
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 12 Issue 1–DECEMBER 2014.

41

An Identity Destructing Records Organization Based

On Energetic Storage Space Framework
M.Madhuri

*1
 and T.Deepa

#2

*P.G. Student, QIS College of Engineering and Technology, India
#Assistant Professor, QIS College of Engineering and Technology, India

1
madhuri.mtechproj@gmail.com

Abstract— The Internet and Cloud technology, security of their

privacy takes more and more risks. On the one hand, when data

is being processed, transformed and stored by the current

computer system or network, systems or network must cache,

copy or archive it. These copies are essential for systems and the

network. However, people have no knowledge about these copies

and cannot control them, so these copies may leak their privacy.

On the other hand, their privacy also can be leaked via Cloud

Service Providers (CSPs’) negligence, hackers’ intrusion or some

legal actions. These problems present formidable challenges to

protect people’s privacy. The secret key is divided and stored in a

P2P system with distributed hash tables (DHTs). With joining

and exiting of the P2P node, the system can maintain secret keys.

According to characteristics of P2P, after about eight hours the

DHT will refresh every node With Secret Sharing Algorithm.

Keywords: Cloud computing, Data privacy, Active Storage

I. INTRODUCTION

As people rely more and more on the Internet and Cloud

technology, security of their privacy takes more and more

risks. On the one hand, when data is being processed,

transformed and stored by the current computer system or

network, systems or network must cache, copy or archive it.

These copies are essential for systems and the network.
However, people have no knowledge about these copies and

cannot control them, so these copies may leak their privacy.

On the other hand, their privacy also can be leaked via Cloud

Service Providers (CSPs’) negligence, hackers’ intrusion or

some legal actions. These problems present formidable

challenges to protect people’s privacy. A pioneering study of

Vanish [1] supplies a new idea for sharing and protecting

privacy. In the Vanish system, a secret key is divided and

stored in a P2P system with distributed hash tables (DHTs).

With joining and exiting of the P2P node, the System can

maintain secret keys. According to characteristics of P2P,

after about eight hours the DHT will refresh every node. With
Shamir Secret Sharing Algorithm [2], when one cannot get

enough parts of a key, he will not decrypt data encrypted with

this key, which means the key is destroyed.

Through functionality and security properties evaluation of

the Identity Destructing prototype, the results demonstrate that
Identity Destructing is practical to use and meets all the

privacy-preserving goals. The prototype system imposes

reasonably low runtime overhead. Identity Destructing

supports security erasing files and random encryption keys

stored in a hard disk drive (HDD) or solid state drive (SSD),

respectively.

II. OBJECTIVES

The self destructive system defines two modules, a self-

destruct method object that is associated with each secret key

part and survival time parameter for each secret key part. In

this case, System can meet the requirements of self-

destructing data with controllable survival time while users

can use this system as a general object storage system. Our

objectives are summarized as follows.

1) We focus on the related key distribution algorithm,

Shamir’s algorithm, which is used as the core algorithm to

implement client (users) distributing keys in the Object
storage system. We use these methods to implement a safety

destruct with equal divided key.

2) Based on active storage framework, we use an object

based storage interface to store and manage the equally

divided key.

3) Through functionality and security properties evaluation

of this prototype, the results demonstrate that System is

practical to use and meets all the privacy-preserving goals.

The prototype system imposes reasonably low runtime

overhead.

III. DATA PROTECTION IN DISK

We must secure delete sensitive data and reduce the negative

impact of OSD performance due to deleting operation. The

proportion of required secure deletion of all the files is not

great, so if these parts of the file update operation changes,
then the OSD performance will be impacted greatly.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 12 Issue 1–DECEMBER 2014.

42

Our implementation method is as follows:

i) The system pre-specifies a directory in a special area to

store sensitive files.

ii) Monitor the file allocation table and acquire and

maintain a list of all sensitive documents, the logical block

address.

iii) Logical block address list of sensitive documents appear

to increase or decrease, the update is sent to the OSD.
iv) OSD internal synchronization maintains the list of

logical block address, the logical block address data in the list

updates.

