
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 4 – MARCH 2017.

17

Abstract— We design a workflow model to develop software’s

in an effective way, based on petrinet and other software
development constraints. Our approach increases the
effectiveness of the software development process by increasing
the performance based on the software matrices. Project
management becomes more important constraint and resource
planning is also a necessary step in the process of software
development. Our workflow model consists of various steps like
resource planning and other steps of software development
process.

Index Terms— Petrinet, Reliability, COCOMO, SLIM

I. INTRODUCTION

 RPS (Reliability Prediction System) is an outline for
predicting the reliability of software by taking the measures of
software. Reliability Prediction can be achieved by applying
multivariate analysis theory (analysis of data involving more
than one variable). Ranking of existing software was done
before by taking the opinions of the 30 experts and in this
report it is possible by the help of the RPS framework to rank
the software methods. There are few measures included and
explained in this paper which helps more efficiently to
calculate the reliability of the software.

There are four types of models which have been considered
as potential candidates for modeling the reliability of
software. These include reliability growth models, input
domain models, architectural models and Beginning
prediction models. (1)Reliability growth model captures
failure performance during testing and generalizes its
performance during procedure. Hence this category of models
uses failure data and observes the failure data to derive
reliability predictions. (2)Input Domain model uses
properties of the input field of the software to derive
correctness which approximates from test cases that executed
properly. (3)Architectural models stress on the architecture of
the software and derive reliability estimates by combining
estimates obtained for the different modules of the software.
(4) Beginning prediction model uses characteristics of the
software development process from requirements to test and
estimates this information to performance during operation.

A. Reliability

Reliability is probability of the non-occurrences of error. It

states that an item will perform a defined method without
failure during certain period of time. The numerical values of
the reliability is expressed as a probability from 0 to 1and it
has no units [1].Reliability is one of the validation criteria for
measuring and ranking software among correlation,
consistency, tracking, predictability and discriminative
power. System reliability and accessibility are precise as a
part of the non-functional requirements for the system. It is
very important to choose an appropriate metric to specify the
overall software reliability. It gives measurement by input
software data and outputs a single numerical value.

B. Reliability Prediction System

Reliability prediction system describes the process which is
used to estimate the constant failure rate during the useful life
of software. This is one of the general forms of reliability
analysis. Reliability prediction system predicts the failure rate
of components and overall software reliability. These
prediction system are used to calculate approximately design
feasibility, evaluate design alternatives, identify possible
failure areas, trade-off system design factors, and tracks
reliability enhancement [2]. The impact of future proposed
design of software changes on reliability is determined by
comparing the reliability predictions of the existing and
proposed designs of the software. The capability of the design
of software to maintain an acceptable reliability level can be
accessed through reliability predictions.

C. Multivariate Analysis Theory

Multivariate analysis theory consists of a set of methods
that can be used when numerous measurements are made on
each individual or object in one or more sample [4]. With
univariate analysis, there is only one dependent variable of
interest but by using multivariate analysis theory there are
more than one variable involved in analysis of data. By using
this theory richer realistic design of the software will be
obtained. It also helps to predict the reliability and determine
structure of the software.

The ranking of any software measure is predicted
On the following values:
1. The value of 1 is assign to best likely situation and hence

it represents the highest reliability of any measure of the
software.

2. The value of 0 is assign to worst situation and has the
lowest possible reliability of any measure of the software.

3. The ranking according multivariate analysis theory can
be done by predicting values lying between the first and the

Automatic Generation of Work Flow Model for
Effective Software Development Process

S.TAMILSELVAN #1 and V.M.NAVANEETHAKUMAR *2
Assistant Professor, Department Of Computer Applications, K.S.R. COLLEGE OF ENGINEERING, TN, India
* Assistant Professor, Department Of Computer Applications, K.S.R. COLLEGE OF ENGINEERING, TN, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 4 – MARCH 2017.

18

last ranking criteria levels which take values between 0 and 1.
Values to be selected depends on the relative
effectiveness of the ranking criteria level considered.

