
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

47

Abstract— Smartphones are very popular among the users

because of its multiple smart features related to education,
entertainment, business etc. Companies design professional
smartphones to complete most of the official works on travel like
Windows phone with all MS Office feature. However, security
concerns about data sharing, leakage and loss have hindered the
adoption of smartphones for corporate use. In APP HIDING, it
is possible to define distinct Security Profiles within a single
smartphone. Each security profile is associated with a set of
policies that control the access to applications and data. Profiles
are not predefined or hardcoded, they can be specified and
applied at any time. One of the main characteristics of APP
HIDING is the dynamic switching from one security profile to
another. We run a thorough set of experiments using our full
implementation of APP HIDING. Smartphones allow end users
to perform several tasks while being on the move. As a
consequence, end users require their personal smartphones to be
connected to their work IT infrastructure. More and more
companies nowadays provide mobile versions of their desktop
applications. Studies have shown that allowing access to
enterprise services with smartphones increases employee
productivity [2]. An increasing number of companies are even
embracing the BYOD: Bring Your Own Device policy [3],
leveraging the employee’s smartphone to provide mobile access
to company’s applications. Several device manufacturers are
even following this trend by producing smartphones able to
handle two subscriber identification modules (SIMs) at the same
time.

Index Terms—About four key words or phrases in
alphabetical order, separated by commas.

I. OBJECTIVE

 Objective of this project is to create a profile based
application to the user interface for its security purpose and to
create profile based application access for users.

II. PROBLEM DEFINITION

A. EXISTING SYSTEM

A solution could be implemented by means of
virtualization technologies where different instances of an OS
can run separately on the same device. Although
virtualization is quite effective when deployed in full-fledged
devices (PC and servers), it is still too resource demanding for
embedded systems such as smartphones. Another approach

that is less resource demanding is paravirtualization. Unlikely
full virtualization where the guest OS is not aware of running
in a virtualised environment, in paravirtualization it is
necessary to modify the guest OS to boost performance.
Paravirtualization for smartphones is currently under
development and several solutions exist (e.g.,Trango,
VirtualLogix, L4 microkernel, L4Android).

B. DISADVANTAGES:

� All the virtualization solutions suffer from having a

coarse grained approach (i.e., the virtualised
environments are completely separated, even when
this might be a limitation for interaction).

� Other limitation is the hardcoding of the environment
specification. Environments cannot be defined by
the user/company according to their needs but they
are predefined and hardcoded in the virtual machine.

� Furthermore, the switching among environments
always requires user interactions and it could take a
significant amount of time and power. While
researchers are improving some of these aspects, the
complete separation of virtual machines and the
impossibility to change or adapt their specifications
remain an open issue.

C. PROPOSED SYSTEM

 In this paper, we propose APP HIDING provides an
abstraction for separating data and apps dedicated to different
contexts that are installed in a single device. For instance,
corporate data and apps can be separated from personal data
and apps within a single device. Our approach provides
compartments where data and apps are stored. APP HIDING
enforcement mechanism guarantees data and apps within a
compartment are isolated from others compartments’ data and
apps. These compartments are called Security Profiles in APP
HIDING. Generally speaking, a SP is a set of policies that
regulates what applications can be executed and what data can
be accessed.

D. ADVANTAGES

� One of the features introduced in APP HIDING is the

automatic activation of SP depending on the context,
in which the device is being used.

� APP HIDING can be used for realising a Mobile
Device Management solution to manage remotely
the security settings of a fleet of mobile devices

GS LAUNCHER

M Indumathy #1, M Parveen Banu*2 and K Kadambari*3
Asst. Professor, Dept. Of Information and Technology, Rajiv Gandhi College Of Engineering And Technology,

Puducherry, India
* 6th semester, Dept. Of Information and Technology, Rajiv Gandhi College Of Engineering And Technology,

Puducherry, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

48

E. HARDWARE REQUIREMENTS:

� System : Pentium IV 2.4 GHz.
� Hard Disk : 40 GB.
� Floppy Drive : 1.44 Mb.
� Monitor : 15 VGA Colour.
� Mouse : Logitech.
� Ram : 512 Mb.
� MOBILE : ANDROID

F. SOFTWARE REQUIREMENTS:

� Operating system : Windows XP/7.
� Coding Language : Java 1.7
� Tool Kit : Android 2.3 ABOVE
� IDE : Eclipse

III. DESIGN MODULES

A. SYSTEM DESIGN

SYSTEM ARCHITECTURE:

