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Abstract - Community detection plays a crucial role in
understanding the structural organization of complex
networks such as social, biological, and information systems.
This paper provides a comprehensive analysis of three
prominent community detection algorithms—Girvan—
Newman (GN), K-Cliques, and Chinese Whispers (CW)—
focusing on  their  methodologies,  computational
complexities, and effectiveness in various network scenarios.
The Girvan-Newman algorithm, based on edge betweenness
and hierarchical clustering, efficiently identifies well-
separated communities but is limited by its high
computational cost and inability to detect overlapping
structures. The K-Cliques algorithm leverages clique
percolation to uncover overlapping communities, making it
suitable  for  real-world  networks  with  dense
interconnections, albeit with significant computational
expense for large graphs. In contrast, the Chinese Whispers
algorithm utilizes local label propagation for rapid,
unsupervised clustering, excelling in scalability and
execution speed but lacking in modularity and overlap
detection. Experimental comparisons using modularity (Q),
Normalized Mutual Information (NMI), and execution time
(T) demonstrate distinct trade-offs between accuracy,
scalability, and community overlap detection. The results
highlight that while GN is ideal for small hierarchical
networks, K-Cliques are best for overlapping community
detection, and CW is preferable for large-scale, real-time
applications.

Index Terms- Community Detection, Girvan—Newman

Algorithm, K-Cliques, Chinese Whispers, Overlapping
Communities, Graph  Clustering, Network Analysis,
Modularity, Normalized Mutual Information (NMI),

Execution Time, Label Propagation, Clique Percolation,
Scalability.

I. INTRODUCTION

In recent years, the study of complex networks has
become one of the most significant areas of research in
data science, social computing, and artificial intelligence.
Networks are powerful tools for modeling relationships
among entities—ranging from social interactions and
biological processes to information systems and
communication infrastructures. Within these networks,
communities or clusters represent groups of nodes that
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are more densely connected to each other than to the rest
of the network[1] [2]. Detecting such communities is
crucial for understanding the underlying structural and
functional organization of the system. Community
detection algorithms aim to uncover these modular
structures by analyzing topological patterns in the
network. They help identify influential groups in social
networks, functional modules in biological systems, or
related documents in citation networks[3]. However, due
to the diversity and scale of real-world networks,
designing efficient and accurate community detection
methods remains a challenging problem. Factors such as
overlapping communities, hierarchical organization, and
dynamic network evolution make the task even more
complex. Over the years, several algorithms have been
developed to address these challenges, each based on
distinct theoretical principles and computational
strategies. Among them, three representative methods
stand out for their conceptual clarity and broad
applicability—Girvan—-Newman (GN), K-Cliques, and
Chinese Whispers (CW) algorithms.

e The  Girvan—-Newman algorithm identifies
communities through edge betweenness centrality,
progressively removing edges that bridge different
communities. It is highly effective for detecting
hierarchical structures in small to medium-sized
networks but computationally expensive for large-
scale graphs.

e The K-Cliques algorithm uses clique percolation to
identify overlapping communities, where nodes can
belong to multiple clusters. This makes it ideal for
real-world social or biological networks with
complex overlapping relationships.

e The Chinese Whispers algorithm, on the other hand,
employs local label propagation for fast,
unsupervised community detection. It is particularly
suitable for large and dynamic datasets due to its
simplicity and scalability.

Each of these algorithms demonstrates unique strengths
and limitations depending on network topology, size, and
density[4]. While the Girvan-Newman method
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emphasizes accuracy and hierarchy, K-Cliques focus on
overlapping modularity, and Chinese Whispers prioritize
speed and scalability. Thus, a comparative analysis of
these methods provides deeper insight into their
applicability across different domains and network
conditions.

This paper presents a detailed comparison of the Girvan—
Newman, K-Cliques, and Chinese Whispers algorithms in
terms of their approaches, computational complexities,
modularity performance, NMI scores, and execution time.
The goal is to evaluate their efficiency and suitability for
various types of network data. The study also discusses
the advantages, trade-offs, and best-use scenarios of each
algorithm, offering a comprehensive understanding of
their behavior in real-world applications.

