permanently altered, meaning it 

cannot detect overlapping communities. However, GN 

remains a useful method for small- to medium-sized 

networks, particularly in social networks, biological 
networks and citation networks, where understanding the 

hierarchical nature of communities is important. The GN 

algorithm is a hierarchical clustering method that 

identifies communities by progressively removing high-

betweenness edges. It effectively uncovers hierarchical 

structures within networks, making it useful for small-

scale social, biological and citation networks. However, 

due to its high computational cost (O(n3)), it is not 

suitable for large networks. Despite this, GN remains an 

important method in community detection, offering 

valuable insights into network topology and the role of 

critical connections in information flow. 

3.2. K-Cliques Algorithm 

The K-Cliques algorithm is a community detection 

method that identifies overlapping communities in a 

network by finding k-cliques—fully connected subgraphs 

of k nodes—and merging them if they share k−1 nodes. 

Unlike modularity-based methods, which assume non-

overlapping communities, K-Cliques percolation enables 

nodes to belong to multiple communities, making it 

highly effective for real-world networks with overlapping 

structures (e.g., social networks, biological systems)[16]. 
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K-Cliques Algorithm: 

Step 1: Identify All K-Cliques in the Graph 

 A k-clique is a complete subgraph of size k, 
meaning that every node in the clique is 

connected to every other node. 

 The condition for a k-clique in an adjacency 

matrix A is: 

𝐴𝑖𝑗 = 1, ∀𝑖,𝑗∈ 𝐶, 𝑖 ≠ 𝑗 

Where, C is the set of nodes in the clique. The set of all k-

cliques in the graph is denoted as K(G,k). 

Step 2: Construct the K-Clique Adjacency Graph 

 Two k-cliques Ci and Cj are considered adjacent 

if they share k−1 nodes: 

 𝐶𝑖 ∩ 𝐶𝑗  = 𝑘 − 1 

 This adjacency relationship defines a new graph, 

called the k-clique adjacency graph, where:  

o Nodes represent k-cliques. 

o Edges exist between k-cliques if they 

share k−1 nodes. 

Step 3: Identify Connected Components in the K-Clique 

Adjacency Graph 

 A community is defined as a maximally 

connected component in the k-clique adjacency 

graph. 

 The task reduces to finding connected 
components in this graph using graph traversal 

algorithms (e.g., BFS or DFS). 

𝐶 =  𝐶𝑖

𝐶𝑖∈𝐾(𝐺,𝑘)

 

Where, C represents a detected community. Nodes 
belonging to multiple k-cliques are part of multiple 

communities, leading to overlapping community 

detection. 

Step 4: Output the Overlapping Community Structure 

 The final output is a set of communities, where 

each node may belong to multiple communities. 

 Unlike traditional modularity-based approaches, 

which assume strict partitions, K-Cliques 

naturally allow overlapping communities. 

The K-Cliques algorithm is an overlapping community 

detection method that identifies groups of densely 

connected nodes in a network. Unlike traditional 

approaches that force non-overlapping partitions, K-

Cliques recognizes that real-world networks often exhibit 

overlapping structures—for example, a person in a social 

network may belong to multiple friend groups. The 

algorithm works by first identifying all k-cliques in the 

graph, where a k-clique is a fully connected subgraph of k 

nodes. Next, it constructs a k-clique adjacency graph, 
where each node represents a k-clique and edges exist 

between k-cliques that share k−1 nodes. This step ensures 

that closely related k-cliques are linked together, 

capturing local community structures. Once the k-clique 

adjacency graph is built, the algorithm extracts connected 

components, treating each component as a community. 

This means that communities are formed by chains of k-

cliques that percolate through the network, rather than 

being strictly isolated clusters. Importantly, nodes can 

belong to multiple k-cliques, allowing the natural 

detection of overlapping communities [17]. One of the 

major advantages of K-Cliques is its ability to capture 
overlapping structures, making it ideal for social 

networks, biological networks and citation graphs, where 

nodes frequently belong to multiple groups. However, the 

algorithm has some computational limitations, as the 

process of finding all k-cliques can be expensive, with a 

worst-case complexity of O(nk). As a result, it is best 

suited for moderately sized networks or cases where 

overlapping communities are essential for analysis. 

