
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

288

AGGRESSIVE CONVENTION FOR SOURCE

REGENERATION OF SCIENTIFIC DATASETS IN

THE CLOUD

Mr.R.Ramesh Kannan
1
, Ms V.Kiruthika

2
, ,Ms G.Sangeetha

3

1
Assistant Professor, Department of CSE, Dhanalakshmi College of Engineering. Chennai- 601301

2,3

 Student Department of CSE, Dhanalakshmi College of Engineering. Chennai- 601301

kannanrrk@gmail.com

kiruthikasekar1594@gmail.com

sangee2895@gmail.com

Abstract--The aim of this study is to analysis and presentation

of some ideas on performance testing in Cloud Computing.

Performance is an important factor in testing a web

application. Performance testing in cloud computing is

different from that of traditional applications. Here the file

which is send to receiver should be analyzed previously for

cloud space network traffic using Benchmark. Our research

methodology in this article includes an overview of existing

works on testing performance in Cloud Computing, focusing

on discussion that the traditional benchmarks are not sufficient

to analyze performance testing in Cloud Computing. In this

study we are focused mainly on analysis performance metrics

in Cloud Computing, based on their characteristics such as

elasticity, scalability, pay-per-use and fault tolerance. Then we

discuss why needed new strategies for performance testing in

Cloud Computing and creation of new benchmarks. From this

study we conclude that the performance testing and evaluation

should be performed using new models testing, which are

created according to Cloud Computing characteristics and

metrics.

Keyword- Data Dependency Graph(DDG), Datasets storage and

regeneration, Minimum cost Benchmark, Partitioned Solution

Space(PSS),

I .INTRODUCTION

IaaS (Infrastructure as a Service) is a very popular way to

deliver services in the cloud, where users can deploy their

applications in unified cloud resources such as computing

and storage services without any infrastructure investments.
However, along with the convenience brought by using on-

demand cloud services, users have to pay for the resources

used according to the pay-as-you-go

model, which can be substantial. Especially, nowadays

applications are getting more and more data intensive , e.g.

scientific applications, where the generated data are often

gigabytes, terabytes, or even petabytes in size. These

generated data contain important intermediate or final

results of computation, which may need to be stored for

reuse and sharing. Storing all the generated application

datasets in the cloud may result in a high storage cost since

some datasets (e.g. intermediate results) may be never

reused but large in size. Hence, there is a trade-off between

computation and storage for storing generated application

datasets in the cloud. Based on this trade-off, different

storage strategies are designed for the generated datasets in

order to reduce the total application cost in the cloud.

The benchmark referred in this paper is the

minimum cost for storage and regeneration of the datasets

for the required users for the renewable of backup, which is

used to evaluate the cost effectiveness of storage strategies

used in cloud applications. Due to the dynamic provisioning

mechanism in cloud computing, this minimum cost varies

from time to time whenever new datasets are generated or

the dataset’s usage frequencies are changed. .In this paper,

by studing the issue of computation and storage trade-off for

the required users, we describe a novel Aggressive

convention for source regeneration of scientific datasets in

the cloud approach with highly efficient algorithms that can

calculate the minimum cost for datasets storage in the

cloud,so that a effective cloud would be created . In the

approach we update a Partitioned Solution Space (PSS),

which saves all the possible minimum cost storage strategies

of the datasets in the cloud. Therefore, whenever the

application cost changes at runtime, our benchmarking

algorithm can dynamically derive the new minimum cost

from the PSS to keep the benchmark updated from user to

user. Hence this approach can be utilised on-the-fly to either

proactively report the dynamic minimum cost benchmark to

SaaS providers or instantly respond to their benchmarking

requests. Experimental results show the excellent efficiency,

scalability and practicality of our approach.

II .RELATED WORKS

Cloud computing system for scientific applications, i.e.

science cloud, has already commenced . This paper is

mainly inspired by the work in two research areas: cache

mailto:kiruthikasekar1594@gmail.com
mailto:sangee2895@gmail.com

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

289

management and scheduling. With smart caching

mechanism system performance can be greatly improved.