Il. RELATED WORKS

Community detection has been a central topic in network
science, with extensive research focusing on identifying
hidden structures within complex graphs. Over the past
two decades, numerous algorithms have been developed,
each adopting different strategies to reveal community
boundaries and overlapping structures. These approaches
can generally be categorized into hierarchical, clique-
based, and label-propagation methods, which form the
foundation of the algorithms compared in this paper—
Girvan—Newman (GN), K-Cliques, and Chinese Whispers
(CW).

The Girvan—Newman algorithm, introduced by Girvan
and Newman (2002), marked a major breakthrough in
community detection by proposing an edge-betweenness-
based hierarchical clustering approach. The algorithm
assumes that edges connecting distinct communities have
higher betweenness values, as they lie on many of the
shortest paths between nodes. By iteratively removing
these high-betweenness edges, the network gradually
splits into distinct communities [5]. Subsequent studies
by Newman (2004) and Fortunato (2010) have
emphasized the algorithm’s ability to uncover
hierarchical structures and its strong interpretability.
However, despite its accuracy, its computational
complexity of O(n3) restricts its scalability to large
networks, making it suitable primarily for small to
medium datasets such as social, citation, and biological
networks [6].

In contrast, clique-based methods emerged to address the
limitation of non-overlapping partitions. The K-Cliques
algorithm, introduced by Palla et al. (2005), is based on
cligue percolation, which allows the detection of
overlapping communities—a key characteristic of many
real-world networks. In this method, communities are
defined as chains of k-cliques (fully connected subgraphs
of k nodes) that share k-1 nodes. This approach reflects
the natural overlap seen in social networks, where
individuals often belong to multiple groups [7].
Subsequent research, including Evans (2010) and Xie et
al. (2013), demonstrated that clique-based methods
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effectively capture dense substructures but suffer from
high computational costs, especially when identifying
larger cliques in sparse networks. Despite these
challenges, K-Cliques remain widely adopted in
biological systems, citation analysis, and overlapping
community studies [8].

The Chinese Whispers algorithm, proposed by Biemann
(2006), represents a shift toward label propagation and
stochastic clustering techniques. It operates by assigning
unique labels to nodes and iteratively updating them
based on neighboring labels and edge weights. Unlike
deterministic methods, CW introduces randomness in
label updates, leading to faster convergence and improved
scalability [9]. Research by Cordasco and Gargano (2010)
and Raghavan et al. (2007) compared CW to other label
propagation algorithms and confirmed its linear-time
complexity (O(n+m)), making it suitable for large-scale,
real-time, and dynamic networks such as natural language
processing (NLP) and social media analysis. However,
CW produces non-overlapping communities and may
yield slightly lower modularity and NMI scores compared
to hierarchical or clique-based algorithms [10].Beyond
these three major techniques, researchers have explored
several other paradigms for community detection,
including modularity optimization (Blondel et al., 2008;
the Louvain method), spectral clustering (Newman,
2006), genetic algorithms (Pizzuti, 2008), and deep
learning-based methods (Cavallari et al., 2017). These
approaches extend the applicability of community
detection to high-dimensional and dynamic environments.
Nonetheless, traditional algorithms such as GN, K-
Cligues, and CW remain foundational benchmarks due to
their interpretability and well-understood mathematical
formulations[11] [12] [13]. Overall, the existing literature
demonstrates that while Girvan—Newman excels in
precision and hierarchical analysis, K-Cliques effectively
handle overlapping structures, and Chinese Whispers
provide scalability for large datasets. The comparative
evaluation of these three methods, as presented in this
study, contributes to a deeper understanding of their
trade-offs, computational performance, and practical
applications across different network domains.

I1l. COMMUNITY DETECTION METHODS
3.1. Girvan-Newman Algorithm

The Girvan-Newman (GN) algorithm is a hierarchical
community detection method that identifies communities
by progressively removing edges with the highest edge
betweenness centrality. Introduced by Girvan and
Newman [14], it is based on the idea that edges
connecting different communities have high betweenness
scores, meaning they are frequently used in shortest paths
between nodes. By iteratively removing these high-
betweenness edges, the network is gradually split into
smaller, densely connected communities.