IV. EXPUNGE OF ENCRYPTION KEY

In this paper, erasing files, which include bits (Secret

Shares [2]) of the encryption key, is not enough when we

erase/ delete a file from their storage media; it is not really

gone until the areas of the disk it used are overwritten by new

information. With flash-based solid state drives (SSDs), the

erased file situation is even more complex due to SSDs having

a very different internal architecture [36]. For instance,

different from erasing files which simply marks file space as

available for reuse, data wiping overwrites all data space on a

storage device, replacing useful data with garbage data.

Depending upon the method used, the overwrite data could be

zeros (also known as “zero-fill”) or could be various random

patterns [41]. The ATA and SCSI command sets include
“secure erase” commands that should sanitize an entire disk.

Physical destruction and degaussing are also effective. SSDs

work differently than platter-based HDDs, especially when it

comes to read and write processes on the drive. The most

effective way to securely delete platter-based HDDs

(overwriting space with data) becomes unusable on SSDs

because of their design. Data on platter-based hard disks can

be deleted by overwriting it. This ensures that the data is not

recoverable by data recovery tools. This method is not

working on SSDs as SSDs differ from HDDs in both the

technology they use to store data and the algorithms they use
to manage and access that data.

V. SYSTEM ARCHITECTURE

Figure 1 System Architecture

Fig. 1 shows the architecture of Identity Destructing. There

are three parties based on the active storage framework.

i) Metadata server (MDS): MDS is responsible for user

management, server management, session management and

file metadata management.

ii) Application node: The application node is a client to use

storage service of the Identity Destructing.
iii) Storage node: Each storage node is an OSD. It contains

two core subsystems: key value store Subsystem and active

storage object (ASO) runtime subsystem. The key value store

subsystem that is based on the object storage component is

used for managing objects stored in storage node: lookup

object, read/write object and so on. The object ID is used as a

key. The associated data and attribute are stored as values.

The ASO runtime subsystem based on the active storage agent

module in the object-based storage system is used to process

active storage request from users and manage method objects

and policy objects.

Algorithm 1: Uploading the file using Shamir secret key

algorithm for key splitting.

Procedure Upload File (data, key, TTL)

Data: data read from this file to be uploaded

Key: data read from the key

TTL: time-to-live of the key

Begin// encrypt the input data with the key

Buffer = Encrypt (data, key)

Connect to a data storage server;

if failed then return fail;

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 12 Issue 1–DECEMBER 2014.

43

Create file in the data storage server and write buffer into it;

// use Shamir Secret Sharing algorithm to get key shares

// k is count of data servers in the storage system Shared keys

[1....k] = Shamir Secret Sharing Split (n, k, key)

For i from 1 to k then

Connect to DS[i]

If successful then create_object (shared keys[i], TTL);

Else
For j from 1 to i then

Delete key shares created before this one;

End for

Return fail;

End if

End for

Return successful;

End.

VI. ENERGETIC STORAGE

An active storage object derives from a user object and has

a time-to-live (ttl) value property. The ttl value is used to
trigger the self-destruct operation. The tll value of a user

object is infinite so that a user object wills not be deleted until

a user deletes it manually. The ttl value of an active storage

object is limited so an active object will be deleted when the

value of the associated policy object is true. Interfaces

extended by Active Storage Object class are used to manage

ttl value. The create member function needs another argument

for ttl. If the argument is 1, User Object:: create will be called

to create a user object, else, Active Storage Object::create will

call User Object::create first and associate it with the self-

destruct method object and a self-destruct policy object with
the ttl value. The get TTL member function is based on the

read_attr function and returns the ttl value of the active

storage object. The set TTL, add Time and dec Time member

function is based on the write_attr function and can be used to

modify the ttl value.

VII. ASYMMETRIC CRYPTOGRAPHY

A pair of key namely public and private is used for

encryption and decryption respectively. They are different key

related to each other mathematically. Each user generates

public and private keys. Public key is announced publicly
whereas a private key is kept secretly. Each user also

maintains a list of public keys of other users. Asymmetric

cryptography need not to distribute key since all participants

generate public and private keys locally. Plaintext, cipher text,

encryption algorithm, decryption algorithm, public key and

private key are the ingredients of asymmetric cryptography.

Figure 4 explains the method of asymmetric cryptography.

