
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

31

EFFECTIVE DATA SKEW MITIGATION

1
S.Thilagavathi,

2
G.Vidhya,

3
R.Sowmya

1,2
UG Scholar, Computer Science and Engineering, Dhanalakshmi College of Engineering

3
Assistant Professor, Department of Computer Science and Engineering, Dhanalakshmi College of Engineering

thilagavathisivaraj@gmail.com

vidhyarajan94@gmail.com

sowmyabuddy90@gmail.com

Abstract - The production of data is expanding at an

astonishing pace. The dramatic rise of unstructured data like

photos, videos and social media has ushered in a new breed of

non-relational databases and which are termed as “Big Data”. In

2012, the amount of information stored worldwide exceeded 2.8

Zetabytes. By 2020, the total amount of data stored is expected to

be 50 times larger than today. Big Data has to be processed and

analysed to produce potential concepts and an ultimate

knowledge has to be understood from this ocean of data. A

popular framework Hadoop is used currently for processing such

huge data. Here we implement LIBRA with different approach

that significantly reduces the data skew-(a common issue in map-

reduce) by dynamic splitting strategy without pre-sampling. To

provide query-processing, a new algorithm Block-Chain is

introduced.We also show the effectiveness of Web crawling using

Hadoop eliminating DDOS attack detection scenarios.

Index Terms – Block chain, data skew, map reduce, query

processing.

I. INTRODUCTION

Large Internet companies routinely generate hundreds of

tera-bytes of logs and operation records. Map Reduce has

proven itself to be an effective tool to process such large data

sets. An effective parallel computing framework that

supports Map-reduce is Hadoop. Hadoop is an Apache open

source framework written in java that allows distributed

processing of large datasets across clusters of computers

using simple programming models. A Hadoop frame-worked

application works in an environment that provides distributed

storage and computation across clusters of computers.

Hadoop is designed to scale up from single server to

thousands of machines, each offering local computation and

storage.

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair

to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key.

MapReduce is a framework using which we can write

applications to process huge amounts of data, in parallel, on

large As the sequence of the name MapReduce implies, the

reduce task is always performed after the map job. The major

advantage of MapReduce is that it is easy to scale data

processing over multiple computing nodes. Under the

MapReduce model, the data processing primitives are called

mappers and reducers. Decomposing a data processing

application into mappers and reducers is sometimes

nontrivial. But, once we write an application in the

MapReduce form, scaling the application to run over

hundreds, thousands, or even tens of thousands of machines

in a cluster is merely a configuration change. This simple

scalability is what has attracted many programmers to use the

MapReduce model. One significant issue in practical

MapReduce applications is Data skew- the imbalance in the

amount of data assigned to each task, or the imbalance in the

amount of work required to process such data. The

fundamental reason of data skew is that data sets in the real

world are often skewed and that we do not know the

distribution of the data beforehand. Note that this problem

cannot be solved by the speculative execution strategy in

Map Reduce.

In this paper we address the problem of efficiently

processing MapReduce jobs with complex reducer tasks over

skewed data. The data skew problem in MapReduce has been

studied. Among the solutions proposed, some are specific to

a particular type of applications, some require a pre-sample

of the input data, and some cannot preserve the total ordered

result as the applications require. To make matters more

complicated, the computing environment for MapReduce in

the real world can be heterogeneous as well—multiple

generations of hardware likely to co-exist in the same data

center .When MapReduce runs in a virtualized cloud

computing environment such as Amazon EC2 , the

computing and storage resources of the underlying virtual

machines (VMs)can be diverse for a variety of reasons. A

good partition method should take this into consideration

instead of always dividing the work evenly among all

reducers.

We propose an efficient dynamic data splitting strategy on

Hadoop which monitors the samples while running batch

jobs and allocate resources to slaves depending on the

complexity of data and the time taken for processing. We

also show the effectiveness of Web crawling using Hadoop

eliminating DDOS attack detection scenarios that will

happen on the servers we are crawling.

