
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

40

Abstract— The main objectives of this research paper are

System adaptation based on the specification, measurement and
optimization of quality attribute properties on feature models,
Provide efficient video surveillance system specification and
image acquisition, classification, segmentation, shadow removal.
The Methods and Statistical analysis used in this research are
Development of a method used to build prediction-enabled
component technologies, Development of a validation method
for component technologies, Implementation of component
technologies according to the defined method for a particular
quality attributes and Validation of the implemented
component technologies using the defined method. The main
Findings of the research are Classification of quality attributes,
Demonstration of how to achieve predictability for another
quality attributes an analysis of the suitability of predictability
in industrial settings and Demonstration of a component model
with capabilities for predicting consistency between
components.

Index Terms— Component based adoption, configuration

management, and component testing

I. INTRODUCTION

 Programming frameworks are turning out to be
progressively mind boggling and giving greater usefulness.
To have the capacity to deliver such frameworks cost-viably,
providers regularly utilize segment based advancements as
opposed to building up every one of the parts of the
framework starting with no outside help. The inspiration
driving the utilization of segments was at first to diminish the
cost of advancement, yet it later turned out to be more
essential to lessen an opportunity to market, to meet quickly
developing shopper requests. At present, the utilization of
segments is all the more frequently roused by conceivable
decreases being developed expenses. By utilizing parts it is
conceivable to create greater usefulness with a similar venture
of time and cash. At the point when segments are presented in
a framework, new issues must be managed e.g. dynamic
arrangements, variation blast and adaptability. Some of these
issues are tended to with the train Component-Based Software

Engineering (CBSE). CBSE gives strategies, models and
rules for the engineers of segment based frameworks.
Segment based improvement (CBD) means the advancement
of frameworks making significant utilization of parts.

 Feature modeling has been widely used in domain
engineering for the development and configuration of
software product lines. A feature model represents the set of
possible products or configurations to apply in a given
context. Recently, this formalism has been applied to the
runtime configuration of systems with high variability and
running in changing contexts. These systems must adapt by
updating their component assembly configuration at runtime,
while minimizing the impact of such changes on the quality of
service. For this reason the selection of a good system
configuration is seen as an optimization problem based on
quality attribute criteria.

A feature model is arranged in a hierarchy that forms a tree
where features are connected by:

• Tree constraints: relationships between a parent
feature and its child features (or sub-features). Tree
constraints include mandatory, optional, xor (alternative)
and or relationships between parents and sub-features.
• Cross–tree constraints: typically inclusion or

exclusion statements of the form “if feature F is selected,
then features A and B must also be selected (or
deselected)”.

The root feature of the tree represents the concept being
described, generally the system itself, and the remaining
nodes denote branches and sub-features that dis-aggregate the
main concept into several elements and concerns.

 One of the basic problems when developing
component-based systems is that it is difficult to keep track of
components and their interrelationships. This is particularly
problematic when upgrading components. One way to
maintain control over upgrades is to use component
identification and dependency analysis. These are well known
techniques for managing system configurations during
development, but are rarely applied in managing run-time
dependencies.

Component Based Adaptation by Configuration
Management and Component Testing For Video

Surveillance

R.SARADHA #1 and Dr. X. MARY JESINTHA*2
Research Scholar, Bharathiar University,Assistant Professor,Saradha Gangadharan College,Pondicherry,

India.
* Research Supervisor, Bharathiar University,Professor, Department of MCA,Vivekananda Institute of

Engineering,Thiruchengode, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

41

II. LITERATURE REVIEW

Sommerville 2010 Modern patterns in CBSE innovation
empower principle points of interest of programming reuse.
These points of interest incorporate upgrades in quality,
exertion (cost) and time-to-market, and gauges.

VanVliet 2008 Software advancement is unavoidable in
any product framework since changes in the public eye and
innovation will require consequent changes to programming
frameworks to stay up with the latest

In addition, proficiency in the product procedure is vital
because of the perpetually expanding request on accessible
improvement limit. The collaboration fundamental in
programming building impacts e.g. the dissemination of
work, correspondence, norms and methods.