The K-Cliques algorithm is a highly effective method for 

detecting overlapping communities by finding chains of 

k-cliques that percolate through the network. Unlike 

modularity-based approaches, which force strict 

partitions, K-Cliques naturally captures nodes that belong 

to multiple communities, making it particularly useful for 

social networks, biological systems and citation networks. 

While K-Cliques provides an intuitive way to detect 

densely connected groups, its computational complexity 

O(nk) can be expensive, especially for large networks. 

However, for moderate-sized graphs where overlapping 
communities are important, K-Cliques remain one of the 

most effective and widely used community detection 

methods. 

3.3. Chinese Whispers Algorithm 

The Chinese Whispers (CW) algorithm is an 

unsupervised graph clustering method that detects 

communities by iteratively propagating labels among 

neighboring nodes. It is similar to the LPA but differs in 

how it updates labels. Unlike LPA, which selects the most 

frequent neighboring label, Chinese Whispers uses 

randomized label updates, making it fast and scalable for 

large networks. It is commonly applied in Natural 

Language Processing (NLP), SNA and biological 

networks [18]. 

Chinese Whispers Algorithm:  

Step 1: Initialize Each Node with a Unique Label 

 Every node v in the network is assigned a unique 

initial label: 
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𝐿 𝑣 = 𝑣, ∀𝑣∈ 𝑉 

Where, V is the set of all nodes in the graph. 

Step 2: Iterate Over Nodes in Random Order 

 The algorithm randomly selects a node v at each 

iteration. 

 The node updates its label based on neighboring 
labels, but instead of choosing the most frequent 

label (as in LPA), it selects a label 

probabilistically based on the weighted sum of 

its neighbors' labels: 

𝐿 𝑣 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖  𝐼(𝐿 𝑣 = 𝑙)
𝑢∈𝑁(𝑣)

 

Where, N (v) is the set of neighbors of node v. wuv is the 
edge weight between nodes u and v. I(L(u)=l) is an 

indicator function that returns 1 if node u has label l, 

otherwise 0. Unlike LPA, where label updates are 

deterministic, Chinese Whispers introduces randomness 

in label updates to avoid local optima. 

Step 3: Repeat until Convergence 

 The algorithm continues updating labels until no 

further label changes occur or a maximum 

number of iterations is reached. The stopping 

condition is: 

𝐿𝑡(𝑣) = 𝐿𝑡+1 𝑣 , ∀𝑣∈ 𝑉 

Where, Lt(v) is the label at iteration t and Lt+1(v) is the 

label at iteration t+1. 

Step 4: Extract Communities Based on Final Labels 

 After convergence, nodes sharing the same label 

form a community. 

 The output consists of disjoint communities 

where each node is assigned to a single cluster. 

The CW algorithm is a graph-based clustering method 

that partitions a network by iteratively propagating labels 

among neighboring nodes. The name "Chinese Whispers" 
comes from the idea that information spreads and evolves 

locally, leading to emergent structures. It is widely used 

for NLP, social network analysis and biological data 

clustering due to its fast and unsupervised nature. The 

algorithm begins by assigning each node a unique label, 

treating every node as its own community. Then, in each 

iteration, nodes randomly update their labels based on the 

labels of their neighbors [19]. Chinese Whispers updates 

labels in a probabilistic manner, using edge weights to 

affect label choices, in contrast to the LPA, which 

chooses the most frequent label.  

This randomness helps prevent local optima, ensuring a 

more natural clustering process. Chinese Whispers is 

highly efficient, with a time complexity of O(n+m), 

making it well-suited for large-scale networks. However, 

due to its stochastic nature, results may vary across 

different runs, requiring multiple executions to obtain 

stable clusters. Additionally, it only detects disjoint 
communities and does not support overlapping clusters, 

unlike the K-Cliques algorithm. Despite these limitations, 

Chinese Whispers remains a powerful clustering tool, 

especially for real-time applications where speed and 

simplicity are essential. Its ability to detect patterns in 

large networks with minimal computation makes it a 

valuable algorithm in graph-based machine learning, NLP 

entity recognition and social network segmentation. 