The similarity is that both pre-store some data for future use,

while the difference is that caching is to reducing data

accessing delay but our work is to find the minimum

application cost. Some works in scheduling focus on

reducing various costs for either applications or systems.

However these works mainly focus on resource utilisation

rather than the perspective of the trade-off between

computation and storage. This trade-off is a unique issue in

the cloud due to the pay-as-you-go model, hence our

benchmarking approach is brand new which is different

from other existing benchmarking counterparts in the cloud .

Researchers are exploring the cost-effectiveness of

the cloud, because comparing to the traditional computing

systems like cluster and grid, a cloud computing system has

a cost benefit in various aspects. Assunção et al

demonstrate that cloud computing can extend the capacity of

clusters with a cost benefit. With Amazon clouds’ cost

model and BOINC volunteer computing middleware, the

work in analyses the cost benefit of cloud computing versus

grid computing. The work by Deelman et al. also applies

Amazon clouds’ cost model and demonstrates that cloud

computing offers a cost-effective way to deploy scientific

applications. The above works mainly focus on the

comparison of cloud computing systems and the traditional

computing paradigms, which shows that applications

running in the cloud have cost benefits, but they do not

touch the issue of computation and storage trade-off for

datasets in the cloud.

Due to the importance of data provenance in

scientific applications, many works about recording data

provenance of the system have been done . Recently,

research on data provenance in cloud computing systems has

also appeared . More specifically, Osterweil et al. present

how to generate a data derivation graph for the execution of

a scientific workflow, where one graph records the data

provenance of one execution, and Foster et al. propose the

concept of Virtual Data in the Chimera system, which

enables the automatic regeneration of datasets when needed.

Our DDG is based on data provenance in scientific

applications, which depicts the dependency relationships of

all the datasets in the cloud. With DDG, we know where the

datasets are derived from and how to regenerate them.

In Deelman et al. present that storing some popular

intermediate data can save the cost in comparison to always

regenerating them from the input data. Adams et al. propose

a model to represent the trade-off between computation cost

and storage cost, but have not given the strategy to find this

trade-off proposes practical cost-effective strategies for

datasets storage of scientific applications, but it is not the

minimum cost storage strategy in the cloud. Yuan et al.

propose the CTT-SP algorithm with a polynomial time

complexity (i.e. O(n9)) that can calculate the minimum cost

of storing scientific datasets in the cloud with fixed usage

frequencies. However, this algorithm is only suitable for

static scenarios. Whenever datasets’ usage frequencies are

changed or new datasets are generated, we have to run the

CTT-SP algorithm on all datasets stored in the cloud to

calculate the new benchmark, which is not efficient. Hence,

it can only be utilised for ondemand minimum cost

benchmarking.

In this paper, we propose an entirely new approach

for dynamic on-the-fly minimum cost benchmarking of

datasets storage in the cloud. Significantly different from the

on-demand benchmarking approach , we divide the DDG

into small segments and pre-calculate all the possible

minimum cost storage strategies (i.e. the solution space) of

every DDG segment using the CTT-SP algorithm. By

utilising the pre-calculated results, whenever new datasets

are generated and/ or existing datasets’ usage frequencies

are changed, we develop efficient algorithms that can

dynamically calculate the changing minimum cost

benchmark at runtime by calling the CTT-SP algorithm only

on the local DDG segment. By keeping the minimum cost

benchmark updated on the fly, SaaS providers’

benchmarking request can be instantly responded. Hence, it

is a practical approach for dynamic minimum cost

benchmarking of storing generated datasets in the cloud.

The efficiency and scalability of the PSS based dynamic

benchmarking algorithms comparing to the original CTT-SP

algorithm for on-demand benchmarking .

III . ALGORITHM

3.1:CTT-SP ALGORITHM:

The CTT SP algorithm compares all possible paths through

the graph between each pair of vertices. It is able to do this

with Θ(|V|
3
) comparisons in a graph. This is remarkable

considering that there may be up to Ω(|V|
2
) edges in the

graph, and every combination of edges is tested.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

290

 Consider a graph G with vertices V numbered

from 1 through N.Further consider a function

shortestPath(i,j,k) that returns the shortest possible path fron

i to j using vertices only from the set{1,2,…,k} as

intermediate points along the way. Now, given this function,

our goal is to find the shortest path from each i to each j

using only vertices from 1 to K+1.

