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Abstract - The production of data is expanding at an 

astonishing pace. The dramatic rise of unstructured data like 

photos, videos and social media has ushered in a new breed of 

non-relational databases and which are termed as “Big Data”. In 

2012, the amount of information stored worldwide exceeded 2.8 

Zetabytes. By 2020, the total amount of data stored is expected to 

be 50 times larger than today. Big Data has to be processed and 

analysed to produce potential concepts and an ultimate 

knowledge has to be understood from this ocean of data. A 

popular framework Hadoop is used currently for processing such 

huge data. Here we implement LIBRA with different approach 

that significantly reduces the data skew-(a common issue in map-

reduce) by dynamic splitting strategy without pre-sampling. To 

provide query-processing, a new algorithm Block-Chain is 

introduced.We also show the effectiveness of Web crawling using 

Hadoop eliminating DDOS attack detection scenarios.  
 
Index Terms – Block chain, data skew, map reduce, query 

processing.  

I. INTRODUCTION 

Large Internet companies routinely generate hundreds of 

tera-bytes of logs and operation records. Map Reduce has 

proven itself to be an effective tool to process such large data 

sets. An effective parallel computing framework that 

supports Map-reduce is Hadoop. Hadoop is an Apache open 

source framework written in java that allows distributed 

processing of large datasets across clusters of computers 

using simple programming models. A Hadoop frame-worked 

application works in an environment that provides distributed 

storage and computation across clusters of computers. 

Hadoop is designed to scale up from single server to 

thousands of machines, each offering local computation and 

storage. 

MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. 

Users specify a map function that processes a key/value pair 

to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with 

the same intermediate key. 

MapReduce is a framework using which we can write 

applications to process huge amounts of data, in parallel, on 

large As the sequence of the name MapReduce implies, the 

reduce task is always performed after the map job. The major 

advantage of MapReduce is that it is easy to scale data 

processing over multiple computing nodes. Under the 

MapReduce model, the data processing primitives are called 

mappers and reducers. Decomposing a data processing 

application into mappers and reducers is sometimes 

nontrivial. But, once we write an application in the 

MapReduce form, scaling the application to run over 

hundreds, thousands, or even tens of thousands of machines 

in a cluster is merely a configuration change. This simple 

scalability is what has attracted many programmers to use the 

MapReduce model. One significant issue in practical 

MapReduce applications is Data skew- the imbalance in the 

amount of data assigned to each task, or the imbalance in the 

amount of work required to process such data. The 

fundamental reason of data skew is that data sets in the real 

world are often skewed and that we do not know the 

distribution of the data beforehand. Note that this problem 

cannot be solved by the speculative execution strategy in 

Map Reduce. 

In this paper we address the problem of efficiently 

processing MapReduce jobs with complex reducer tasks over 

skewed data. The data skew problem in MapReduce has been 

studied. Among the solutions proposed, some are specific to 

a particular type of applications, some require a pre-sample 

of the input data, and some cannot preserve the total ordered 

result as the applications require. To make matters more 

complicated, the computing environment for MapReduce in 

the real world can be heterogeneous as well—multiple 

generations of hardware likely to co-exist in the same data 

center .When MapReduce runs in a virtualized cloud 

computing environment such as Amazon EC2 , the 

computing and storage resources of the underlying virtual 

machines (VMs)can be diverse for a variety of reasons. A 

good partition method should take this into consideration 

instead of always dividing the work evenly among all 

reducers. 

We propose an efficient dynamic data splitting strategy on 

Hadoop which monitors the samples while running batch 

jobs and allocate resources to slaves depending on the 

complexity of data and the time taken for processing. We 

also show the effectiveness of Web crawling using Hadoop 

eliminating DDOS attack detection scenarios that will 

happen on the servers we are crawling. 

Query processing done through MapReduce in traditional 

Hadoop clusters is replaced by another technique we 

developed i.e. Block chain query processing and we 

compare the response times to show its effectiveness. Block 

chain proved to be as best as MapReduce and can be used in 

data intense results.  Unlike previous work, LIBRA does not 
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require any pre-run sampling of the input data or prevent the 

overlap between the map and the reduce stages. It uses an 

innovative sampling method which can achieve a highly 

accurate approximation to the distribution of the intermediate 

data by sampling only a small fraction of the intermediate 

data during the normal map processing. It allows the reduce 

tasks to start copying as soon as the chosen sample map tasks 

(only a small fraction of map tasks which are issued first) 

complete. It supports the split of large keys when application 

semantics permit and the total order of the output data. It 

considers the heterogeneity of the computing resources when 

balancing the load among the reduce tasks appropriately. 

II. EXISTING SYSTEM 

A. Map-Reduce Framework 

A MapReduce job usually splits the input data-set into 

independent chunks which are processed by the map tasks in a 

completely parallel manner. The framework sorts the outputs 

of the maps, which are then input to the reduce tasks. 