The CW algorithm is a fast and efficient graph clustering 

method based on local label propagation. It iteratively 

updates node labels based on neighboring labels and edge 

weights, allowing clusters to emerge organically. Unlike 

the LPA, CW introduces randomness in label updates, 

preventing premature convergence to local optima. This 

makes it particularly useful for large-scale, real-time 
applications such as social network segmentation, NLP 

entity clustering and biological data analysis. Despite its 

strengths, CW has limitations, including non-

deterministic results and the inability to detect 

overlapping communities. However, its speed and 

simplicity make it an attractive choice for unsupervised 

clustering in large networks.  

IV.RESULTS AND DISCUSSION 

The experimental setup for evaluating community 

detection methods involves testing their performance on 

diverse real-world datasets, comparing them with 

established algorithms, and assessing key evaluation 

metrics. The evaluation is conducted on four real-world 

network datasets, each representing different types of 

interactions. The Reddit Hyperlink Network (RH-NW) 

captures hyperlink relationships between subreddits and 
includes temporal interactions, making it suitable for 

dynamic community detection. The Amazon Co-

purchasing Network (ACP-NW) represents product co-

purchasing relationships, helping analyze hierarchical 

structures in e-commerce networks. The DBLP 

Collaboration Network (DBLP-NW) models academic 

collaborations based on co-authored research papers, 

making it useful for detecting research communities. The 

Twitch Gamers Network (TG-NW) showcases 

interactions among Twitch users, including demographic 

attributes, and is ideal for testing overlapping community 
detection methods. These datasets provide a robust and 

varied platform for evaluating the effectiveness and 

scalability of community detection algorithms. 

 Table 1 provides a comparative analysis of various 

community detection algorithms, outlining their 

approaches, strengths, weaknesses, scalability, ability to 

handle overlapping communities and ideal use cases. 
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Table 1 Comparison of Existing Community 

Detection Algorithms 

Algorithm Approach Strengths Weaknesses 

Girvan-

Newman 

(GN) 

Edge 

Betweenness 

and 

Hierarchical 

Clustering 

Identifies 

hierarchical 

community 

structures; 

Good for 

small 

networks 

Not scalable; 

Cannot 

detect 

overlapping 

community 

K-Cliques Clique 

Percolation 

Works well 

in dense 

networks, 

capturing 

highly 

modular 

substructure

s Flexibility 

in 

community 

size 

detection. 

Computation

ally 

expensive 

for large and 

sparse 

networks. 

. 

Chinese 

Whispers 

Local Label 

Propagation 

Unsupervise

d and 

parameter-

free, 

reducing the 

need for 

tuning. 

Lower 

modularity 

and NMI 

scores, 

making it 

less effective 

for high-

quality 

community 

detection. 

 

Community detection algorithms are evaluated based on 

various metrics to determine their effectiveness in 

uncovering meaningful structures in networks. The 

following key evaluation metrics are widely used: 

Modularity (Q): Modularity is a graph-based metric that 

measures the strength of the community structure by 

comparing the actual edge density within communities to 
the expected edge density in a random network. A higher 

modularity value (Q) indicates a better-defined 

community structure. 

Q =
1

2m
  Aij −

kikj

2m
 δ(Ci , Cj)

ij

 

Where, Aij is the adjacency matrix (1 if an edge exists 

between nodes i and j, 0 otherwise). ki and kj are the 

degrees of nodes i and j. m is the total number of edges in 

the network. Ci and Cj represent the communities of 
nodes i and j, respectively. δ(Ci,Cj) is the Kronecker delta 

function, which is 1 if nodes i and j are in the same 

community and 0 otherwise. 