 For eachof these pair of vertices, the true shortest

path could be either

(1) A path that only uses vertices in the set{1,2,….,k}

(2) A path that goes from i to K+1 and then from K+1

to j.

We know that the best path from i to j

only uses vertices 1 through k is defined by shortest

path(i,j,k), and it is clear that if there were a better path from

i to k+1 and k+1 to j,then the length of this path would be

the concatenation of the shortest path from i to k+1(using

vertices in {1,…k})and the shortest path from k+1 to j (also

using vertices in{1,….k}).

 If w(i,j) is the weight of the edge between vertices i

and j, we candefine shortest Path(i,j,k+1) in terms of the

following recursive formula:the base case is

shortestPath(i,j,0)=w(i,j)

 and the recursive case is

 shortestPath(i,j,k+1)=min(shortestPath(i,j,k),

shortestpath(i,k+1,k)+shortestPath(k+1,j,k))

3.2:BRUTE-FORCE ALGORITHM:

Brute-force:

Brute-force (checking every element with every

other element) takes O(n
2
).

Sorting:

Sorting takes O(n log n), which is generally

considered to be a fairly decent running time.Sorting has the

advantage above the below (hash table) approach in that it

can be done in-place (O(1) extra space), where-as the below

takes O(n) extra space.

Hash table:

An alternative is to use a hash table.

For each item:Check if that item exists in the hash table (if it

does, all items are not distinct) and

Insert that item into the hash table

Since insert and contains queries run in expected O(1) on a

hash table, the overall running time would be expected O(n),

and, as mentioned above, O(n) extra space.

IV .PSEUDOCODE FOR BRUTE-FORCE

VertexCover(edges, k):

 if edges = {}

 # we win

 return true

 else if k = 0:

 # we lose, keep trying

 return false

 else:

 for each endpoint x of edges[1]:

 let edges' = { e in edges : x is not an endpoint of e }

 if VertexCover(edges', k-1) = true

 # we found one, stop looking

 return true

 # else we didn't find one, keep trying

return false

CLOUD SERVER:

 In some respects cloud servers work in the same

way as physical servers but the functions they provide can

be very different. When opting for cloud hosting, clients are

renting virtual server space rather than renting or purchasing

physical servers. They are often paid for by the hour

depending on the capacity required at any particular time.

 Traditionally there are two main options for

hosting: shared hosting and dedicated hosting. Shared

hosting is the cheaper option whereby servers are shared

between the hosting provider’s clients. Dedicated hosting is

a much more advanced form of hosting, whereby clients

purchase whole physical servers. Dedicated servers allow

for full control over hosting.

CLIENT REGISTRATION:

In this module the new client register their details

to be a member of the Cloud server. Client must give their

username and password for login purpose. Using these

username and password only they can able to login.

BACKUP AND DELETE:

http://en.wikipedia.org/wiki/Hash_table

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

291

Cloud has splitted into normal cloud and virtual

cloud. Virtual cloud is created to hold the backup of the

deleted file for future use purpose.

User may mention their details regarding their

backup. If a user wants to register with the backup details,

user need to pay more amout than required for space. Once

they registered like that user may able to get the file backup

even through they have deleted the file.Moreover tat user

may not to pay more amount for that.And if the user have

only registered with the required details and are deleted any

file and to get it back they may have to pay more amount to

get it back.

FILE UPLOADING:

In this module the Cloud user can take their

Personal backup in Cloud Server and the data are stored in

the Upload Folder. Server not has the authentication to

delete uploaded files. Server can able to monitor the all the

uploaded files and information of uploders and other

Clients.

FILE DOWNLOADING:

In this module the user downloads their file from

the cloud server by using their account. If the user is stored

their backup in cloud server they can download only from

cloud server if the requested file is there.