Girvan-Newman Algorithm:

Step 1: Compute Edge Betweenness Centrality (EBC)
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e Edge betweenness centrality measures how
frequently an edge appears in the shortest paths
between all pairs of nodes in the network.

e  The betweenness score for an edge e is given by:

EB(e) = Z“t—@

g
s#t St

Where, oy is the total number of shortest paths between
nodes s and t. og(€e) is the number of shortest paths that
pass through edge e. High betweenness edges act as
bridges between communities and are the first candidates
for removal.

Step 2: Identify and Remove the Edge with the Highest
Betweenness

e Find the edge e* with the highest betweenness
score:

e* =argmax,EB(e)
e Remove e* from the network:
G =G-—e*

e Recompute the edge betweenness scores after
each removal.

Step 3: Repeat Until the Network is Partitioned into
Communities

e Continue removing the highest betweenness
edges until the graph breaks into disjoint
components (communities).

e The process stops when all edges with high
betweenness are removed, leaving clusters of
nodes that are densely connected internally.

Step 4: Evaluate the Community Structure Using
Modularity

e To determine the best partitioning, the algorithm
calculates modularity (Q) at each step.

e Modularity is a measure of the quality of a
partition, defined as:

_ 1! Z[A k"k"]ac C
Q_Zm 4 i om (o7 j)
ij

Where, A;; is the adjacency matrix. ki and k; are the
degrees of nodes i and j. m is the total number of edges in
the network. &(C;,Cj) is 1 if i and j are in the same
community, otherwise 0. The partition with the highest
modularity value is chosen as the optimal community
structure.
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The GN algorithm is a hierarchical clustering method that
detects communities in a network by progressively
removing edges with high Edge Betweenness Centrality
(EBC). The underlying assumption is that edges
connecting different communities act as bridges,
frequently appearing in shortest paths between nodes. By
iteratively removing these high-betweenness edges, the
network gradually splits into densely connected
communities.

The algorithm begins by computing the EBC, which
quantifies how often an edge is used in shortest paths
between all pairs of nodes. Edges with high betweenness
scores are removed first, as they are likely to be inter-
community links. After each removal, the edge
betweenness scores are recomputed, ensuring that the
next edge to be removed remains the most critical for
community separation. This iterative process continues
until the network is completely partitioned into distinct
communities. To determine the best community structure,
the algorithm evaluates modularity (Q) at each step.
Modularity measures how well-defined the detected
communities are compared to a randomly connected
network. The partition with the highest modularity is
selected as the final community structure, ensuring
optimal separation of groups [15]. Despite its
effectiveness in detecting well-separated communities,
the Girvan-Newman algorithm has some significant
limitations. The biggest drawback is its computational
complexity of O(n®), making it unsuitable for large
networks. Additionally, because edges are removed, the
network structure is permanently altered, meaning it
cannot detect overlapping communities. However, GN
remains a useful method for small- to medium-sized
networks, particularly in social networks, biological
networks and citation networks, where understanding the
hierarchical nature of communities is important. The GN
algorithm is a hierarchical clustering method that
identifies communities by progressively removing high-
betweenness edges. It effectively uncovers hierarchical
structures within networks, making it useful for small-
scale social, biological and citation networks. However,
due to its high computational cost (O(n%), it is not
suitable for large networks. Despite this, GN remains an
important method in community detection, offering
valuable insights into network topology and the role of
critical connections in information flow.

3.2. K-Cliques Algorithm

The K-Cligues algorithm is a community detection
method that identifies overlapping communities in a
network by finding k-cliques—fully connected subgraphs
of k nodes—and merging them if they share k—1 nodes.
Unlike modularity-based methods, which assume non-
overlapping communities, K-Cliques percolation enables
nodes to belong to multiple communities, making it
highly effective for real-world networks with overlapping
structures (e.g., social networks, biological systems)[16].
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K-Cliques Algorithm:
Step 1: Identify All K-Cliques in the Graph

e A Kk-clique is a complete subgraph of size k,
meaning that every node in the clique is
connected to every other node.

e The condition for a k-clique in an adjacency
matrix A is:

Aij = 1'Vi,je C,l i]

Where, C is the set of nodes in the clique. The set of all k-
cliques in the graph is denoted as K(G,k).