Include models (Kang et al. 1990) are a basic yet capable
formalism for speaking to shared characteristics, differing
angles, and design guidelines of programming items, which
have been for the most part utilized as a part of Software
Product Lines (SPLs). In late works, include models have
been connected for determining and executing progressively
versatile frameworks. These frameworks can be
conceptualized as a dynamic programming product offering
(DSPL) (Hallsteinsen et al. 2008) in which inconstancy and
arrangement principles are bound and checked at runtime. As
in customary SPLs, include models are an advantageous
formalism for speaking to a DSPL and empower robotized
thinking about properties of its versatile arrangements. A
versatile framework is a framework whose conduct can be
changed amid its execution as indicated by the client's needs
or setting changes. In the event that the framework can
respond to changes in the working condition, the framework is
called self-versatile (Oreizy et al. 1999). In (Moisan et al.
2011), include models were proposed for the portrayal and
element adjustment of segment based frameworks, for
example, a video reconnaissance (VS) preparing chain. The
space of PC vision and video reconnaissance offers a testing
ground as a result of the high inconstancy in both the
observation undertakings and the video examination
calculations. From a utilitarian viewpoint, the different VS
assignments (e.g., tallying, interruption location, following,
situation acknowledgment) have distinctive necessities, in
particular perception conditions, objects of intrigue, and
gadget arrangements, among others; which may fluctuate
starting with one application then onto the next. From an
execution point of view, choosing the (product) segments
themselves, gathering them, and tuning their parameters to
follow the setting may prompt to various setup variations.
Additionally, the setting is not settled but rather advances
powerfully and along these lines requires runtime adjustment
of the part get together to continue performing with an
alluring nature of service. (Sanchez et al. 2013), we displayed
a heuristic inquiry calculation called CSA (Configuration
Selection Algorithm)1 for taking care of the advancement
issue coming about because of choosing a legitimate setup of
a framework in view of highlight models. This calculation
offers diverse systems for utilizing execution productivity and
optimality, and permits us to characterize distinctive target
capacities for looking at setups and enhancing different
properties at the same time, while sticking to asset limitations

and highlight show imperatives. Be that as it may, this
calculation requires a foundation with capacities for:
observing setting changes, enacting and amassing (at runtime)
segments that actualize particular components, and social
occasion reasonable measurements for framework properties,
in order to survey different setup choices. (Sanchez et al.
2014). Contrasted with before work, we give extra data about
our approach, its application, and executing stage.

This paper exhibits a strategy for investigating conditions
between segments. The technique predicts the impact of a
segment refresh by recognizing the parts in a framework and
building a diagram depicting their conditions. Information of
the conceivable impacts of a refresh is imperative, since it can
be utilized to confine the extent of testing and be a reason for
assessing the potential harm of the refresh. The reliance
diagrams can likewise be utilized to encourage upkeep by
distinguishing contrasts between designs, e.g., making it
conceivable to perceive any deviations from a working
reference setup.

III. OBJECTIVES

The goal of our model-based approach for managing quality
attributes is to quantitatively evaluate and trade-off multiple
quality attributes to achieve a better overall system
configuration. We do not look for a single metric but rather
for a quantification of individual attributes and for trade-offs
among those metrics
We propose an approach for system adaptation based on the
specification, measurement and optimization of quality
attribute properties on feature models , Configuration
management, configuration component testing . Furthermore,
we describe its integration into a platform for supporting the
self-adaptation of component-based systems. Feature models
are annotated with quality attribute properties and metrics,
and then an efficient algorithm is used to deal with the
optimization problem.