D. Software Quality Metrics

Software metrics is a measure of property of a piece of
software or its specifications [3]. It is a quantitative measure
of degree to which a system component or process have a
given attribute (i.e. guess about a given attribute). There are
three main categories in which metrics are classified. They
are:

1) Process metrics:
This metrics deals with the activities which are related to

production of software. It is mainly concerned to improve the
process efficiency of the SLC.

2) Project metrics:
This metrics deals with more relevant to project team for

developing software. It can be used to measure the efficiency
of a project team or any other tools being used by team
measures. It requires hardware, people and knowledge to
measure its attribute.

3) Product metrics:
This metrics deals with the explicit results of software

development activities. This requires deliverables,
documentation of products used in the approach of the
software product being developed.

II. BACKGROUND

 Software development process becomes more time and
cost constrained one. Any software development process
must be a time and cost effective, the factors affecting the time
and cost are the resources like man power and any other
resources. To make the software development process as a
time and cost effective the process of development must be
planned effectively. There exist various models to develop
and estimate the software but suffers with time and cost.

A. COCOMO:

It is a model that allows one to estimate the cost, effort, and
schedule when planning a new software development activity.
It consists of three sub models, each one offering increased
fidelity along the project planning and design process. Listed
in increasing fidelity, these sub models are called the
Applications Composition, Early Design, and
Post-architecture models. Until recently, only the last and
most detailed sub model, Post-architecture, had been
implemented in a calibrated software tool [Boehm Barry W,
1981]. The initial definition of COCOMO II and its rationale
are described here. The definition will be refined as additional
data are collected and analysed. The primary objectives of the
COCOMO II effort are:

1. To develop software cost and schedule estimation model
tuned to the life cycle practices of the 1990’s and 2000’s.

2. To develop software cost database and tool support
capabilities for continuous model improvement.

3. To provide a quantitative analytic framework, and set of
tools and techniques for evaluating the effects of software
technology improvements on software life cycle costs and
schedules. In priority order, these needs were for support of

project planning and scheduling, project staffing,
estimates-to-complete, project preparation, replanning and
rescheduling, project tracking, contract negotiation, proposal
evaluation, resource levelling, concept exploration, design
evaluation, and bid/no-bid decisions. For each of these needs,
COCOMO II will provide more upto- date support than the
original COCOMO and Ada COCOMO predecessors.

B. Strategy :

The four main elements of the COCOMO II strategy are:
1. Preserve the openness of the original COCOMO;
2. Key the structure of COCOMO II to the future software

marketplace sectors described above;
3. Key the inputs and outputs of the COCOMO II sub

models to the level of information available;
4. Enable the COCOMO II sub models to be tailored to a

project’s particular process strategy.
The Application Composition Model: Suitable for

projects built with modern GUI-builder tools.
The Early Design Model: Here in this model we can

achieve rough estimates of a project's cost and duration before
the determination of it’s entire architecture. It uses a small set
of new Cost Drivers, and new estimating equations. Based on
Unadjusted Function Points or KSLOC.

The Post-Architecture Model: This is the most detailed
COCOMO II model. This model is used after the
development of overall projects architecture. It has new cost
drivers, new line counting rules, and new equations.

Effort estimation: In COCOMO II effort is expressed as
Person Months (PM). A person month is the amount of time
one person spends working on the software development
project for one month. This number is exclusive of holidays
and vacations but accounts for weekend time off. The number
of person months is different from the time it will take the
project to complete; this is called the development schedule.
For example, a project may be estimated to require 50 PM of
effort but have a schedule of 11 months.

Before going to the equations we have to consider scaling
factors, cost drivers andsource lines of codes.

Scale drivers: In the COCOMO II model, some of the
most important factorscontributing to a project's duration and
cost are the Scale Drivers. The Boehmgroup set 5 Scale
Drivers to describe the project; these Scale Drivers
determinethe exponent used in the Effort Equation. The 5
Scale Drivers are:

1. Precedentedness
2. Development Flexibility
3. Architecture / Risk Resolution
4. Team Cohesion
5. Process Maturity

C. SLIM (Software Life-cycle Model)

Putnam developed a constraint model called SLIM to be
applied to projectsexceeding 70,000 lines of code. Putnam’s
model assumes that effort for softwareprojects is distributed
similarly to a collection of Rayleigh curves. Putnamsuggests
that staffing rises smoothly during the project and then drops
sharplyduring acceptance testing. The SLIM model is
expressed as two equationsdescribing relation between the

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 4 – MARCH 2017.