APP HIDING consists of the components presented in Fig. 1.
Central to APP HIDING is the notion of Context. The
component Context Detector System is responsible for
detecting context activation/deactivation. When such an event
happens, the Context Detector System sends a notification
about this to the Security Profile Manager. The Security
Profile Manager holds the information linking a SP with one
or more Context. The Security Profile Manager is responsible
for the activation and deactivation of SPs. The Security
Profile Manager implements the following logic: _ If a newly
activated Context corresponds to the active SP then the

notification is ignored; _ If the SP corresponding to a newly
active Context has a lower or equal priority to the currently
running SP, then the notification is ignored; _ In all other
cases, a SP switch has to be performed.
This means that the currently running SP has to be deactivated
and the new SP becomes active. In the latter case, the Security
Profile Manager sends a command to the APP HIDING
Hypervisor informing which is the new SPs that needs to be
activated. The APP HIDING Hypervisor is the component
that acts as a policy decision point (PDP) in APP HIDING.
The APP HIDING Hypervisor provides a central point for
APP HIDING security checks against the policies defined for
the active SP to regulate access to resources. The APP
HIDING Hypervisor delegates the policy checks to its two
managers: the APP HIDING App Manager and the APP
HIDING Rules Manager. The former is responsible for
deciding which apps are allowed to be executed within a SP.
The latter takes care of managing Special Rules. The APP
HIDING Policy Manager acts as the policy administrator
point (PAP) in APP HIDING. It provides the API for
creating, updating and deleting APP HIDING policies. It also
allows a user to define, modify, remove monitored Contexts
and assign them to SPs. Moreover, this component also
controls access to APP HIDING policy database (APP
HIDING.db) allowing only applications with special
permissions to interact with this component. The APP
HIDING Taint Manager component manages the “shadow
database” which stores the taint values used by Taintdroid.
We have extended the functionality of Taintdroid to perform
more fine-grained tainting. In APP HIDING, we can taint
specific rows of a content provider: to be able to perform per
row filtering when an app access data in the content provider.
For instance, it is possible to filter out from the query result
data the rows which contain the information about device
identifiers or user contacts. Given the fact that the
enforcement of policies depends on the information provided
by the APP HIDING Taint Manager, this component acts as a
policy information point (PIP).
The decisions taken by the APP HIDING Hypervisor need to
be enforced by the policy enforcement point (PEP). APP
HIDING affects several components within Android
middleware where decisions need to be enforced. For this
reason, the PEP includes several Android components
offering system services such as Location Manager and
Activity Manager Service. Moreover, some Android core
classes (such as the OS File System and OS Network System)
are modified to enforce decisions regarding the access to the
file system and network, respectively. The enforcement of
separated SPs requires special components to manage
application processes and file system views. When a new SP
is activated, it might deny the execution of some applications
allowed in the previous profile. If these applications are
running during the profile switch, then we need to stop their
processes.
The APP HIDING Reaper is the component responsible for
shutting down processes of applications no longer allowed in
the new SP after the switch. In APP HIDING, applications
have access to different data depending on the active profile.
To separate data between profiles different file system view
are supported. This functionality is provided by the APP

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

49

HIDING Mounter. To allow the user of the device to interact
with APP HIDING, we provide two APP HIDING
applications: the APP HIDING Sp Changer and the APP
HIDING Policy Gui. The APP HIDING Sp Changer allows
the user to manually activate a SP. It communicates with the
APP HIDING Hypervisor and sends it a signal to switch to the
profile required by the user. The APP HIDING Policy Gui
allows the user to manage SPs.

B. FUNCTIONAL REQUIREMENTS

1) NUMBER OF MODULES:
The system after careful analysis has been identified to be

presented with the following modules:

1. App Building Block
2. Profile Creation
3. Application Control
2) MODULE DESCRIPTION

1. App Building Block

In this module we create an application vessel which can be
installed in android platform devices. The application will be
generated using Eclipse which would be installable in any
android OS devices.

2. Profile Creation
Profiles like home, office, etc will be created in the form of
switches. The different applications associated with the
concerned profiles will be attached.

3. Application Control
With the concerned profile switch the priority will be
provided with the applications. Whenever the profiles are
called it will allow only the high priority applications to run.

IV. APP HIDING IMPLEMENTATION

This section describes implementation details of some

keyaspects of APP HIDING. In particular, the version
described hereis based on the Android Open Source Project
(AOSP) [46] version 2.3.4_r1. Moreover, APP HIDING
incorporates the functionality of Taintdroid [4] to taint
sensitive data.