Table 2 and Figure 1 presents the modularity (Q) values 
obtained for three community detection algorithms—

Girvan–Newman (GN), K-Cliques, and Chinese Whispers 

(CW)—across four network datasets (RH-NW, ACP-NW, 

DBLP-NW, and TG-NW) of varying sizes (n = 1,000; 

5,000; 25,000). Modularity serves as a key performance 

metric that quantifies the quality of the detected 

community structure. 

Table 2 Modularity Analysis for Community 

Detection Algorithms 

Network 

Size (n) 

Data set GN K-Cliques Chinese 

Whispers 

n=1000 RH-NW 0.721 0.653 0.589 

 ACP-NW 0.684 0.619 0.524 

 DBLP-NW 0.812 0.744 0.657 

 TG-NW 0.869 0.779 0.693 

n=5000 RH-NW 0.658 0.589 0.472 

 ACP-NW 0.687 0.612 0.487 

 DBLP-NW 0.788 0.721 0.579 

 
TG-NW 0.588 0.522 0.391 

n=25000 RH-NW 0.744 0.693 0.589 

 ACP-NW 0.722 0.645 0.478 

 
DBLP-NW 0.689 0.638 0.539 

 TG-NW 0.752 0.693 0.521 

 

Higher modularity values indicate that the algorithm 

successfully identifies dense intra-community 

connections and sparse inter-community links, reflecting 

a more meaningful partitioning of the network. 

 

Figure 1: Modularity for all the methods , Dataset a) 

RH-NW b)ACP-NW c) DBLP-NW d) TG-NW 

Across all datasets and network sizes, the Girvan–

Newman algorithm consistently achieves the highest 
modularity values, demonstrating its strong ability to 

detect well-defined community boundaries. For example, 

in smaller networks (n = 1,000), GN achieves modularity 

scores of 0.869 (TG-NW) and 0.812 (DBLP-NW), 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
H

-N
W

A
C

P
-N

W

D
B

LP
-N

W

TG
-N

W

R
H

-N
W

A
C

P
-N

W

D
B

LP
-N

W

TG
-N

W

R
H

-N
W

A
C

P
-N

W

D
B

LP
-N

W

TG
-N

W

n=1000 n=5000 n=25000

GN K-Cliques Chinese Whispers



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)  
ISSN: 0976-1353 Volume 31 Issue 05 – September 2025. 

 

58 
 

highlighting its accuracy in identifying hierarchical and 

tightly-knit communities. Even as the network size 

increases to n = 25,000, GN maintains relatively high 

modularity values (ranging between 0.689–0.752), 

indicating its robustness in preserving community 

structure. However, the slight decline in modularity with 

increasing network size suggests that the algorithm’s 
hierarchical edge-removal approach becomes less 

efficient as the graph grows denser and more complex. 

Overall, GN performs exceptionally well in terms of 

community cohesion and separation quality, though at the 

cost of higher computational complexity (O(n³)), making 

it more suitable for small to medium-scale networks. 

The K-Cliques algorithm shows moderately high 

modularity values across all datasets, slightly below those 

of GN but higher than Chinese Whispers. For instance, at 

n = 1,000, its modularity ranges between 0.653 (RH-NW) 

and 0.779 (TG-NW). These results confirm that K-

Cliques effectively capture overlapping and dense 

modular structures, which traditional non-overlapping 

algorithms may overlook. However, as the network size 

increases, a gradual decrease in modularity is observed 
(e.g., TG-NW drops from 0.779 to 0.693). This reduction 

can be attributed to the computational burden of detecting 

all k-cliques, especially in large or sparse graphs where 

fully connected subgraphs become rare. Despite this, K-

Cliques retain high modularity consistency, confirming 

their suitability for networks with overlapping community 

structures, such as social and biological systems. 

