

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 26 Issue 5 – AUGUST 2019.

22



Abstract—Sentence similarity plays an important role in

many text-related research and applications such as

information retrieval, information recommendation, natural

language processing, machine translation and translation

memory, and etc. Calculating similarity between sentences is

the basis of measuring the similarity between texts which is the

key of document classification and clustering. Longest common

sub-string (LCS) repeatedly finds and removes the longest

common sub-string in the two strings compared, up to a

minimum length. Sentence similarity means the similarities

between words in different sentences have great influence on

the similarity between two sentences. Sentence similarity

partially depends on the word similarity. This system will

display the similar text of field, areas and other facts in

document retrieval.

Index Terms— Longest common substring, similarity

measure, Tokenization, Stop words

I. . INTRODUCTION

Words and their orders in the sentences are two important

factors to calculate sentence similarity. Sentences connect

words and documents in the meaning space of natural

language. Similarity analysis between long texts has been

widely used in documents retrieval. It considers mainly on

the statistical information of keywords in long texts.

Sentence similarity plays an important role in text related

research and applications. It is closely related to word

similarity and document similarity. The LCS can be found by

dynamic programming formulation. One can easily show.

With a score of 1 for each match and a zero for each

mismatch or space, the matched characters in an alignment of

maximum value for a LCS [1, 4].

String comparison is a central operation in various

environments: a spelling error correction program tries to

find the dictionary entry which resembles most a given word,

in molecular biology. An obvious measure for the closeness

of two strings is to find the maximum number of identical

symbols in them (preserving the symbol order) [1, 4]. This,

by definition, is the longest common subsequence of the

strings. Formally, we are comparing two input strings,

X[l..m] and Y[l..n]. A common subsequence (cs) of X[l..m]

and Y[l .A] - designated cs(X,Y) - is a subsequence which

occurs in both strings. The longest common subsequence

(ICS) of strings X and Y, lcs(X, Y), is a common

subsequence of maximal length.

The length of lcs(X, Y) is denoted by r(X, Y), or when the

input strings are known, by r. The similarity between

sentences has great influence on the similarity between

documents [2]. Similarity between sentences become

increasing important in a variety of applications of natural

language process such as text summarization, example-based

machine translation, automatic question- answering,

information extraction and text clustering.

This paper is organized as follows: section 2 is described

Similarity Measure, that it includes algorithm and

Tokenization process. Section 3 describes Sentence

Similarity Measures and their properties. System Design and

Architecture is presented in section 4. Section 5 describes

Implementation Results with the figures. Finally, we

conclude the paper in section 5.

II. SIMILARITY MEASURES

It has potential applications in many areas such as Pattern

Recognition, Data Compression, Word Processing and

Genetics. It can be seen as a measure of closeness of two

strings as it consists in finding maximum number of identical

elements of two strings when preserving the order of element

matters. String similarity measures are divided in the

literature into three categories: character-based, token-based,

and hybrid. In the case of the first two, the similarity is

calculated on character and token level respectively. In the

case of the hybrid measures, the similarity is first calculated

on the character level, and then the obtained scores are used

by a token-based metric.

A. Algorithm for Maximal Consecutive LCS

While in classical LCS, the common subsequence needs

not be consecutive; in database schema matching,

consecutive common subsequence is important for a high

degree of matching. It can use maximal consecutive longest

common subsequence starting at character 1, MCLCS1

(Algorithm 1) and maximal consecutive longest common

subsequence starting at any character n, MCLCSn

(Algorithm 2). It present an algorithm that takes two strings

as input and returns the shorter string or maximal consecutive

portions of the shorter string that consecutively match with

the longer string, where matching must be from first

character (character 1) for both strings [3, 5].

MCLCS1 (Maximal Consecutive LCS starting at character 1)

input : ri , sj /*ri and sj are two input strings where |ri |= τ,

|sj |= η and τ ≤ η */

output: ri /*ri is the Maximal Consecutive LCS starting at

character 1 */

 τ ←|ri |, η ←|sj |

 while |ri |≥ 0 do

Sentence Similarity Based Documents Retrieval

Using Longest Common Sub-String

Khin Aye Mar#1
#
Lecturer, Faculty of Computing, University of Computer Studies (Mandalay) Mandalay, Myanmar

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 26 Issue 5 – AUGUST 2019.

23

 If ri ∩ sj then /∗ i.e., ri ⊂ sj = ri∗/

 return ri

 else ri ←ri \cτ /* i.e., remove the right most character

from ri */

 end

 end

B. Tokenization

A text needs to be segmented into words and sentences.

This process is called tokenization. Tokenization divides the

character sequence into sentences and the sentences into

tokens. Not only words are considered as tokens, but also

numbers, punctuation marks, parentheses and quotation

marks. Each sentence is partitioned into a list of words and

removes the stop words. Stop words are frequently

occurring, insignificant words that appear in a database

record, article or propositions, etc [7].