Typically both the input and the output of the job are stored in 

a file-system. The framework takes care of scheduling tasks, 

monitoring them and re-executes the failed tasks. 

Typically the compute nodes and the storage nodes are the 

same, that is, the MapReduce framework and the Hadoop 

Distributed File System are running on the same set of nodes. 

This configuration allows the framework to effectively 

schedule tasks on the nodes where data is already present, 

resulting in very high aggregate bandwidth across the cluster.  

In a MapReduce system, a typical job execution consists of 

the following steps:  

1) After the job is submitted to the Map-Reduce system, the 

input files are divided into multiple parts and assigned to a 

group of map tasks for parallel processing. 

 

2) Each map task transforms its input (K1, V1) tuples into 

intermediate (K2, V2) tuples according to some user defined 

map and combine functions, and outputs them to the local 

disk.  

 

3) Each reduce task copies its input pieces from all map tasks, 

sorts them into a single stream by a multiway merge, and 

generates the final (K3, V3) results according to some user 

defined reduce function.. 

 

 Fig. 1 MapReduce Architecure 

 

 

B. Data Skew In Mapreduce 

 

MapReduce systems have become popular for processing 

large data sets and are increasingly being used in e-science 

applications. In particular, (a) the runtime complexity of the 

reducer task is typically high, and (b) scientific data is often 

skewed. The imbalance in the amount of data assigned to each 

task causes some tasks to take much longer to finish than 

others and can significantly impact performance. In 

Traditional Hadoop clusters the data is divided into partitions 

on a static way that each slave node will be allocated with 

equal size of data which might lead to the Data Skew problem. 

As all slave nodes are not equally capable and also the 

complexity of data will not also be similar some slave nodes 

may process the task assigned for a longer time than the other 

slave nodes in the cluster. Master node will look up for the 

completion of all Map Tasks and in this scenario will wait for 

the long running task on the slave node to complete. This time 

lag should be eliminated so that the master to through the 

overall output. 

 

To maximize performance, ideally we want all tasks to 

finish around the same time. When some tasks takes usually 

long time to complete, it is called straggler and can delay the 

progress of the job significantly. For stragglers caused by the 

external factors such as faulty hardware, slow machines, etc. 

To address this type of skew, MapReduce and Hadoop include 

a mechanism where the last few tasks in a job are 

speculatively replicated on a different machine and the job 

completes when the fastest replicas of these final tasks 

complete. More commonly, skew occurs when data is not 

evenly partitioned across tasks. This type of skew, called data 

skew, typically affects reducers since map tasks are normally 

assigned same-size chunks of input data. For reducers, the 

problem can occur either when a reducer processes a larger 

number of keys or a larger number of values than other 

reducers. 

 

Data skew can occur in both the map phase and the 

reduce phase. Map skew occurs when some input data are 

more difficult to process than others, but it is rare and can be 

easily addressed by simply splitting map tasks. In contrast, 

data skew in the reduce phase (also called reduce skew or 

partitioning skew) is much more challenging. The MapReduce 

framework requires that all tuples sharing the same key be 

dispatched to the same reducer. However, for an arbitrary 

MapReduce application, the distribution of the intermediate 

data cannot be determined ahead of time. 

 

We implement a LIBRA approach in which the data skew 

is completely removed and query processing by the end-user 

has less response time in comparative with the existing 

system. This approach never uses pre-sampling of the input 

data. Instead, it performs the data analysis by memory loading. 

 

C. LIBRA 
 

       The existing system implements the LIBRA approach to solve 

data skew for general applications. The design goals of LIBRA 

include the following: 

Transparency: Data skew mitigation should be transparent to 

the users who do not need to know any sampling and 

partitioner details. 

Parallelism: It should preserve the parallelism of the original 

MapReduce framework as much as possible. This precludes 
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any pre-run sampling of the input data and overlaps the map 

and the reduce stages as much as possible. 

Accuracy: Its sampling method should be able to derive a 

reasonably accurate estimate of the input data distribution by 

sampling only a small fraction of the data. 

Total order: It should support total order of the output data. 

This saves applications which require such ordering an extra 

round of sorting at the end. 

Large cluster splitting: When application semantics permit, it 

should be able to split data associated with a single large 

cluster to multiple reducers while preserving the consistency 

of the output. 

Heterogeneity consideration: When the performance of the 

worker nodes is heterogeneous, it should be able to adjust the 

data partition accordingly so that all reducers finish around the 

same time. 

With consideration to the parallelism, this approach makes 

the reduce tasks to wait until the partition decision is made. 

This has been improved by handling the LIBRA with a 

different approach. 

