
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

20

Pack: Prophecy-Based Technique for Eliminating

Redundancy and Additional Cost
M. Sivananda1, K. Sreekala2

1 M.Tech CSE, Sri Krishna Devaraya Engineering College, AP, INDIA
2 Assistant Professor, CSE, Sri Krishna Devaraya Engineering College, AP, INDIA

Abstract— In this thesis, we explore Predictive ACKs (PACK), a

new end-to-end TRE (traffic redundancy elimination) system,

planned for cloud computing clients. Cloud-based traffic

redundancy elimination wants to concern a sensible exploit of

cloud resources then the price decrement bandwidth mutual with

the extra price of traffic redundancy elimination calculation and

preservation would be optimized. Predictive ACKs major benefit

is its offloading potential of the cloud-server traffic redundancy

elimination effort to end users, thus decreasing the processing

expenditures encourages by the traffic redundancy elimination

algorithm. Nothing comparable with existing solutions,

Predictive ACKs won’t need the server to constantly preserve

users’ status. This turns Predictive ACKs very appropriate for

persistent calculation atmospheres that join server migration and

client mobility to preserve cloud flexibility. Predictive ACKs is

depended on a new traffic redundancy elimination technique,

which permits the user to utilize chunks which are recently

received to recognize chunk chains which are previously

received, which in return can be utilized as dependable

predictors to chunks which are future transmitted. We explore a

complete functional Predictive ACKs execution, see-through to

all Transmissions Control Protocol depended network devices

and applications. At last, we evaluate Predictive ACKs

advantages for cloud clients, utilizing traffic traces from

different sources.

I. INTRODUCTION

Cloud computing presents its clients convenient and an

economical pay-as-you-go service replica acknowledged.

Cloud clients pay for only the actual utilize of computing

assets, bandwidth, and preservation according to their altering

requirements, using the cloud’s elastic and scalable

calculation abilities. Particularly information transfer

expenditures (i.e., bandwidth) is an significant issue when

trying to decrease expenses. Therefore, cloud clients, applying

a sensible usage of the cloud’s assets are motivated to utilize

different traffic decrease techniques, particularly TRE (traffic

redundancy elimination), for decreasing bandwidth

expenditures. TRS (Traffic redundancy stems) from general

end-users’ actions, like frequently downloading, accessing,

distributing, uploading (i.e., backup) and modifying/altering

the similar or same data items (data, documents, video, and

Web). Traffic redundancy elimination is utilized to remove

the redundant content transmission and, consequently, to

reduce the network price appreciably. In most general Traffic

redundancy elimination solutions, both the receiver and sender

observe and evaluate signatures of information chunks, parsed

respective to the information content, proceeding to their

transmission. When detecting redundant chunks, the sender

restores the transmission of every redundant chunk with its

tough signature. Commercial Traffic redundancy elimination

solutions are admired at enterprise networks, and engage the

deployment of couple or more proprietary-protocol, state

synchronized middle-boxes at both branch offices and the

intranet entry points of information centers and, removing

recurring traffic among them.

 While proprietary middle-boxes are popular point solutions

within enterprises, they are not as attractive in a cloud

environment. Cloud providers cannot benefit from a

technology whose goal is to reduce customer bandwidth bills,

and thus are not likely to invest in one. The rise of “on-

demand” work spaces, meeting rooms, and work-from-home

solutions [13] detaches the workers from their offices. In such

a dynamic work environment, fixed-point solutions that

require a client-side and a server-side middle-box pair become

ineffective.

On the other hand, cloud-side elasticity motivates work

distribution among servers and migration among data centers.