III. SENTENCE SIMILARITY MEASURES

There is a relatively large number of word-to-word

similarity metrics in the literature, ranging from

distance-oriented measures computed on semantic networks

or knowledge-based (dictionary/thesaurus-based) measures,

to metrics based on models of information theory (or

corpus-based measures) learned from large text collections.

If words in two sentences are similar, the two sentences are

more possibly similar. If sentences in two documents are

similar, the two documents are more possibly similar. The

sentence similarity is partially based on the word similarity,

and the relations between words should be also considered.

This section presents five measures of statistical similarity

between sentences. Sentence similarity based on word set,

Sentence similarity based on vector, Sentence similarity

based on edit distance, Sentence similarity based on word

order and Sentence similarity based on word distance. This

system is used the two of the following

1. Sentence similarity based on word set is calculated with the

sets of words in two sentences respectively.

2. Sentence similarity based on word order is calculated with

the orders between word pairs in the sentences.

The former four sentence similarity measures are

symbolic similarity, while the latter two sentence similarity

measures are structural similarity. Symbolic similarity

between sentences only considers the spelling of words

ignoring the meanings of words [2, 5,7].

C. Common Word Order Similarity between Sentences

If the two texts have some words in common, it can measure

how similar the order of the common-words is in the two

texts (if these words appear in the same order, or almost the

same order, or very different order). This system uses it when

this system consider the importance of syntactic information

by setting its weight factor, wf to less than 0.5,

Let consider a pair of sentences, P and R has m and n

tokens respectively, that is, P = p1, p2, ... , pm and R = r1, r2,

... , rn and n ≥ m. Otherwise, it switch P and R. This system

count the number of pi’s (say, δ) for which pi = r j, for all p 

P and for all r  R. That is, there are δ tokens in P that exactly

match with R, where δ ≤ m. This system remove all δ tokens

from P and put them in X and from R in Y , in the same order

as they appear in the sentences. So, X ={x1, x2, ... , xδ } and Y

={ y1, y2, ... , yδ }. We replace X by assigning a unique index

number for each token in X starting from 1 to δ, that is, X

={1, 2, ... , δ}. Based on this unique index numbers for each

token in X , we also replace Y where X = Y. A measure for

measuring the common-word order similarity of two texts as:

1121

2211

0
...

...
1

xxxxxx

yxyxyx
S






 


 (1)

That is, common-word order similarity is determined by

the normalized difference of common-word order (the

denominator is the largest possible dissimilarity value, the

worse order of pair-wise elements in X) [2, 5, 6].

S0 =

1

2

1

1

2

1

2

1

2

1


























i

ii

i

ii

yx

yx

 (2)

D. Procedure for LCSS

The Longest Common Subsequence Similarity (LCSS) is

based on the Longest Common Subsequence (LCS)

character-based algorithm. The initial algorithm is

transformed into a token-based one. This way the token-level

LCS between two sentences is computed. Given two

sentences s1, and s2 the computation of the LCSS follows the

steps below: Each token in X starting from 1 to δ, that is, X =

{1, 2, . . . , δ}.

Given two sentences s1, and s2 the computation of the

LCSS follows the steps below:

1. Calculation of the LCS at token level:

LCS-Token-String(s1, s2) = LCS String

2. Calculation of the LCSS at token level as:

LCSS-Tokens(s1, s2) = Length-token (LCS String) /

max (Length-token(s1),Length-token(s2))

3. The computation is done according to a formula

similar to the one in step 2: LCSS-Characters(s1, s2)

= Length-characters(LCS-String) / max(Length-

characters(s1), Length-characters(s2))

LCSS takes values within [0, 1]. 0 indicates that the

sentences are completely different and 1 that the sentences

are identical.

IV. SYSTEM DESIGN AND ARCHITECTURE

This system can provide for the new paper publication

with similar preceding papers. Editor or user input the title of

paper, keywords and abstract section. This system must be

tokenized process. Using these token, this system will search

similar title in preceding papers database. The outputs are

similar title, author name, conference name, and published

date with similarity value.

Using Modified LCS, firstly accept input as user desired

title in preceding conference papers. This input as sentence,

so this system tokenized this sentence and remove the

insignificant words using database. This token uses as

keyword and the system searches similar word of preceding

if  is even

if  is odd and >1

if  is odd and =1

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 26 Issue 5 – AUGUST 2019.

24

title in database [2,5, 6].

E. System flow diagram

Figure1 illustrates the Major process of redundant paper

searching system. This system consists of four processes:

Stop word Removal, Token Recognization, Maximal

Consecutive LCS and Modify LCS algorithm.

Figure 1 System flow diagram

The process of stop word removal is to remove articles,

prepositions, conjunctions, frequent words and insignificant

words of the searching titles. Firstly, the input search title was

tokenized. And then, this process removed the stop words

according to the Stop Word array. The stop word removal

process in this system generates the string that has been

removed stop words. The output of this process is the input of

the tokenized process. In this process, the variable N is the

Length of Token array. And the variable K is the Length of

the Stop Word array.