IV. DESIGN AND DEVELOPMENT OF COMPONENT
BASED ADAPTION

 We present the overall approach and the
component-based platform in which the CSA is embedded.
Our approach provides a framework for the specification;
measurement and optimization of quality attribute properties2

expressed on top of feature models. We show how these
properties can be specified by means of feature attributes and
evaluated with quality metrics in the context of feature
models. The global properties of the system are computed by
means of aggregate functions over the features. Along this
line, we discuss the selection process carried out by our
optimization algorithm, highlighting some trade-off situations
between quality attributes. A key aspect of model-based
approaches for adaptive systems is the ability of the model to
estimate a given system property, which is correlated with the
actual property observed in the running system. For instance,
if our approach computes a metrics for reconfiguration time
as the sum of the individual times for each reconfiguration
operation, e.g., add or remove a component from system
assembly, we need to ensure that the aggregate metrics is a
“good predictor” for the time that the system takes to

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

42

reconfigure itself.

Figure 1: General Processing Stages

We also extend its evaluation with new experiments that
assess the accuracy of the proposed metrics. To do so, we rely
on a concrete implementation of our platform for managing
the adaptation of a computer vision processing chain based on
OpenCV libraries (Opencv project 2015). This processing
chain includes components for image segmentation, motion,
face detection, etc. In particular, we are focused on two
properties –reconfiguration time and frame processing time–
which are common in computer vision systems, and then
compare predicted against measured property values. Our
experiments reported an accuracy of 87.6 % and 90.6 % for
these two properties, respectively. These preliminary results
suggest that it is possible to predict quality attribute properties
with simple aggregate functions defined on feature models.

Figure 2: The three stage Model

We evaluated the optimization aspect of the approach by
conducting some experiments in which we analyzed
scalability, efficiency, and optimality of CSA using
automatically generated scenarios. Evaluation is done with
concrete measures and analyzes the accuracy of the additive
and maximum metric functions for estimating two properties
of interest in a video processing chain: frame processing time
and reconfiguration time. Specifically, we performed four
experiments with the additive and maximum metrics: two for
frame processing time, and other two for reconfiguration
time. The goal was to compare predicted against measured
properties of the running system. To do so, we stated the
following research directions

� The average accuracy of the additive metric for
predicting frame processing time in sequential
execution

� The average accuracy of the maximum metric for

predicting frame processing time in parallel
execution

� The average accuracy of the additive metrics for
predicting reconfiguration time

Figure3: Overall Process stages in proposed architecture

V. PERFORMANCE EVALUATION

Straight connection amongst deliberate and anticipated
estimations of edge preparing time and reconfiguration time
properties. Relapse lines (dabbed dark bends) marginally
digress from the perfect pattern (strong red bends) that speaks
to the ideal match of assessed and genuine property
estimations. Other than direct connection, we broke down the
Accuracy of the measurements. The precision is a proportion
in the vicinity of 0 and 1 that is registered as 1 − Fault Rate,
being the blame rate the normal relative contrast amongst
assessed and real property estimations:

Metric is sufficient for evaluating outline handling time on
parallel execution with an exactness of 90.6 %. At last, in
regards to Q3, the outcomes demonstrate that the added
substance metric predicts reconfiguration time with a normal
exactness of 90.5 % and 87.6 % on the first and refined model
separately.

We watch that the added substance measurements is more
precise for edge preparing time than for reconfiguration time,
and for the last mentioned, it is better in the easiest model. We
trust this is because of the many-sided quality of the basic test.
For the previous, we just assessed 14 situations (legitimate
setups) including the reaction time of 8 parts. Additionally,
preparing video outlines requires more CPU (and GPU)
operations, whose execution time estimation is more exact,
than info/yield operations. For reconfiguration time, we
assessed 210 situations (moves among substantial setups) and
stacking shared libraries required extra information/yield
operations that influenced the exactness of estimations.
Especially, the explore different avenues regarding the
refined model is more mind boggling since it deals with the 10

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

43

Open CV libraries autonomously, when contrasted with the
improved model that heaps and empties all libraries
immediately.