Therefore, it is commonly agreed that a universal, software-

based, end-to-end TRE is crucial in today’s pervasive

environment [14], [15]. This enables the use of a standard

protocol stack and makes a TRE within end-to-end secured

traffic (e.g., SSL) possible. Current end-to-end TRE solutions

are sender-based. In the case where the cloud server is the

sender, these solutions require that the server continuously

maintain clients’ status. We show here that cloud elasticity

calls for a new TRE solution. First, cloud load balancing and

power optimizations may lead to a server-side process and

data migration environment, in which TRE solutions that

require full synchronization between the server and the client

are hard to accomplish or may lose efficiency dueto lost

synchronization. Second, the popularity of rich media that

consume high bandwidth motivates content distribution

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

22

network (CDN) solutions, in which the service point for fixed

and mobile users may change dynamically according to the

relative service point locations and loads. Moreover, if an end-

to-end solution is employed, its additional computational and

storage costs at the cloud side should be weighed against its

bandwidth saving gains.

II. PROBLEM DEFINITION

In this thesis, we explored a novel end-to-end TRE solution

which is receiver-based that relies on the predictions power to

get rid of redundant traffic between the end-users and its cloud.

In this resolution, every receiver monitors the incoming

stream and attempts to match its chunks with a earlier

received chunk chain or a local file chunk chain. With the help

of the long-term chunks’ metadata data kept locally, the

receiver transmits to the server prophecies that contain

chunks’ signatures and simple-to- verify hints of the sender’s

future information. The sender first examines the hint and

performs the TRE operation only on a hint-match. The

purpose of this procedure is to avoid the expensive TRE

computation at the sender side in the absence of traffic

redundancy. When redundancy is detected, the sender then

sends to the receiver only the ACKs to the predictions, instead

of sending the data.

On the receiver side, we propose a new computationally

lightweight chunking (fingerprinting) scheme termed PACK

chunking. PACK chunking is a new alternative for Rabin

fingerprinting traditionally used by RE applications.

Experiments show that our approach can reach data

processing speeds over 3 Gb/s, at least 20% faster than Rabin

fingerprinting

.

III. SYSTEM DEVELOPMENT

Our implementation enables the transparent use of the TRE

at both the server and the client. PACK receiver– sender

protocol is embedded in the TCP Options field for low

overhead and compatibility with legacy systems along the

path. We keep the genuine operating systems’ TCP stacks

intact, allowing a seamless integration with all applications

and protocols above TCP. Chunking and indexing are

performed only at the client’s side, enabling the clients to

decide independently on their preferred chunk size. In our

implementation, the client uses an average chunk size of 8 kB.

We found this size to achieve high TRE hit-ratio in the

evaluated datasets, while adding only negligible overheads of

0.1% in metadata storage and 0.15% in predictions bandwidth

Receiver Chunk Store

Receiver Algorithm Sender
Algorithm
Wire Protocol

Receiver Chunk Store:

PACK uses a new chains scheme. which chunks are linked

to other chunks according to their last received order. The

PACK receiver maintains a chunk store, which is a large size

cache of chunks and their associated metadata. Chunk’s

metadata includes the chunk’s signature and a (single) pointer

to the successive chunk in the last received stream containing

this chunk. When the new data are received and parsed to

chunks, the receiver computes each chunk’s signature using

SHA-1. At this point, the chunk and its signature are added to

the chunk store.

Receiver Algorithm

Upon a successful prediction, the sender responds with a

PRED-ACK confirmation message. Once the PRED-ACK

message is received and processed, the receiver copies the

corresponding data from the chunk store to its TCP input

buffers, placing it according to the corresponding sequence

numbers. At this point, the receiver sends a normal TCP ACK

with the next expected TCP sequence number. In case the

prediction is false, or one or more predicted chunks are

already sent, the sender continues with normal operation, e.g.,

sending the raw data, without sending a PRED-ACK message.

Sample Code:

<script type="text/javascript">

function homePage(){

document.commonForm.action='index_page.acti
on';

document.commonForm.submit();
}
function regPage(){

document.commonForm.action='register_page.a

ction';
document.commonForm.submit();

}
function loginPage(){

document.commonForm.action='login_page.acti

on';
document.commonForm.submit();

}
function contactPage(){

document.commonForm.action='contact_page.ac

tion';
document.commonForm.submit();

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

23

}
function logoutPage(){

document.commonForm.action='logout_page.act

ion';
document.commonForm.submit();

}
</script>

Sender Algorithm:

When a sender receives a PRED message from the receiver,

it tries to match the received predictions to its buffered (yet to

be sent) data. For each prediction, the sender determines the

corresponding TCP sequence range and verifies the hint.