In MCLCS algorithm, his process accepts the Search

Array as an input. And then, the process put all documents

from Database into Title array. This process creates the

integer array Title-Count array to store the count of the

number of the similar words in the title. This process checks

each element in the title array to find the similar words of the

input title. Finally, maximum consecutive longest common

substring algorithm generates the all similar titles in database

with the input title by similar word count. In this process,

 the variable N is the length of the Title array

 the variable K is the length of the Search Arrray

 the variable L is the length of the Title Array

 the variable S is the length of the elements of the Search

Array

 the variable T is the length of the elements of the Title

array

F. Sample Stop words

TABLE 1. SAMPLE STOP WORDS

Sr. No Categories Descriptions

1 a, an, the articles

2 in, or, on, of, into, by prepositions

3 and, but, for, between conjunctions

4 using, implementation, simulation frequent words

5 system, method, algorithm, approach Insignificant words

In this system, stop word removal process can take place

for accurate result. In stop word table, articles, prepositions,

conjunctions, frequent words and insignificant words are

included.

V. IMPLEMENTATION RESULTS

Paper searching system is implemented by using web

technology and C# programming language. This system can

display the similar methods, fields, keywords with similarity

value and similar word count. The title with large similarity

count is display on top of page with ascending order.

 Firstly, system will remove stop words to calculate

similarity measure as shown in figure 2.

Figure 2 Stop words Removal process

Figure 3 Result using Modified Similarity Measure

This system is processed tokenization and stop words

removal using stop words table. These tokens are used as key

words in this system. Using keywords in input title, this

system is applied maximum character longest common

substring algorithm to search similar titles. If the similar tiltes

Start

Desired document

Maximal Consecutive LCS and

Modify LCS algorithm

Database

End

Tokenized process

Match?

Y

Stop words Removal

Token Recognization

Display Results
Target documents,

SimValue

N

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 26 Issue 5 – AUGUST 2019.

25

are found by samilar words, it will displayed paper title with

similar count number in figure 4. The keywords of this

example are mobile, agent, query, processing, distributed and

database.

If user want to know the more similar titles and same order

of desired title and search title, user can use word order

similarity that is Modify similarity measure for each

sentenses. Using three type of formula in modified similarity

measure, this system will calculate the similarity value for

samilar sentenses. This process is calculate the similarity

value in each serched sentense.

This system can search many similar titles with only single

words as shown in figure 3. This result can support for

redundant title for students and supervisors.

VI. CONCLUSION

This system can support for paper publication system. This

system will use longest common substring to get common

texts. These common texts will be methods, algorithms and

applications in preceding papers. Administrator for paper

publication can use this system to provide redundant paper

for publication. This system uses LCS to obtain the similarity

of the query and the title of the documents to find more

similar documents in the retrieved documents.

Semantic similarity is computed based on the two semantic

vectors. An order similarity is calculated using the two order

vectors. Finally, the sentence similarity is derived by

combining semantic similarity and order similarity[1].

Measures of text similarity have been used for a long time

in applications in natural language processing and related

areas. This system considers for finding a longest common

subsequence LCS for two strings S1 and S2 such that

common string is a subsequence of the solution LCS. An

effective method to compute the similarity between texts or

sentences has many applications in natural language

processing and related areas such as information retrieval and

text filtering.

Other string matching methods such as Edit distance,

n-gram and Dynamic Programming techniques can be used in

this application. This system can extend the performance of

information retrieval. To try to give a more qualitative view

of the results compared to the results with other methods.

 REFERENCES

[1] A. Islam and D. Inkpen. “Semantic text similarity using corpus-based

word similarity and string similarity”. ACM Transactions on

Knowledge Discovery from Data (TKDD), 2(2):1–25, 2008.

[2] Apostolico, C. Guerra. 1987. The Longest Common Subsequence

Problem Revisited, Algorithmica, pp. 315-336.

[3] F. Y. L. Chin, C. K. Poon. 1990. A fast algorithm for computing longest

common subsequences of small alphabet size, Journal of Information

Processing, v.13 n.4, pp. 463-46.9

[4] G. Navarro. 2001. A Guided Tour to Approximate String Matching,

ACM Computing Survey, Vol. 33, No. 1, pp. 31-88.

[5] L. Bergroth, H. Hakonen, T. Raita. 2000. A survey of longest common

subsequence algorithms, 7th International Symposium on String

Processing Information Retrieval, pp. 39–48.

[6] Mark Gondree and Payman Mohassel. Longest common subsequence

as private search. In Proceedings of the 2009 ACM Workshop on

Privacy in the electronic society (WPES 2009), 2009.

[7] Pedersen, T. and Patwardhan, S. and Michelizzi, J. “WordNet::Simil

relatedness of concepts”, Association for Computational Linguistics,

2004.