From the straight relapse examination, we watch that the
Pearson connection coefficient is near 1. For both edge
preparing and reconfiguration time, the assessed qualities are
somewhat higher than the deliberate ones by and large. At
first sight, the inverse ought to be relied upon because of the
overheads presented by the Component Manager for
controlling segment execution and reconfiguring the handling
chain. Nonetheless, these overheads are immaterial as for part
reaction, startup and shutdown time. The Camera Reader
segment makes one picture protest for each casing, while
Image Window obliterates them, in this way, for the
successive handling of video edges; the overhead presented
by the CM just includes summoning every segment all
together with a reference to the picture outline objects. For
parallel handling, we anticipated that an overhead due would
the synchronization of strings on the FIFO lines. Then again,
reconfiguration requires repeating and parsing a rundown of
operations trained by the Configuration Adapter module.
These overhead circumstances are not considered in the
examination show, since they are requests of greatness lower
than execution properties values in Table 2.

The purpose behind these deviations is highlight associations,
i.e., the determination of one component impacts
non-practical properties of different elements. The effect of
these connections is better watched when assessing outline
handling time. The reaction time of segments in the errand
subordinate stage shifts relying upon the picture yield of the
segment in the channel arrange. These segments apply some
picture preprocessing channels that change picture attributes
thus diminishing the reaction time of the accompanying parts.
For example, the designs utilizing Face Detection with and
without Image Smoothing have a normal preparing time of
252.78 ms and 306.81 ms separately in parallel execution,
what demonstrates that smoothing decreases confront
identification reaction time extensively.

Figure 4 : With 1 Attribute

Figure 5 : Maximum Values of Attributes

Figure 6 : With 10 Attributes

 Figure 7: Attribute Representation

Figure 8: Normalised data

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

44

Figure 9 : Original Data

 Figure 10: Tree Construction

Figure 11: Output of Tree Construction

Figure 12 : Image Frame Processing

Figure 13 : sequential execution

Figure 14 : parallel execution

Figure15 : Pre loaded

Figure16 : On Demand

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

45

Figure 17 : Comparision of Feature Extraction

Figure 18: Feature Extraction

VI. CONCLUSION

This exploration enhances the dynamic adjustment of
segment based frameworks by managing runtime quality
properties on highlight models. The proposed structure
quantitatively assesses and adjust numerous quality ascribes
to achieve a superior framework arrangement. By
incorporating part based stage that gives instruments to
occasion taking care of and self-adjustment is done utilizing a
more complex Component Manager usage. The approach is to
embrace the space of administration arranged processing for
helping the improvement, creation and mix of PC vision
applications. In a conveyed setting, quality properties, for
example, security, accessibility, versatility and battery
utilization can be harder to oversee than in unified
frameworks.
We examine approach restrictions and extend its materialness
to other building styles. The setup determination is upheld by
a heuristic inquiry calculation that guarantees rightness and
fulfillment while tending to time proficiency and versatility
for expansive scale occasions of the issue. , optimality can be
accomplished at cost of a lower execution. The total
capacities that we have considered are fitting for a few
properties that are straightforwardly gotten from properties of
individual parts. In future more assessments should be
possible to concentrate the viability of these capacities and the
impact of highlight collaborations on bigger models.
Moreover, different measurements and runtime properties
should be surveyed.

 REFERENCES

[1] Benavides D, Segura S, Ruiz-Cortés a (2010) Automated analysis of
feature models 20 years later: A literature review. Inform Syst
35(6):615–636

[2] Silva da DC, Lopes AB, Pinto FAP, Leite JC (2012) Selecting
architecture configurations in self- adaptive systems using qos criteria.
In: Sixth Brazilian Symposium on Software Components Architectures
and Reuse (SBCARS), 2012. IEEE Computer Society, Washington
DC, USA. pp 71–80.
http://dblp.uni-trier.de/db/conf/sbcars/sbcars2012.html# SilvaLPL12

[3] Marler RT, Arora J (2010) The weighted sum method for
multi-objective optimization: new insights. Struct Multidisciplinary
Optimization 41(6):853–862

[4] Moisan S, Rigault JP, Acher M, Collet P, Lahire P (2011) Run time
adaptation of video-surveillance systems: A software modeling
approach. In: Crowley J, Draper B, Thonnat M (eds). Computer Vision
Systems. Lecture Notes in Computer Science. Springer, Sophia
Antipolis, France Vol. 6962. pp 203–212