Step 2: Construct the K-Cligue Adjacency Graph

e Two k-cliques C; and C; are considered adjacent
if they share k—1 nodes:

lcngl=k-1

e This adjacency relationship defines a new graph,
called the k-clique adjacency graph, where:
o Nodes represent k-cliques.
o Edges exist between k-cliques if they
share k—1 nodes.

Step 3: Identify Connected Components in the K-Clique
Adjacency Graph

e A community is defined as a maximally
connected component in the k-clique adjacency
graph.

e The task reduces to finding connected
components in this graph using graph traversal
algorithms (e.g., BFS or DFS).

C = U Ci
C,€K(G,k)

Where, C represents a detected community. Nodes
belonging to multiple k-cliques are part of multiple
communities, leading to overlapping community
detection.

Step 4: Output the Overlapping Community Structure

e The final output is a set of communities, where
each node may belong to multiple communities.

e Unlike traditional modularity-based approaches,
which assume strict partitions, K-Cliques
naturally allow overlapping communities.

The K-Cliques algorithm is an overlapping community
detection method that identifies groups of densely
connected nodes in a network. Unlike traditional
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approaches that force non-overlapping partitions, K-
Cliques recognizes that real-world networks often exhibit
overlapping structures—for example, a person in a social
network may belong to multiple friend groups. The
algorithm works by first identifying all k-cliques in the
graph, where a k-clique is a fully connected subgraph of k
nodes. Next, it constructs a k-clique adjacency graph,
where each node represents a k-clique and edges exist
between k-cliques that share k—1 nodes. This step ensures
that closely related k-cliques are linked together,
capturing local community structures. Once the k-clique
adjacency graph is built, the algorithm extracts connected
components, treating each component as a community.
This means that communities are formed by chains of k-
cliques that percolate through the network, rather than
being strictly isolated clusters. Importantly, nodes can
belong to multiple k-cliques, allowing the natural
detection of overlapping communities [17]. One of the
major advantages of K-Cliques is its ability to capture
overlapping structures, making it ideal for social
networks, biological networks and citation graphs, where
nodes frequently belong to multiple groups. However, the
algorithm has some computational limitations, as the
process of finding all k-cliques can be expensive, with a
worst-case complexity of O(n¥). As a result, it is best
suited for moderately sized networks or cases where
overlapping communities are essential for analysis.

The K-Cliques algorithm is a highly effective method for
detecting overlapping communities by finding chains of
k-cliques that percolate through the network. Unlike
modularity-based approaches, which force strict
partitions, K-Cliques naturally captures nodes that belong
to multiple communities, making it particularly useful for
social networks, biological systems and citation networks.
While K-Cliques provides an intuitive way to detect
densely connected groups, its computational complexity
O(n") can be expensive, especially for large networks.
However, for moderate-sized graphs where overlapping
communities are important, K-Cliques remain one of the
most effective and widely used community detection
methods.

3.3. Chinese Whispers Algorithm

The Chinese Whispers (CW) algorithm is an
unsupervised graph clustering method that detects
communities by iteratively propagating labels among
neighboring nodes. It is similar to the LPA but differs in
how it updates labels. Unlike LPA, which selects the most
frequent neighboring label, Chinese Whispers uses
randomized label updates, making it fast and scalable for
large networks. It is commonly applied in Natural
Language Processing (NLP), SNA and biological
networks [18].