Query processing done through MapReduce in traditional

Hadoop clusters is replaced by another technique we

developed i.e. Block chain query processing and we

compare the response times to show its effectiveness. Block

chain proved to be as best as MapReduce and can be used in

data intense results. Unlike previous work, LIBRA does not

32

require any pre-run sampling of the input data or prevent the

overlap between the map and the reduce stages. It uses an

innovative sampling method which can achieve a highly

accurate approximation to the distribution of the intermediate

data by sampling only a small fraction of the intermediate

data during the normal map processing. It allows the reduce

tasks to start copying as soon as the chosen sample map tasks

(only a small fraction of map tasks which are issued first)

complete. It supports the split of large keys when application

semantics permit and the total order of the output data. It

considers the heterogeneity of the computing resources when

balancing the load among the reduce tasks appropriately.

II. EXISTING SYSTEM

A. Map-Reduce Framework

A MapReduce job usually splits the input data-set into

independent chunks which are processed by the map tasks in a

completely parallel manner. The framework sorts the outputs

of the maps, which are then input to the reduce tasks.

Typically both the input and the output of the job are stored in

a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the

same, that is, the MapReduce framework and the Hadoop

Distributed File System are running on the same set of nodes.

This configuration allows the framework to effectively

schedule tasks on the nodes where data is already present,

resulting in very high aggregate bandwidth across the cluster.

In a MapReduce system, a typical job execution consists of

the following steps:

1) After the job is submitted to the Map-Reduce system, the

input files are divided into multiple parts and assigned to a

group of map tasks for parallel processing.

2) Each map task transforms its input (K1, V1) tuples into

intermediate (K2, V2) tuples according to some user defined

map and combine functions, and outputs them to the local

disk.

3) Each reduce task copies its input pieces from all map tasks,

sorts them into a single stream by a multiway merge, and

generates the final (K3, V3) results according to some user

defined reduce function..

 Fig. 1 MapReduce Architecure

B. Data Skew In Mapreduce

MapReduce systems have become popular for processing

large data sets and are increasingly being used in e-science

applications. In particular, (a) the runtime complexity of the

reducer task is typically high, and (b) scientific data is often

skewed. The imbalance in the amount of data assigned to each

task causes some tasks to take much longer to finish than

others and can significantly impact performance. In

Traditional Hadoop clusters the data is divided into partitions

on a static way that each slave node will be allocated with

equal size of data which might lead to the Data Skew problem.

As all slave nodes are not equally capable and also the

complexity of data will not also be similar some slave nodes

may process the task assigned for a longer time than the other

slave nodes in the cluster. Master node will look up for the

completion of all Map Tasks and in this scenario will wait for

the long running task on the slave node to complete. This time

lag should be eliminated so that the master to through the

overall output.

To maximize performance, ideally we want all tasks to

finish around the same time. When some tasks takes usually

long time to complete, it is called straggler and can delay the

progress of the job significantly. For stragglers caused by the

external factors such as faulty hardware, slow machines, etc.

To address this type of skew, MapReduce and Hadoop include

a mechanism where the last few tasks in a job are

speculatively replicated on a different machine and the job

completes when the fastest replicas of these final tasks

complete. More commonly, skew occurs when data is not

evenly partitioned across tasks. This type of skew, called data

skew, typically affects reducers since map tasks are normally

assigned same-size chunks of input data. For reducers, the

problem can occur either when a reducer processes a larger

number of keys or a larger number of values than other

reducers.

Data skew can occur in both the map phase and the

reduce phase. Map skew occurs when some input data are

more difficult to process than others, but it is rare and can be

easily addressed by simply splitting map tasks. In contrast,

data skew in the reduce phase (also called reduce skew or

partitioning skew) is much more challenging. The MapReduce

framework requires that all tuples sharing the same key be

dispatched to the same reducer. However, for an arbitrary

MapReduce application, the distribution of the intermediate

data cannot be determined ahead of time.

We implement a LIBRA approach in which the data skew

is completely removed and query processing by the end-user

has less response time in comparative with the existing

system. This approach never uses pre-sampling of the input

data. Instead, it performs the data analysis by memory loading.

C. LIBRA

 The existing system implements the LIBRA approach to solve

data skew for general applications. The design goals of LIBRA

include the following:

Transparency: Data skew mitigation should be transparent to

the users who do not need to know any sampling and

partitioner details.