[5] Morin B, File2ais O, Jezequel J, Fleurey F, Solberg A (2009) Models@
run.time to support dynamic adaptation. Computer 42(10):44–51

[6] Oliveira N, File2bosa LS (2014) A Self-adaptation Strategy for
Service-based Architectures. In: VIII Brazilian Symposium on
Software Components, Architectures and Reuse. SBCARS’2014.
IEEE, Maceió, Alagoas Vol. 2. pp 44–53

[7] Pearl J (1984) Heuristics - Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley series in artificial intelligence, pp
–1382. Addison-Wesley

[8] Rocha LM, Moisan S, Rigault JP, Sagar S (2011) Towards lightweight
dynamic adaptation a framework and its evaluation.

[9] Sanchez LE, Diaz-Pace JA, Zunino A, Moisan S, Rigault JP (2014) An
approach for managing quality attributes at runtime using feature
models. In: VIII Simpósio Brasileiro de Componentes, Arquiteturas e
Reutilização de Software SBCARS

[10] Siegmund N, Rosenmüller M, Kuhlemann M, Kästner C, Apel S,
Saake G (2012) Spl conqueror: Toward optimization of non-functional
properties in software product lines. Softw Quality J 20:487–517

[11] Siegmund N, Rosenmüller M, Kästner C, Giarrusso PG, Apel S,
Kolesnikov SS (2013) Scalable prediction of non-functional properties
in software product lines: File1tprint and memory consumption.
Inform Softw Technol 55(3):491–507. Special Issue on Software
Reuse and Product Lines Special Issue on Software Reuse and Product
Lines

[12] Tran, V., Hummel, B., Liu, D.-B., Le, T., Doan, J.: Understanding and
managing the relationship between requirement changes and product
constraints in component-based software projects. In : The Thirty-first
Hawaii International Conference On SystemSciences, Kohala Coast,
HI , USA, pp.132 - 142 (1998)

[13] Dijkstra, E.: On the role of scientific thought. In : Edsger W. Dijkstra,
Selected Writings on Computing: A Personal Perspective.
Springer-Verlag, New York (1982) 60–66 36. Greer, D.: The Art of
Separation of Concerns. (Accessed March 10, 2011)

[14] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice
2nd edn. AddisonWesley Professional (2003)

[15] Feljan, J., Lednicki, L., Maras, J., Petricic, A., Crnkovic, I.: DICES
technical report Classification and survey of component models.
Technical report (2009)
http://jeffreypoulin.info/Papers/ICSR94/icsr94.pdf , 10-05.2012

[16] WILLIAM FRAKES; CAROL TERRY, “Software Reuse: Metrics and
Models” Available: http://www.cin.ufpe.br/~in1045/papers/art06.pdf ,
10-05.2012

[17] Nasib S. Gill,” Reusability Issues in Component-Based
Development”, ACM SIGSOFT Software Engineering Notes Volume
28 Issue 4, July 2003, doi:10.1145/882240.882255.

[18] Marcus A. Rothenberger; Derek Nazareth, A cost-benefit-model for
systematic software reuse [online]. Available:
http://is2.lse.ac.uk/asp/aspecis/20020086.pdf , 10-05.2012

[19] Xia Cai et el, “Component-based software engineering: technologies,
development frameworks, and quality assurance schemes”, APSEC '00
Proceedings of the Seventh Asia-Pacific Software Engineering
Conference, IEEE Computer Society Washington, DC, USA ©2000.
Available:http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/apsec.pdf,
10-05.2012.

[20] Jasmine K.S; Dr. R. Vasantha, “Cost Estimation Model For Reuse
Based Software Products”, Proceedings of the International

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 7 – APRIL 2017 (SPECIAL ISSUE)

46

MultiConference of Engineers and Computer Scientists 2008 Vol I,
IMECS 2008, 19-21 March, 2008, Hong Kong.

[21] Ruben Prieto-Diaz, “DOMAIN analysis: an introduction”, the Contel
technology center acm Sig soft software Engineering notes vol 15 no 2.