Chinese Whispers Algorithm:
Step 1: Initialize Each Node with a Unique Label

e Everynode v in the network is assigned a unique
initial label:
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Lv) =v,V,EV
Where, V is the set of all nodes in the graph.
Step 2: Iterate Over Nodes in Random Order

e The algorithm randomly selects a node v at each
iteration.

e The node updates its label based on neighboring
labels, but instead of choosing the most frequent
label (as in LPA), it selects a label
probabilistically based on the weighted sum of
its neighbors' labels:

L(v) = arg max;

Z IL@) =)

u€N (v)

Where, N (v) is the set of neighbors of node v. wuv is the
edge weight between nodes u and v. I(L(u)=l) is an
indicator function that returns 1 if node u has label I,
otherwise 0. Unlike LPA, where label updates are
deterministic, Chinese Whispers introduces randomness
in label updates to avoid local optima.

Step 3: Repeat until Convergence

e The algorithm continues updating labels until no
further label changes occur or a maximum
number of iterations is reached. The stopping
condition is:

Ly(w) =Ly (v),V,€V

Where, Ly(v) is the label at iteration t and L.¢(V) is the
label at iteration t+1.

Step 4: Extract Communities Based on Final Labels

e  After convergence, nodes sharing the same label
form a community.

e The output consists of disjoint communities
where each node is assigned to a single cluster.

The CW algorithm is a graph-based clustering method
that partitions a network by iteratively propagating labels
among neighboring nodes. The name "Chinese Whispers"
comes from the idea that information spreads and evolves
locally, leading to emergent structures. It is widely used
for NLP, social network analysis and biological data
clustering due to its fast and unsupervised nature. The
algorithm begins by assigning each node a unique label,
treating every node as its own community. Then, in each
iteration, nodes randomly update their labels based on the
labels of their neighbors [19]. Chinese Whispers updates
labels in a probabilistic manner, using edge weights to
affect label choices, in contrast to the LPA, which
chooses the most frequent label.
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This randomness helps prevent local optima, ensuring a
more natural clustering process. Chinese Whispers is
highly efficient, with a time complexity of O(n+m),
making it well-suited for large-scale networks. However,
due to its stochastic nature, results may vary across
different runs, requiring multiple executions to obtain
stable clusters. Additionally, it only detects disjoint
communities and does not support overlapping clusters,
unlike the K-Cliques algorithm. Despite these limitations,
Chinese Whispers remains a powerful clustering tool,
especially for real-time applications where speed and
simplicity are essential. Its ability to detect patterns in
large networks with minimal computation makes it a
valuable algorithm in graph-based machine learning, NLP
entity recognition and social network segmentation.

The CW algorithm is a fast and efficient graph clustering
method based on local label propagation. It iteratively
updates node labels based on neighboring labels and edge
weights, allowing clusters to emerge organically. Unlike
the LPA, CW introduces randomness in label updates,
preventing premature convergence to local optima. This
makes it particularly useful for large-scale, real-time
applications such as social network segmentation, NLP
entity clustering and biological data analysis. Despite its
strengths, CW has limitations, including non-
deterministic results and the inability to detect
overlapping communities. However, its speed and
simplicity make it an attractive choice for unsupervised
clustering in large networks.

IV.RESULTS AND DISCUSSION

The experimental setup for evaluating community
detection methods involves testing their performance on
diverse real-world datasets, comparing them with
established algorithms, and assessing key evaluation
metrics. The evaluation is conducted on four real-world
network datasets, each representing different types of
interactions. The Reddit Hyperlink Network (RH-NW)
captures hyperlink relationships between subreddits and
includes temporal interactions, making it suitable for
dynamic community detection. The Amazon Co-
purchasing Network (ACP-NW) represents product co-
purchasing relationships, helping analyze hierarchical
structures in e-commerce networks. The DBLP
Collaboration Network (DBLP-NW) models academic
collaborations based on co-authored research papers,
making it useful for detecting research communities. The
Twitch  Gamers Network (TG-NW)  showcases
interactions among Twitch users, including demographic
attributes, and is ideal for testing overlapping community
detection methods. These datasets provide a robust and
varied platform for evaluating the effectiveness and
scalability of community detection algorithms.