Parallelism: It should preserve the parallelism of the original

MapReduce framework as much as possible. This precludes

33

any pre-run sampling of the input data and overlaps the map

and the reduce stages as much as possible.

Accuracy: Its sampling method should be able to derive a

reasonably accurate estimate of the input data distribution by

sampling only a small fraction of the data.

Total order: It should support total order of the output data.

This saves applications which require such ordering an extra

round of sorting at the end.

Large cluster splitting: When application semantics permit, it

should be able to split data associated with a single large

cluster to multiple reducers while preserving the consistency

of the output.

Heterogeneity consideration: When the performance of the

worker nodes is heterogeneous, it should be able to adjust the

data partition accordingly so that all reducers finish around the

same time.

With consideration to the parallelism, this approach makes

the reduce tasks to wait until the partition decision is made.

This has been improved by handling the LIBRA with a

different approach.

III. PROPOSED SYSTEM

A. Data Analysis By Memory Loading Data Skew Mitigation

Since data skew is difficult to solve if the input

distribution is unknown, a natural thought is to examine the

data before deciding the partition. There are two common

ways to do this. One approach is to launch some pre-run jobs

which examine the data, collect the distribution statistics, and

then decide an appropriate partition. The drawback of this

approach is that the real job cannot start until those pre-run

jobs finish. The Hadoop range partitioned belongs to this

category; it can increase the job execution time significantly.

The other approach is to integrate the sampling into the

normal map process and generate the distribution statistics

after all map tasks finish. Since reduce tasks cannot start until

the partition decision is made, this approach cannot take

advantage of parallel processing between the map and the

reduce phases.

Fig. 2 System Architecure

The existing LIBRA takes a different approach by

integrating sampling into a small percentage of the map tasks.

It then prioritizes the execution of those sampling tasks over

that of the normal map tasks: whenever the system has free

slots, it launches the sampling tasks first. Since there are only

a small percentage of them, they are likely to finish quite early

in the map phase. There is an obvious trade-off between the

sampling overhead and the accuracy of the result. But still the

data skew occurs between the nodes in clusters as it is not

aware the time factor and complexity accurately.

We take a different approach that the data assigned earlier

depending upon the capacity of machines is dynamically split

based on the complexity, job execution rate and assigned to

other nodes. We show the completion of jobs of slave nodes in

an optimal manner.

B. Web Crawling

The amount of web information is increasing rapidly with

advanced wireless networks and emergence of diverse smart

devices like i-Phone, i-Pad and so on. The information is

continuously being produced and updated in anywhere and

anytime by means of easy web platforms, and social

networks. Now, it is becoming a hot issue how frequently

updated web data has to be refreshed in data integration and

retrieval domain. In this paper, we propose dynamic web-

data crawling methods, which include sensitive checking of

web site changes, and dynamic retrieving of web pages from

target web sites. The World Wide Web is an interlinked

collection of billions of documents formatted using HTML.

Ironically the very size of this collection has become an

obstacle for information retrieval. The user has to shift

through scores of pages to come upon the information

he/she desires. Web crawlers are the heart of search engines.

Web crawlers continuously keep on crawling the web and

find any new web pages that have been added to the web,

pages that have been removed from the web. Due to

growing and dynamic nature of the web; it has become a

challenge to traverse all URLs in the web documents and to

handle these URLs. A focused crawler is an agent that

targets a particular topic and visits and gathers only relevant

web pages.

 Web crawling is the fetching of data Resources residing

in any of the web server with or without the knowledge of

the Resource provider. Generally the Resource servers will

incur high traffic and load while web crawling is done and it

can be detected by traditional DOS(Denial of Service)

detection schemes when implemented through a single

server. So we implement an efficient way to crawl resources

residing any server through our Hadoop cluster in which the

traditional DOS detection methods could fail to detect the

attack. All the Resources crawled will be stored for future

use. Web crawling jobs include PDF Web crawling stored

as PDF format and medical question and answers web

crawling stored as CSV (Comma Separated Values) format.