III. PROPOSED SYSTEM 

A. Data Analysis By Memory Loading Data Skew Mitigation 

 

Since data skew is difficult to solve if the input 

distribution is unknown, a natural thought is to examine the 

data before deciding the partition. There are two common 

ways to do this. One approach is to launch some pre-run jobs 

which examine the data, collect the distribution statistics, and 

then decide an appropriate partition. The drawback of this 

approach is that the real job cannot start until those pre-run 

jobs finish. The Hadoop range partitioned belongs to this 

category; it can increase the job execution time significantly. 

The other approach is to integrate the sampling into the 

normal map process and generate the distribution statistics 

after all map tasks finish. Since reduce tasks cannot start until 

the partition decision is made, this approach cannot take 

advantage of parallel processing between the map and the 

reduce phases.  

 
Fig. 2 System Architecure 

 

The existing LIBRA takes a different approach by 

integrating sampling into a small percentage of the map tasks. 

It then prioritizes the execution of those sampling tasks over 

that of the normal map tasks: whenever the system has free 

slots, it launches the sampling tasks first. Since there are only 

a small percentage of them, they are likely to finish quite early 

in the map phase. There is an obvious trade-off between the 

sampling overhead and the accuracy of the result. But still the 

data skew occurs between the nodes in clusters as it is not 

aware the time factor and complexity accurately. 

 

We take a different approach that the data assigned earlier 

depending upon the capacity of machines is dynamically split 

based on the complexity, job execution rate and assigned to 

other nodes. We show the completion of jobs of slave nodes in 

an optimal manner. 

 

   

B. Web Crawling 

 

The amount of web information is increasing rapidly with 

advanced wireless networks and emergence of diverse smart 

devices like i-Phone, i-Pad and so on. The information is 

continuously being produced and updated in anywhere and 

anytime by means of easy web platforms, and social 

networks. Now, it is becoming a hot issue how frequently 

updated web data has to be refreshed in data integration and 

retrieval domain. In this paper, we propose dynamic web-

data crawling methods, which include sensitive checking of 

web site changes, and dynamic retrieving of web pages from 

target web sites. The World Wide Web is an interlinked 

collection of billions of documents formatted using HTML. 

Ironically the very size of this collection has become an 

obstacle for information retrieval. The user has to shift 

through scores of pages to come upon the information 

he/she desires. Web crawlers are the heart of search engines. 

Web crawlers continuously keep on crawling the web and 

find any new web pages that have been added to the web, 

pages that have been removed from the web. Due to 

growing and dynamic nature of the web; it has become a 

challenge to traverse all URLs in the web documents and to 

handle these URLs. A focused crawler is an agent that 

targets a particular topic and visits and gathers only relevant 

web pages. 

 

         Web crawling is the fetching of data Resources residing 

in any of the web server with or without the knowledge of 

the Resource provider. Generally the Resource servers will 

incur high traffic and load while web crawling is done and it 

can be detected by traditional DOS(Denial of Service) 

detection  schemes when implemented through a single 

server. So we implement an efficient way to crawl resources 

residing any server through our Hadoop cluster in which the 

traditional DOS detection methods could fail to detect the 

attack. All the Resources crawled will be stored for future 

use. Web crawling jobs include PDF Web crawling stored 

as PDF format and medical question and answers web 

crawling stored as CSV (Comma Separated Values) format. 

 

 

C. Query Processing Using Block Chain 

 

Enterprises today acquire vast volumes of data from 

different sources and leverage this information by means of 
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data analysis to support effective decision-making and provide 

new functionality and services. The key requirement of data 

analytics is scalability, simply due to the immense volume of 

data that need to be extracted, processed, and analyzed in a 

timely fashion. The Query processing can be done using 

MapReduce Framework of Hadoop system and the results are 

rendered to the client page. Multiple Reduce tasks are done on 

the map task to give the reduced object and the results can be 

rendered as and when user needs. The response time is 

calculated for Querying with MapReduce.  

 

We also implement the same Querying with our own 

approach Block Chain Algorithm which stores the Map task 

output locally on the slave machine and uses cache based 

rendering of results. The Response time is compared with the 

Map Reduce response time and is up to the mark. This can 

show more effectiveness when used with large data with small 

cluster setup. Block chain proved to be as best as MapReduce 

and can be used in data intense results.   

 

IV. CONCLUSIONS  

The Data skew mitigation is important in improving 

MapReduce performance. So we designed and developed a 

Hadoop cluster which can mitigate Data Skew problem and 

we show its effectiveness using Block Chain algorithm and 

Map reduce Algorithm with comparison. Job execution , 

complexity are effectively managed in this paper. This paper 

also implement the Querying with our own approach Block 

Chain Algorithm which stores the Map task output locally on 

the slave machine and uses cache based rendering of results. 
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