Table 1 provides a comparative analysis of various
community detection algorithms, outlining their
approaches, strengths, weaknesses, scalability, ability to
handle overlapping communities and ideal use cases.
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Table 1 Comparison of Existing Community

Detection Algorithms

Algorithm Approach Strengths Weaknesses
Girvan- Edge Identifies Not scalable;
Newman Betweenness hierarchical Cannot
(GN) and community detect

Hierarchical structures; overlapping
Clustering Good for community
small
networks
K-Cliques Clique Works well Computation
Percolation in dense ally
networks, expensive
capturing for large and
highly sparse
modular networks.
substructure
s Flexibility
in
community
size
detection.
Chinese Local Label Unsupervise | Lower
Whispers Propagation dand modularity
parameter- and NMI
free, scores,
reducing the | making it
need for less effective
tuning. for high-
quality
community
detection.

Community detection algorithms are evaluated based on
various metrics to determine their effectiveness in
uncovering meaningful structures in networks. The
following key evaluation metrics are widely used:

Modularity (Q): Modularity is a graph-based metric that
measures the strength of the community structure by
comparing the actual edge density within communities to
the expected edge density in a random network. A higher
modularity value (Q) indicates a better-defined
community structure.

= 1ZA kik"sc C
Q—ﬂ i T om (A ")

b

Where, A is the adjacency matrix (1 if an edge exists
between nodes i and j, 0 otherwise). k; and kj are the
degrees of nodes i and j. m is the total number of edges in
the network. C; and C; represent the communities of
nodes i and j, respectively. 6(C;,C;) is the Kronecker delta
function, which is 1 if nodes i and j are in the same
community and 0 otherwise.

Table 2 and Figure 1 presents the modularity (Q) values
obtained for three community detection algorithms—
Girvan—Newman (GN), K-Cliques, and Chinese Whispers
(CW)—across four network datasets (RH-NW, ACP-NW,
DBLP-NW, and TG-NW) of varying sizes (n = 1,000;
5,000; 25,000). Modularity serves as a key performance

S7

metric that quantifies the quality of the detected
community structure.

Table 2 Modularity Analysis for Community
Detection Algorithms

Network Data set GN K-Cliques Chinese

Size (n) Whispers
n=1000 RH-NW 0.721 0.653 0.589
ACP-NW 0.684 0.619 0.524
DBLP-NW 0.812 0.744 0.657
TG-NW 0.869 0.779 0.693
n=5000 RH-NW 0.658 0.589 0.472
ACP-NW 0.687 0.612 0.487
DBLP-NW 0.788 0.721 0.579
TG-NW 0.588 0.522 0.391
n=25000 RH-NW 0.744 0.693 0.589
ACP-NW 0.722 0.645 0.478
DBLP-NW 0.689 0.638 0.539
TG-NW 0.752 0.693 0.521

Higher modularity values indicate that the algorithm
successfully identifies dense intra-community
connections and sparse inter-community links, reflecting
a more meaningful partitioning of the network.

B GN mK-Cliques

Chinese Whispers

COO0O0O00000
oRrNMwWwhUON®

Figure 1: Modularity for all the methods , Dataset a)
RH-NW b)ACP-NW c) DBLP-NW d) TG-NW

Across all datasets and network sizes, the Girvan—
Newman algorithm consistently achieves the highest
modularity values, demonstrating its strong ability to
detect well-defined community boundaries. For example,
in smaller networks (n = 1,000), GN achieves modularity
scores of 0.869 (TG-NW) and 0.812 (DBLP-NW),
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highlighting its accuracy in identifying hierarchical and
tightly-knit communities. Even as the network size
increases to n = 25,000, GN maintains relatively high
modularity values (ranging between 0.689-0.752),
indicating its robustness in preserving community
structure. However, the slight decline in modularity with
increasing network size suggests that the algorithm’s
hierarchical edge-removal approach becomes less
efficient as the graph grows denser and more complex.
Overall, GN performs exceptionally well in terms of
community cohesion and separation quality, though at the
cost of higher computational complexity (O(n%)), making
it more suitable for small to medium-scale networks.