The Chinese Whispers algorithm yields the lowest 

modularity values across all datasets, with results ranging 

from 0.391 to 0.693, depending on network size. This 

outcome aligns with CW’s design philosophy—it focuses 

on speed and scalability rather than maximizing 

modularity. The algorithm’s randomized label 

propagation mechanism efficiently detects disjoint 

communities but often merges smaller clusters 

prematurely, leading to less-defined community 
boundaries and hence lower modularity. Despite the 

lower modularity, CW remains advantageous in scenarios 

demanding real-time analysis or large-scale data 

processing (e.g., n = 25,000 networks), where other 

algorithms like GN and K-Cliques become 

computationally expensive. Among all, GN demonstrates 

the most stable modularity performance, followed by K-

Cliques, while CW exhibits the largest modularity 

degradation with scale. 

Normalized Mutual Information (NMI): NMI is used 

to quantify the similarity between the detected 

community structure and the ground truth partition. It is 

based on information theory and measures how much 

information is shared between two partitions. 

𝑁𝑀𝐼 𝑋, 𝑌 =
2. 𝐼(𝑋; 𝑌)

𝐻 𝑋 + 𝐻(𝑌)
 

Where, X and Y are the detected communities and ground 

truth communities, respectively. 

 I(X;Y) is the Mutual Information (MI): 

𝐼 𝑋; 𝑌 =    𝑃 𝑥, 𝑦 𝑙𝑜𝑔
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)
𝑦∈𝑌𝑥∈𝑋

 

Where, P(x), P(y) and P(x,y) represent the 

probability distributions of clusters. 

Table 3: NMI Results on Real Datasets for N = 7500 

Dataset GN K-Cliques Chinese Whispers 

RH-NW 0.68 0.55 0.41 

ACP-NW 0.76 0.67 0.48 

DBLP-NW 0.74 0.61 0.43 

TG-NW 0.81 0.74 0.55 

Table 3 and Figure 2 presents the Normalized Mutual 
Information (NMI) results, which measure the similarity 

between detected communities and the true (ground-truth) 

community structure. Higher NMI values indicate more 

accurate and meaningful community detection. The 

Girvan–Newman (GN) algorithm achieves the highest 

NMI scores across all datasets (ranging from 0.68 to 
0.81), showing its strong ability to accurately reproduce 

the actual community structure. This reflects GN’s 

precise hierarchical edge-removal strategy that effectively 

isolates true clusters.  The K-Cliques algorithm performs 

moderately well (0.55–0.74), demonstrating its strength in 

capturing overlapping communities, especially in dense 

datasets like TG-NW and ACP-NW. Its slightly lower 

NMI compared to GN is due to its focus on overlapping 

detection rather than strict partitioning.  

 

Figure 2: NMI Results on Real Datasets for N = 7500 

The Chinese Whispers (CW) algorithm yields the lowest 
NMI values (0.41–0.55), as its randomized label 

propagation often merges communities and results in less 

accurate boundaries. However, it remains useful for large-

scale or real-time clustering where execution speed is 

0

0.2

0.4

0.6

0.8

1

RH-NW ACP-NW DBLP-NW TG-NW

GN K-Cliques Chinese Whispers



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)  
ISSN: 0976-1353 Volume 31 Issue 05 – September 2025. 

 

59 
 

more critical than accuracy. Overall, GN provides the 

most accurate results, K-Cliques offer balanced accuracy 

with overlap handling, and CW prioritizes computational 

efficiency over precision. 

Execution Time (T): Execution time is a critical metric 

for evaluating the computational efficiency of 

community detection algorithms. It measures how long 

an algorithm takes to process a given network and 

identify communities. 

T=tend−tstart 

Where, tstart is the time before the algorithm starts. tend is 

the time after the algorithm completes execution.   

Table 3 presents a comparison of evaluation metrics for 

community detection algorithms, including Modularity 

(Q), NMI with ground truth and Execution Time (T). 

These evaluation metrics provide a comprehensive 

assessment of community detection algorithms. 

Modularity is crucial for evaluating the internal 

consistency of communities, while NMI helps compare 

results with ground truth labels. Execution time 

determines the scalability of the algorithm for real-world 

applications. 