A. Context Detection

One of the contributions of APP HIDING is that it can
automatically switch SPs based on the current Context. The
Context- DetectorSystem is responsible for monitoring
Context definitions and for notifying the listeners about the
activation or deactivation of a Context. The
SecurityProfileManager component, which is one of these
listeners, is notified about the change through the callback
functions onTrue (context_id) and onFalse(context_id),
which correspond to activation and deactivation of a Context
respectively. The context_id parameter represents a Context
identifier. So as APP HIDING context detection functionality
is decoupled from the rest of the system, it may be easily
extended by integrating other context detection solutions
[47], [48]. When the system starts up, APP HIDING selects

from the database information about all Contexts and
corresponding SPs. APP HIDING preserves this information
in a runtime map in the form of hCi; ðSPk; prtkÞ I i, where Ci
is the identifier of Context and ðSPk; prtkÞ i is a tuple, which
corresponds to the Context Ci and consists of SP identifier
SPk and the priority prtk that corresponds to this profile.
When the ContextDetectorSystem detects that a Context Ci
becomes active (meaning the Context definition is evaluated
to true), we select from this map the corresponding tuple
ðSPk; prtkÞ i and put it in the list of active SPs. Because more
than one Contexts might be active at the same time, there may
be more than one SP to switch to. In this case, from the list of
active SPs the one with the highest priority is selected. If the
selected SP identifier differs from the identifier of the
currently running SP, the Context Detector System sends a
signal to the APP HIDING Hypervisor to switch to the new
profile. Similarly, when Context Detector System detects that
a Context Ci becomes inactive, the tuple ðSPk; prtkÞ i is
deleted from the list of active SPs. After that the selection
procedure of a SP with the highest priority is repeated.

B. File system Virtualization

To separate data between different SPs, we use a technique
called directory polyinstantiation [49]. A polyinstantiated
directory is a directory that provides a different instances of
itself according to some system parameters. In brief, for each
SP APP HIDING creates a separate mount namespace [50].
The Android filesystem structure is quite stable, i.e., the
system forces an application to store its files in the
application’s “home” directory that is /data/data/
<package_name>/ (<package_name> is the package name of
the application). During the installation of an application,
Android creates this “home” folder and assigns it Linux file
permissions to allow only the owner of the directory (in this
case the application) to access the data stored in it. To provide
applications with different data depending on a currently
running SPs, polyinstantiation of “data” folder may be used,
i.e., for each SP a separate mount namespace, which points to
different “physical” data folder depending on the identifier of
a SP, may be created. In APP HIDING the described
approach is used with two modifications. The first
modification let the system to store all “physical” data
directories under one parent directory (/data/APP
HIDING_private/). The second modification creates the
bindings not between the whole data folder and its “physical”
counterpart, but bindings for separate application folders. The
former modification allows APP HIDING to control direct
access to the “physical” directories, while the latter permits to
decrease storage overhead, because the usage of some apps is
prohibited in some SPs. The APP HIDINGMounter
component is responsible for providing the above
functionality. In particular, it receives the list of applications’
package names that are allowed to execute in a SP. For each
package name, the APP HIDING system builds the paths to
the application “home” directory and to its APP HIDING
“physical” counterpart, using the information of the identifier
of a newly activated SP. These two paths are passed to the
APP HIDINGmounter native tool. This tool at first checks if
APP HIDING “physical” directory exists. If not, then it
creates this folder and copies there the initial application data

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

50

from the corresponding “home” directory. Then the APP
HIDINGmounter mounts the “physical” directory to a
“home” directory using the Linux command mount(target,
mount_point, ”none”, MS_BIND, NULL) [50], where
mount_point corresponds to the path of the “home” directory
and target corresponds to the path of the “physical” folder.
Thus, the “home” directory always contains the initial copy of
the application data, which are created by the Android system
during the application installation. If a new SP is created,
these initial data are copied to the “physical” directory
providing the application with a fresh copy of its initial data as
if the application has just been installed. If this process
finishes successfully, the APP HIDING Mounter stores the
name of this package in the list of mounted points. Thus, the
process of polyinstantiation is completely transparent for the
applications: after the mounting the applications work with
the same paths as usual, although these paths point to another
“physical” locations. Thus, there is no need to modify the
applications to support the separation of data between
different SPs. Before switching to a new SP, the APP
HIDINGMounter has to unmount all previously mounted
points using the values stored in the list of mounted points.
Similarly to the mounting, the APP HIDING Mounter passes
the path to a mounted point (from the list of mounted points)
to the APP HIDING mounter tool, which performs
unmounting. During this operation it is possible that some
processes hold some files opened. In this case, the unmount
command will fail. To overcome this problem, APP HIDING
sends a SIGTERM signal to the process and repeats the
amounting. If after this the unmounting is still unsuccessful,
APP HIDING will send a SIGKILL signal to the process and
once again will perform the unmounts operation.