Upon a hint match, the sender calculates the more

computationally intensive SHA-1 signature for the predicted

data range and compares the result to the signature received in

the PRED message.

Wire protocol:

The existing firewalls and minimizes overheads; we use the

TCP Options field to carry the PACK wire protocol. It is clear

that PACK can also be implemented above the TCP level

while using similar message types and control fields. The

PACK wire protocol operates under the assumption that the

data is redundant. First, both sides enable the PACK option

during the initial TCP handshake by adding a PACK

permitted to the TCP Options field. Then, the sender sends the

(redundant) data in one or more TCP segments, and the

receiver identifies that a currently received chunk is identical

to a chunk in its chunk store. The receiver, in turn, triggers a

TCP ACK message and includes the prediction in the packet’s

Options field. Last, the sender sends a confirmation message

(PRED-ACK) replacing the actual data.

Figure1 PACK chunking: snapshot after at least 48 B were processed

Our measurements show that PACK chunking is faster than

the fastest known Rabin fingerprint software implementation

[31] due to one less XOR operation per byte. We further

measured PACK chunking speed and compared it to other

schemes. The measurements were performed on an unloaded

CPU whose only operation was to chunk a 10-MB random

binary file. Table V summaries the processing speed of the

different chunking schemes. As a baseline figure, we

measured the speed of SHA-1 signing and found that it

reached 946 Mb/s.

PACK Impact on the Client CPU

To evaluate the CPU effort imposed by PACK on a client,

we measured a random client under a scenario similar to the

one used for measuring the server’s cost, only this time the

cloud server streamed videos at a rate of 9 Mb/s to each client.

Such a speed throttling is very common in real-time video

servers that aim to provide all clients with stable bandwidth

for smooth view.

Chunking Scheme

Our implementation employs a novel computationally

lightweight chunking (fingerprinting) scheme, termed PACK

chunking. The scheme, presented in Proc. 8 and illustrated in

Fig. 13, is an XOR-based rolling hash function, tailored for

fast TRE chunking. Anchors are detected by the mask in line 1

that provides on average 8-kB chunks. The mask, as shown in

Fig. 13, was chosen to consider all the 48 B in the sliding

window

IV. RELATED WORK

We measured the server performance and cost as a function

of the data redundancy level in order to capture the effect of

the TRE mechanisms in real environment. To isolate the TRE

operational cost, we measured the server’s traffic volume and

CPU utilization at maximal throughput without operating a

TRE. We then used these numbers as a reference cost, based

on present Amazon EC2 [29] pricing. The server operational

cost is composed of both the network traffic volume and the

CPU utilization, as derived from the EC2 pricing. We

constructed a system consisting of one server and seven

clients over a 1-Gb/s network. The server was configured to

provide a maximal throughput of 50 Mb/s per client. We then

measured three different scenarios: a baseline no-TRE

operation, PACK, and a sender-based TRE similar to EndRE’s

Chunk- Match [15], referred to as EndRE-like. For the

EndRE-like case, we accounted for the SHA-1 calculated over

the entire outgoing traffic, but did not account for the

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

24

chunking effort. In the case of EndRE-like, we made the

assumption of unlimited buffers at both the server and client

sides to enable the same long-term redundancy level and TRE

ratio of PACK.

References [17] and [18] present redundancy-aware routing

algorithm. These papers assume that the routers are equipped

with data caches, and that they search those routes that make a

better use of the cached data.

A large-scale study of real-life traffic redundancy is

presented in [19], [20], and [14]. In the latter, packet-level

TRE techniques are compared [3], [21]. Our paper builds on

their finding that “an end to end redundancy elimination

solution, could obtain most of the middle-box’s bandwidth

savings,” motivating the benefit of low cost software end-to-

end solutions.