C. Query Processing Using Block Chain

Enterprises today acquire vast volumes of data from

different sources and leverage this information by means of

34

data analysis to support effective decision-making and provide

new functionality and services. The key requirement of data

analytics is scalability, simply due to the immense volume of

data that need to be extracted, processed, and analyzed in a

timely fashion. The Query processing can be done using

MapReduce Framework of Hadoop system and the results are

rendered to the client page. Multiple Reduce tasks are done on

the map task to give the reduced object and the results can be

rendered as and when user needs. The response time is

calculated for Querying with MapReduce.

We also implement the same Querying with our own

approach Block Chain Algorithm which stores the Map task

output locally on the slave machine and uses cache based

rendering of results. The Response time is compared with the

Map Reduce response time and is up to the mark. This can

show more effectiveness when used with large data with small

cluster setup. Block chain proved to be as best as MapReduce

and can be used in data intense results.

IV. CONCLUSIONS

The Data skew mitigation is important in improving

MapReduce performance. So we designed and developed a

Hadoop cluster which can mitigate Data Skew problem and

we show its effectiveness using Block Chain algorithm and

Map reduce Algorithm with comparison. Job execution ,

complexity are effectively managed in this paper. This paper

also implement the Querying with our own approach Block

Chain Algorithm which stores the Map task output locally on

the slave machine and uses cache based rendering of results.

REFERENCES

[1] Q. Chen, J. Yao, and Z. Xiao, "LIBRA: Lightweight Data Skew

Mitigation in MapReduce," IEEE Transactions on Parallel and

Distributed Systems (TPDS), vol. 26, September 2015.

[2] J. Dean and S. Ghemawat, ―Mapreduce: simplified data

processing on large clusters,‖ Commun. ACM, vol. 51, January

2008.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ―Dryad:

distributed data-parallel programs from sequential building

blocks,‖ in Proc. of the ACM SIGOPS/EuroSys European

Conference on Computer Systems (EuroSys), 2007.

[4] Y. Kwon, M. Balazinska, and B. Howe, ―A study of skew in

mapreduce applications,‖ in Proc. of the Open Cirrus Summit,

2011.

[5] C. B. Walton, A. G. Dale, and R. M. Jenevein, ―A taxonomy

and performance model of data skew effects in parallel joins,‖ in

Proc. Of the International Conference on Very Large Data Bases

(VLDB), 1991.

[6] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri,

―Practical skew handling in parallel joins,‖ in Proc. of the

International Conference on Very Large DataBases (VLDB),

1992.

[7] J. W. Stamos and H. C. Young, ―A symmetric fragment and

replicate algorithm for distributed joins,‖ IEEE Transactions on

Parallel and Distributed Systems (TPDS), vol. 4, 1993.

[8] V. Poosala and Y. E. Ioannidis, ―Estimation of query-result

distribution and its application in parallel-join load balancing,‖

in Proc. of the International Conference on Very Large Data

Bases (VLDB), 1996.

[9] Y. Xu and P. Kostamaa, ―Efficient outer join data skew

handling in parallel dbms,‖ Proc. of the VLDB Endowment, vol.

2, no. 2, 2009.

[10] S. Acharya, P. B. Gibbons, and V. Poosala, ―Congressional

samples for approximate answering of group-by queries,‖ in

Proc. of the ACMSIGMOD International Conference on

Management of Data, 2000.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.

Stoica,―Improving mapreduce performance in heterogeneous

environments,‖ in Proc. USENIX Conf. Oper. Syst. Des.

Implementation, 2008.

[12] G. Benjamin, A. Nikolaus, R. Angelika, and K. Alfons, ―Load

balancing in mapreduce based on scalable cardinality

estimates,‖ in Proc. Int. Conf. Data Eng., 2012.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, ―Skewtune:

Mitigating skew in mapreduce applications,‖ in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2012.

[14] Z. Xiao, W. Song, and Q. Chen, ―Dynamic resource allocation

using virtual machines for cloud computing environment,‖ IEEE

Trans. Parallel Distrib. Syst.), vol. 24, no. 6, pp. 1107–1117, Jun

2013.

[15] X. Zhou, M. E. Orlowska: Handling Data Skew in Parallel Hash

Join Computation Using Two-Phase Scheduling. Proc. ICA3PP

Conf., Brisbane, 1995.