C. Dynamic Application Activation

Each SP is assigned with a list of application UIDs that are
allowed to be run when this profile is active. As it was
discussed in Section 2, each application during the installation
receives its own UID. APP HIDING uses these identifiers to
control which applications can be activated for each SP.
It should be mentioned that some packages can share the same
UID. This happens if the developer of these applications have
explicitly assigned the same value to shared User Id property
in the manifest files of the applications, and signed these
packages with the same certificate. Thus, during the
installation of these applications, the Android system assigns
them the same UID. In this case, APP HIDING cannot
distinguish these applications and if one of them is allowed in
one profile the other will be allowed as well. During the SP
switching, the APP HIDING App Manager selects from the
APP HIDING database the list of UIDs, which are allowed in
the activated profile, and stores it into the set of allowed
UIDs. To control the launch of applications’ services and
activities.

Fig. 2. Screenshots of APP HIDING Profile Manager application: (a)
Context creation, (b) security profile creation, (c) application assignment to
a security profile, (d) ABAC rule creation.

Retrieve Service Locked and start Activity May- Wait
methods of the Activity Manager Service and the Activity
Stack classes correspondingly are put. These hooks
communicate with the APP HIDING App Manager and check
against the set of allowed apps if a component of an
application can be launched. Additionally, the APP HIDING
App Manager controls the appearance of application icons in
Android’s Launcher application. When a new SP is activated,
only the icons of the allowed applications for this profile will
be displayed.

D. SCREEN SHOTS

App Building Block
� In this module we create an application vessel which

can be installed in android platform devices.
� The application will be generated using Eclipse

which would be installable in any android OS
devices.

Profile Creation

� Profiles like guest, home, office, etc will be created

in the form of switches.
� The different applications associated with the

concerned profiles will be attached.

Time Constrain
� For each profile setting a time will be their active

period in the smartphone

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

51

� Thus automatically change the profile according to
the time constrain.

� Example: professionals in office daily routine
time(9 AM TO 6PM)

� If someone don’t want the time basis for the profile
they can set 0 hour , minutes for from and to timing

Application Privacy
� After creating the profile with time constrain, add

the application which are all want to be enable in
that profile.

� By selecting that application will add to that profile.
� Other applications are not shown in that profile when

it is active.
� Even though we can provide privacy on contacts,

message, gallery , mail etc. which are all basic
application want to be protected from others.

� Thus we can create a application privacy

Secure And Privacy Profile
Thus finally secure and privacy for application in

smartphone is provided by multiple profiles Creation using
policy based Framework-APP HIDING.

Steps

CODING

 public void openDataBase() throws SQLException{

 //Open the database
 String myPath = DB_PATH + DB_NAME;
 myDataBase =

SQLiteDatabase.openDatabase(myPath,
null,SQLiteDatabase.OPEN_READONLY);

 }

 @Override
 public synchronized void close() {

 if(myDataBase != null)
 myDataBase.close();

 super.close();

 }

 @Override
 public void onCreate(SQLiteDatabase db) {

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int

oldVersion, int newVersion) {

 }

 // Add your public helper methods to access and get

content from the database.
 // You could return cursors by doing "return

myDataBase.query(....)" so it'd be easy

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

52

 // to you to create adapters for your views.

}

V. CONCLUSION

APP HIDING is the first solution to provide policy-based
security containers implemented completely via software. By
acting at the system level we prevent applications to be able to
bypass our isolation. However, at the present moment APP
HIDING has also some limitations. At first, fine-grained
policies and allowed applications are specified using the UID
of an application. Meanwhile, in Android it is possible that
some applications share the same UID. Thus, if we apply APP
HIDING rules and restrictions to one application they
automatically will be extended to the other ones with same
UID. Furthermore, some fine-grained policies in APP
HIDING are built on top of Taintdroid [4] functionality.
Thus, APP HIDING inherits the limitations of Taintdroid
explained in Section 3. It should be also mentioned that the
applications that have root access to the system can bypass
APP HIDING protection. Thus, APP HIDING is ineffective
in combating with the malware that obtains root access, e.g.,
rootkits. APP HIDING can also be improved in several
aspects. For instance, to make the policy specification process
easier, a solution could be to embed into the system policy
templates that can be simply selected and associated to an
application. It should be also mentioned that currently APP
HIDING does not separate system data (e.g., system
configuration files) and information on SD cards. In the future
we plan to add this functionality to the system. Moreover,
performance overheads are also planned to be reduced
considerably in the future versions.

 REFERENCES

[1] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for
digital communications channel equalization using radial basis
function networks,” IEEE Trans. on Neural Networks, vol. 4, pp.
570-578, July 1993.

[2] J. U. Duncombe, “Infrared navigation—Part I: An assessment of
feasibility,” IEEE Trans. Electron Devices, vol. ED-11, pp. 34-39, Jan.
1959.

[3] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, “Rotation,
scale, and translation resilient public watermarking for images,” IEEE
Trans. Image Process., vol. 10, no. 5, pp. 767-782, May 2001.