FILE SIZE FILTER:

Most of the files in the PC dataset are tiny files that

less than 10KB in file size, accounting for a negligibly small

percentage of the storage capacity.

 To reduce the metadata overhead, ALG-Dedupe

filters out these tiny files in the file size filter before the

deduplication process, and groups data from many tiny files

together into larger units of about 1MB each in the segment

store to increase the data transfer efficiency over WAN.

APPLICATION-AWARE DEDUPLICATOR:

After data chunking in intelligent chunker module,

data chunks will be deduplicated in the application-aware

deduplicator by generating chunk fingerprints in the hash

engine and detecting duplicate chunks in both the local

client and remote cloud.

ALG-Dedupe strikes a good balance between

alleviating computation overhead on the client side and

avoiding hash collision to keep data integrity.

V .CONCLUSION

In this paper, we have examined the unique issues

of storing application datasets in the cloud and analysed the

re-quirements of Aggressive convention for source

regeneration of scientific datasets in the cloud. We have

updated a novel PSS (Partitioned So-lution Space) based

practical approach with innovative algorithms that can

dynamically calculate the minimum cost benchmark for

storing generated application datasets in the cloud from user

to user, which achieves the best trade-off between

computation cost and storage cost of the cloud resources for

renewable of backup. Both theoretical analysis and

experimental results demon-strate that our novel dynamic

minimum cost benchmark-ing approach is highly efficient

and scalable. Hence, it can be practically utilised on the fly

at runtime in the cloud, which was unavailable before.

REFERENCES

[1]"Amazon Cloud Services”,, http://aws.amazon.com/.

[2] "Eucalyptus", http://open.eucalyptus.com/.

 [3] "Nimbus", http://www.nimbusproject.org/.

[4] "OpenNebula", http://www.opennebula.org/.

[5] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W. Storer,

"Maximizing Efficiency by Trading Storage for Computation," in

Workshop on Hot Topics in Cloud Computing (HotCloud'09), pp. 1-5,
2009.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A View of

Cloud Computing," Communication of the ACM, vol. 53, pp. 50-58, 2010.

[7] M. D. d. Assuncao, A. d. Costanzo, and R. Buyya, "Evaluating the Cost-

Benefit of Using Cloud Computing to Extend the Capacity of Clusters," in

18th ACM International Symposium on High Performance Distributed
Computing (HPDC'09), pp. 141-150, 2009.

[8] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data Processing:
A Survey," ACM Computing Surveys, vol. 37, pp. 1-28, 2005.

 [9] A. Burton and A. Treloar, "Publish My Data: A Composition of
Services from ANDS and ARCS," in 5th IEEE International Conference on

e-Science (e-Science'09),, pp. 164-170, 2009.

 [10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud

Computing and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing as the 5th Utility," Future Generation Computer
Systems, vol. 25, pp. 599-616, 2009.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

"Benchmarking Cloud Serving Systems with YCSB," in 1st ACM
Symposium on Cloud Computing (SOCC'10), pp. 143-154, 2010.

[12] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and

eScience: An Overview of Workflow System Features and Capabilities,"

Future Generation Computer Systems, vol. 25, pp. 528-540, 2009.

[13] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The Cost
of Doing Science on the Cloud: the Montage Example," in ACM/IEEE

Conference on Supercomputing (SC'08), pp. 1-12, 2008.

[14] I. Foster, J. Vockler, M. Wilde, and Z. Yong, "Chimera: A Virtual

Data System for Representing, Querying, and Automating Data
Derivation," in 14th International Conference on Scientific and Statistical

Database Management, (SSDBM'02), pp. 37-46, 2002.

http://aws.amazon.com/
http://open.eucalyptus.com/
http://www.nimbusproject.org/
http://www.opennebula.org/

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 3 – MARCH 2016.

292

[15] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid

Computing 360-Degree Compared," in Grid Computing Environments
Workshop (GCE'08), pp. 1-10, 2008.

[16] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang,

"Cost-aware Cooperative Resource Provisioning for Heterogeneous

Workloads in Data Centers," IEEE Transactions on Computers, vol. 62, pp.
2155-2168, 2013.