The encryption and decryption of input message is carried as

follows:

Encryption: CT = E(KPw PT)

Decryption: PT = D(CT, Kpr) where, KPw and Kpr are the

public and private key of a user respectively. CT denotes the

cipher text;

Plaintext is expressed as PT. E and D denote encryption

and decryption algorithms. A profound example of the

asymmetric algorithm is RSA.

Algorithm 2: Uploading the file using short share secret key
for content splitting.

Procedure Upload File (data, key, TTL)

Data: data read from this file to be uploaded

Key: data read from the key

TTL: time-to-live of the key

Begin

//encrypt the input data with the key

Buffer = Encrypt (data, key)

Connect to a data storage server;

if failed then return fail;

Create file in the data storage server and write buffer into it;

// use Short Share Secret Sharing algorithm to get key
shares

// k is count of data servers in the SeDas system

Shared Content [1...k] = Block Split (n, k and buffer)

Shared keys [1....k] = Short Share Secret Sharing Split (n, k,

key)

For i from 1 to k then

Connect to DS[i]

If successful then

create_object (sharedkyes[i], TTL);

create_object (sharedContent[i], TTL);

Else
For j from 1 to i then

Delete key shares created before this one;

Delete Content shares created before this one;

End for

Return fail;

End if

End for

Return successful;

End

VIII. CONCLUSION

Data privacy has become increasingly important in the

Cloud environment. This paper introduced a new approach for

protecting data privacy from attackers who retroactively

obtain, through legal or other means, a user’s stored data and

private decryption keys. A novel aspect of our approach is the

lever-aging of the essential properties of active storage

framework basedonT10 OSD standard. We demonstrated the

feasibility of our approach by presenting Identity Destructing,

a proof-of-concept prototype based on object-based storage

techniques. Identity Destructing causes sensitive information,

such as account numbers, passwords and notes to irreversibly

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 12 Issue 1–DECEMBER 2014.

44

self- destruct, without any action on the user’s part. Our

measurement and experimental security analysis sheds insight

into the practicability of our approach. Our plan to re-lease the

current Identity Destructing system will help to provide

researchers with further valuable experience to inform future

object-based storage system designs for Cloud services.

IX. FUTURE WORK

Short share secret scheme is mainly used for split the key

and reconstruct the key for user. The key may be corrupted,

and the malicious shares are also not identified and recovered.

So future work extended to identify and recover the

corrupted/malicious shares using Robust Secret Sharing

scheme.

REFERENCES

[1] Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: Increasing

data privacy with self-destructing data,” inProc. USENIX Security

Symp., Montreal, Canada, Aug. 2009, pp. 299–315.

[2] A. Shamir, “How to share a secret,”Commun. ACM, vol. 22, no. 11, pp.

612–613, 1979.

[3] S.Wolchok,O.S.Hofmann,N.Heninger,E.W.Felten,J.A.Hal-derman, C.

J. Rossbach, B. Waters, and E.Witchel,“Defeatingvanish with low-cost

sybil attacks against large DHEs,” inProc. Network and Distributed

System Security Symp., 2010.

[4] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved data

self-destruction for protecting data privacy,” inProc. Second Int. Conf.

Cloud Computing Technology and Science (CloudCom), Indianapolis,

IN, USA, Dec. 2010, pp. 521–528.

[5] L. Qin and D. Feng, “Active storage framework for object-based

storage device,” inProc. IEEE 20th Int. Conf. Advanced Information

Networking and Applications (AINA), 2006.

[6] Y. Zhang and D. Feng, “An active storage system for high perfor-

mance computing,” inProc. 22nd Int. Conf. Advanced Information

Networking and Applications (AINA), 2008, pp. 644–651.

[7] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using

object-based devices,” inProc. IEEE Int. Conf. Cluster Computing,

2008, pp. 472–478.

[8] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff, 2009, Design

of an intelligent object-based storage device [Online]. Available:

http://www.osc.edu/research/network_file/projects/ob-ject/papers/istor-

tr.pdf.

[9] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,

W.-K. Liao, and A. Choudhary, “Enabling active storage on parallel

I/O software stacks,” inProc. IEEE 26th Symp. Mass Storage Systems

and Technologies (MSST), 2010.

http://www.osc.edu/research/network_file/projects/ob-ject/papers/istor-tr.pdf
http://www.osc.edu/research/network_file/projects/ob-ject/papers/istor-tr.pdf