19

development effort and the schedule. The first equation,
called the software equation, states that development effort is
proportional to the cube of the size and inversely proportional
to the fourth power of the development time. The second
equation, the manpower-buildup equation, states that the
effort is proportional to the cube of the development time.

 These entire model are build earlier and the softwares
developed based on these models are follow the steps as it
designed and produces less effective softwares according to
time and cost.

III. PROPOSED SYSTEM:

 Our system generates the work flow model for the
software development process according to the requirements.
We submit software requirements specification using which
our system produces the workflow model for the system. The
work flow model consists of scheduling of resources and
scheduling of all stages of the software development process.

A. Petrinet Model:

 We maintain all the resource bundles as petrinet model. At
this stage we calculate all the resources available at current
time and in the future. For a project management the planning
and scheduling of resources are very important and should be
done in an efficient manner. Our system generates the
petrinet model using all the available resources at current time
and future resources. The generated petrinet model will be
given to the next stage of the system.

B. Resource Planning:

 The petrinet model generated in the previous stage is taken
as the input and the resources allocated to the model are
planned and the resources will be scheduled as per the petrinet
model generated. All the resources assigned will be allocated
at the time assigned in the model, if the resource is assigned to

some other petrinet model at current time it will be ignored
and will be assigned in future when it gets released from the
assigned model. It’s not necessary that all the resources
necessary to complete the development process should be free
at the time the process starts, it can be assigned when its
necessary and when its freed. Our model plans the resources
according to the point we specified earlier.

SDM:
 Software development model consists design, coding,

testing. These three steps will be iterated until the whole
process gets over. In this stage using the petrinet and resource
planning the process of design , coding and testing will be
carried out. Once the purpose of allocated resource gets
finished the resource will be released. In order to iterate the
software development model the first two stages has to be
rescheduled. This reduces the time and cost of the software
development process.

IV. CONCLUSION:

 In the earlier models like COCOMO and SLIM the
resources allocated will be hold until all the processes gets
finished. This makes the most of the resources in idle stage at
most times. This increase the cost of software development
process. In our model the work flow model is generated
dynamically and the resources are assigned whenever its
necessary so that it reduces the overall cost and time.

 REFERENCES
[1] [Ahituv, N., Zviran, M., Glezer, C, 1999] Top Management Toolbox

for Managing Corporate IT. Communications of The ACM 42.
[2] [Albrecht, A.J., Gaffney,1983] Software Function, Source Lines of

Code, and Development Effort Prediction: A Software Science
Validation. IEEE Transactions on Software Engineering.

[3] [Athey, 1998] T., Leadership Challenges For the Future. IEEE
Software 15.

[4] [Basili V, 1993] Applying the Goal/Question/Metric Paradigm in the
Experience Factory, 10th Annual CSR (Centre for Software
Reliability) Workshop, Application of Software Metrics and Quality
Assurance in Industry, Amsterdam, Holland.

[5] [Bache R & Bazzana G, 1994] Software Metrics for Product
Assessment. London: McGraw-Hill

[6] [Bersoff, 1997] Elements of Software Configuration Management. In:
Dorfman, M.,Thayer, R.H. (eds), Software Engineering. Los Alamitos:
IEEE Computer SocietyPress.

[7] [Boehm, Barry W, 1981], Software Engineering Economics, Prentice
Hall].

[8] [Boehm, B.W., Abts, C., Clark, B., and Devnani-Chulani, 1997]
COCOMO II Model Definition Manual. The University of Southern
California. [Boehm et al, 1997]

[9] [Boehm et all, 1995] Cost Models for Future Life Cycle Processes:
COCOMO 2.0.Annals of Software Engineering

Automatic
workflow
generation

system

Software
requirement

spec.

Historical data

Petrinet model

Resource Planning

Schedule SLM