The K-Cliques algorithm shows moderately high
modularity values across all datasets, slightly below those
of GN but higher than Chinese Whispers. For instance, at
n = 1,000, its modularity ranges between 0.653 (RH-NW)
and 0.779 (TG-NW). These results confirm that K-
Cliques effectively capture overlapping and dense
modular structures, which traditional non-overlapping
algorithms may overlook. However, as the network size
increases, a gradual decrease in modularity is observed
(e.g., TG-NW drops from 0.779 to 0.693). This reduction
can be attributed to the computational burden of detecting
all k-cliques, especially in large or sparse graphs where
fully connected subgraphs become rare. Despite this, K-
Cliques retain high modularity consistency, confirming
their suitability for networks with overlapping community
structures, such as social and biological systems.

The Chinese Whispers algorithm vyields the lowest
modularity values across all datasets, with results ranging
from 0.391 to 0.693, depending on network size. This
outcome aligns with CW’s design philosophy—it focuses
on speed and scalability rather than maximizing

modularity. The algorithm’s  randomized label
propagation mechanism efficiently detects disjoint
communities but often merges smaller clusters
prematurely, leading to less-defined community

boundaries and hence lower modularity. Despite the
lower modularity, CW remains advantageous in scenarios
demanding real-time analysis or large-scale data
processing (e.g., n = 25,000 networks), where other
algorithms  like GN and K-Cliques hecome
computationally expensive. Among all, GN demonstrates
the most stable modularity performance, followed by K-
Cliques, while CW exhibits the largest modularity
degradation with scale.

Normalized Mutual Information (NMI): NMI is used
to quantify the similarity between the detected
community structure and the ground truth partition. It is
based on information theory and measures how much
information is shared between two partitions.

2.1(X;Y)

NMI(X,Y) =m

Where, X and Y are the detected communities and ground
truth communities, respectively.
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o 1I(X;Y) is the Mutual Information (MI):

N P(x,y)
I(X;Y) = ;;P(x,y)log—P(x)P(y)

Where, P(x), P(y) and P(x,y) represent the
probability distributions of clusters.

Table 3: NMI Results on Real Datasets for N = 7500

Dataset GN  K-Cliques Chinese Whispers

RH-NW 0.68 0.55 0.41
ACP-NW 0.76 0.67 0.48
DBLP-NW  0.74 0.61 0.43

TG-NW 0.81 0.74 0.55

Table 3 and Figure 2 presents the Normalized Mutual
Information (NMI) results, which measure the similarity
between detected communities and the true (ground-truth)
community structure. Higher NMI values indicate more
accurate and meaningful community detection. The
Girvan—Newman (GN) algorithm achieves the highest
NMI scores across all datasets (ranging from 0.68 to
0.81), showing its strong ability to accurately reproduce
the actual community structure. This reflects GN’s
precise hierarchical edge-removal strategy that effectively
isolates true clusters. The K-Cliques algorithm performs
moderately well (0.55-0.74), demonstrating its strength in
capturing overlapping communities, especially in dense
datasets like TG-NW and ACP-NW. lIts slightly lower
NMI compared to GN is due to its focus on overlapping
detection rather than strict partitioning.

B GN mK-Cliques Chinese Whispers

0.8 A

0.6 -

0 T T T 1
RH-NW  ACP-NW DBLP-NW TG-NW

Figure 2: NMI Results on Real Datasets for N = 7500

The Chinese Whispers (CW) algorithm yields the lowest
NMI values (0.41-0.55), as its randomized label
propagation often merges communities and results in less
accurate boundaries. However, it remains useful for large-
scale or real-time clustering where execution speed is
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more critical than accuracy. Overall, GN provides the
most accurate results, K-Cliques offer balanced accuracy
with overlap handling, and CW prioritizes computational
efficiency over precision.

Execution Time (T): Execution time is a critical metric
for evaluating the computational efficiency of
community detection algorithms. It measures how long
an algorithm takes to process a given network and
identify communities.

T=tenatstan

Where, tg. is the time before the algorithm starts. teng is
the time after the algorithm completes execution.

Table 3 presents a comparison of evaluation metrics for
community detection algorithms, including Modularity
(Q), NMI with ground truth and Execution Time (T).
These evaluation metrics provide a comprehensive
assessment of community detection algorithms.
Modularity is crucial for evaluating the internal
consistency of communities, while NMI helps compare
results with ground truth labels. Execution time
determines the scalability of the algorithm for real-world
applications.