End RE [15] is a sender-based end-to-end TRE for enterprise
networks. It uses a new chunking scheme that is faster than
the commonly used Rabin fingerprint, but is restricted to
chunks as small as 32–64 B. Unlike PACK, EndRE requires
the server to maintain a fully and reliably synchronized cache
for each client.
To adhere with the server’s memory requirements, these
caches are kept small (around 10 MB per client), making the
system inadequate formedium-to-large content or long-term
redundancy. End RE is server-specific, hence not suitable for

a CDN or cloud environment. To the best of our knowledge,

none of the previous works have addressed the requirements
for a cloud-computing- friendly, end-to-end TRE, which
forms PACK’s focus.

V. CONCLUSION

 Cloud computing is anticipated to generate maximum

demand for traffic redundancy elimination solutions as the

quantity of information exchanged between its users and the

cloud is estimated to significantly growth. The cloud

architecture redefines the traffic redundancy elimination

system necessities, building proprietary middle-box

explanations insufficient. As a result, there is a growth of a

TRE solution is required that decreases the cloud’s

functioning expenditure while accounting for cloud elasticity,

user mobility, and application latencies. In this thesis, we have

offered Predictive ACKs, a cloud-friendly, receiver-based,

end-to-end traffic redundancy elimination that is depended on

new speculative values that decreases latency and cloud

functioning cost. Predictive ACKs don’t need the server to

constantly maintain users’ status, thus enabling cloud

elasticity and user mobility while preserving long-term

redundancy. Moreover, PACK is capable of eliminating

redundancy depending on content incoming to the user from

multiple servers without applying a three-way handshake.

Our evaluation using awide collection of content types

shows that PACK meets the expected design goals and has

clear advantages over sender-based TRE, especially when the

cloud computation cost and buffering requirements are

important. Moreover, PACK imposes additional effort on the

sender only when redundancy is exploited, thus reducing the

cloud overall cost. Two interesting future extensions can

provide additional benefits to the PACK concept. First, our

implementation maintains chains by keeping for any chunk

only the last observed subsequent chunk in an LRU fashion.

An interesting extension to this work is the statistical study of

chains of chunks that would enable multiple possibilities in

both the chunk order and the corresponding predictions. The

system may also allow making more than one prediction at a

time, and it is enough that one of them will be correct for

successful traffic elimination. A second promising direction is

the mode of operation optimization of the hybrid sender–

receiver approach based on shared decisions derived from

receiver’s power or server’s cost changes.

REFERENCES

[1] E. Zohar, I. Cidon, and O. Mokryn, “The power of prediction: Cloud

bandwidth and cost reduction,” in Proc. SIGCOMM, 2011, pp. 86–97. .

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R.Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010. .

[3] U. Manber, “Finding similar files in a large file system,”

in Proc. USENIX Winter Tech. Conf., 1994, pp. 1–10.

[4] N. T. Spring and D. Wetherall, “A protocol-independent

technique for eliminating redundant network traffic,” in

Proc. SIGCOMM, 2000, vol. 30, pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-

bandwidth network file system,” in Proc. SOSP, 2001,

pp. 174–187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, “Method and

apparatus for reducing network traffic over low

bandwidth links,” US Patent 7636767, Nov. 2009.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

25

[7] S.Mccanne and M.Demmer, “Content-based

segmentation scheme for data compression in storage

and transmission including hierarchical segment

representation,” US Patent 6828925, Dec. 2004.

[8] R. Williams, “Method for partitioning a block of data

into sub blocks and for storing and communicating such

sub blocks,” US Patent 5990810, Nov. 1999.\

[9] A. Flint, “The next workplace revolution,” Nov. 2012

[Online].

[10] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee,

“Redundancy in network traffic: Findings and

implications,” in Proc. SIGMETRICS, 2009, pp. 37–48