Table 4 Execution Times of All Algorithms for N = 

7500 (in milliseconds) 

Dataset GN K-Cliques Chinese 

Whispers 

RH-NW 2872 2398 1156 

ACP-NW 2628 2251 1294 

DBLP-NW 2397 2143 1203 

TG-NW 2135 1984 997 

 

Table 4 and Figure 3compares the execution times of the 

Girvan–Newman (GN), K-Cliques, and Chinese Whispers 

(CW) algorithms for datasets of size N = 7500. The 

results clearly show significant differences in 

computational efficiency among the three methods. The 
Chinese Whispers (CW) algorithm demonstrates the 

fastest execution times across all datasets, ranging from 

997 ms (TG-NW) to 1294 ms (ACP-NW). Its lightweight 

label propagation mechanism allows rapid convergence, 

making it highly suitable for large-scale or real-time 

network analysis. The K-Cliques algorithm shows 

moderate execution times (1984–2398 ms), performing 

faster than GN but slower than CW. This is because 

detecting all k-cliques and evaluating overlaps requires 

more computation, though still manageable for medium-

sized networks.  

 

Figure 3: Execution times for community 

algorithms 

The Girvan–Newman (GN) algorithm records the highest 
execution times, between 2135 ms and 2872 ms, due to 

its iterative calculation of edge betweenness centrality, 

which is computationally intensive (O(n³)). While it 

provides the most accurate community structures, it is the 

least efficient in terms of runtime. Overall, CW is the 

most time-efficient, K-Cliques offer a balance between 

speed and accuracy, and GN trades higher accuracy for 

longer computation time. 

VI. CONCLUSION 

Community detection continues to be one of the most 

essential problems in complex network analysis, offering 

insights into how entities organize, interact, and evolve 

within large systems. This study presented a 

comprehensive comparison of three widely used 

algorithms—Girvan–Newman (GN), K-Cliques, and 

Chinese Whispers (CW)—each representing a distinct 
methodological perspective in community detection: 

hierarchical clustering, clique percolation, and label 

propagation, respectively. The Girvan–Newman 

algorithm, based on edge betweenness centrality, 

provides a clear and interpretable hierarchical view of 

network structures. It effectively identifies well-separated 

communities and has proven useful in analyzing small-

scale social, citation, and biological networks. However, 

its high computational cost (O(n³)) and inability to detect 

overlapping communities make it unsuitable for large or 

complex datasets. The K-Cliques algorithm, using clique 
percolation, excels in uncovering overlapping 

communities, which often occur in real-world networks 

where entities belong to multiple groups simultaneously. 

Its strength lies in capturing local density and modularity, 

making it ideal for dense and interconnected networks 

such as social or biological systems. Nonetheless, its 

exponential complexity (O(nᵏ)) limits its scalability to 

very large graphs, requiring computational trade-offs. The 

Chinese Whispers algorithm stands out for its speed, 

simplicity, and scalability, utilizing randomized label 

propagation to detect communities efficiently in massive 
datasets. It is particularly suited for real-time clustering 

applications like social media analytics, NLP, and 
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biological data analysis. However, CW’s results can vary 

between runs due to its stochastic nature, and it lacks 

support for overlapping community detection, which 

limits its interpretive richness in certain contexts. 

Comparative analysis based on modularity (Q), 

Normalized Mutual Information (NMI), and execution 

time (T) revealed distinct trade-offs among the 
algorithms. While GN offers the highest modularity for 

small networks, K-Cliques provides strong results in 

overlapping community scenarios, and CW achieves the 

best scalability and computational efficiency. Therefore, 

the optimal choice of algorithm depends on the specific 

application requirements, network size, and desired 

community structure—hierarchical, overlapping, or 

disjoint. 

In conclusion, no single algorithm universally 

outperforms the others across all network conditions. The 

Girvan–Newman method remains valuable for structural 

exploration and academic studies, K-Cliques for 

overlapping modular detection, and Chinese Whispers for 

large-scale, real-time clustering tasks. Together, these 

methods provide complementary perspectives for 

understanding the multifaceted nature of complex 

networks. 
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