Table 4 Execution Times of All Algorithms for N =
7500 (in milliseconds)

Dataset GN  K-Cliques Chinese
Whispers
RH-NW 2872 2398 1156
ACP-NW 2628 2251 1294
DBLP-NW 2397 2143 1203
TG-NW 2135 1984 997

Table 4 and Figure 3compares the execution times of the
Girvan—Newman (GN), K-Cliques, and Chinese Whispers
(CW) algorithms for datasets of size N = 7500. The
results clearly show significant differences in
computational efficiency among the three methods. The
Chinese Whispers (CW) algorithm demonstrates the
fastest execution times across all datasets, ranging from
997 ms (TG-NW) to 1294 ms (ACP-NW). Its lightweight
label propagation mechanism allows rapid convergence,
making it highly suitable for large-scale or real-time
network analysis. The K-Cliques algorithm shows
moderate execution times (1984-2398 ms), performing
faster than GN but slower than CW. This is because
detecting all k-cliques and evaluating overlaps requires
more computation, though still manageable for medium-
sized networks.
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Figure 3: Execution times for community
algorithms

The Girvan—Newman (GN) algorithm records the highest
execution times, between 2135 ms and 2872 ms, due to
its iterative calculation of edge betweenness centrality,
which is computationally intensive (O(n3)). While it
provides the most accurate community structures, it is the
least efficient in terms of runtime. Overall, CW is the
most time-efficient, K-Cliques offer a balance between
speed and accuracy, and GN trades higher accuracy for
longer computation time.

VI. CONCLUSION

Community detection continues to be one of the most
essential problems in complex network analysis, offering
insights into how entities organize, interact, and evolve
within large systems. This study presented a
comprehensive comparison of three widely used
algorithms—Girvan—-Newman (GN), K-Cliques, and
Chinese Whispers (CW)—each representing a distinct
methodological perspective in community detection:
hierarchical clustering, clique percolation, and label
propagation,  respectively. The  Girvan—-Newman
algorithm, based on edge betweenness centrality,
provides a clear and interpretable hierarchical view of
network structures. It effectively identifies well-separated
communities and has proven useful in analyzing small-
scale social, citation, and biological networks. However,
its high computational cost (O(n3)) and inability to detect
overlapping communities make it unsuitable for large or
complex datasets. The K-Cliques algorithm, using clique
percolation, excels in  uncovering  overlapping
communities, which often occur in real-world networks
where entities belong to multiple groups simultaneously.
Its strength lies in capturing local density and modularity,
making it ideal for dense and interconnected networks
such as social or biological systems. Nonetheless, its
exponential complexity (O(n¥)) limits its scalability to
very large graphs, requiring computational trade-offs. The
Chinese Whispers algorithm stands out for its speed,
simplicity, and scalability, utilizing randomized label
propagation to detect communities efficiently in massive
datasets. It is particularly suited for real-time clustering
applications like social media analytics, NLP, and
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biological data analysis. However, CW’s results can vary
between runs due to its stochastic nature, and it lacks
support for overlapping community detection, which
limits its interpretive richness in certain contexts.
Comparative analysis based on modularity (Q),
Normalized Mutual Information (NMI), and execution
time (T) revealed distinct trade-offs among the
algorithms. While GN offers the highest modularity for
small networks, K-Cliques provides strong results in
overlapping community scenarios, and CW achieves the
best scalability and computational efficiency. Therefore,
the optimal choice of algorithm depends on the specific
application requirements, network size, and desired
community  structure—hierarchical, overlapping, or
disjoint.

In  conclusion, no single algorithm universally
outperforms the others across all network conditions. The
Girvan—Newman method remains valuable for structural
exploration and academic studies, K-Cliques for
overlapping modular detection, and Chinese Whispers for
large-scale, real-time clustering tasks. Together, these
methods provide complementary perspectives for
understanding the multifaceted nature of complex
networks.
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