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Abstract--The aim of this study is to analysis and presentation 

of some ideas on performance testing in Cloud Computing. 

Performance is an important factor in testing a web 

application. Performance testing in cloud computing is 

different from that of traditional applications. Here the file 

which is send to receiver should be analyzed previously for 

cloud space network traffic using Benchmark. Our research 

methodology in this article includes an overview of existing 

works on testing performance in Cloud Computing, focusing 

on discussion that the traditional benchmarks are not sufficient 

to analyze performance testing in Cloud Computing. In this 

study we are focused mainly on analysis performance metrics 

in Cloud Computing, based on their characteristics such as 

elasticity, scalability, pay-per-use and fault tolerance. Then we 

discuss why needed new strategies for performance testing in 

Cloud Computing and creation of new benchmarks. From this 

study we conclude that the performance testing and evaluation 

should be performed using new models testing, which are 

created according to Cloud Computing characteristics and 

metrics. 
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I .INTRODUCTION 

IaaS (Infrastructure as a Service) is a very popular way to 

deliver services in the cloud, where users can deploy their 

applications in unified cloud resources such as computing 

and storage services without any infrastructure investments. 
However, along with the convenience brought by using on-

demand cloud services, users have to pay for the resources 

used according to the pay-as-you-go  

 

model, which can be substantial. Especially, nowadays 

applications are getting more and more data intensive , e.g. 

scientific applications, where the generated data are often 

gigabytes, terabytes, or even petabytes in size. These 

generated data contain important intermediate or final 

results of computation, which may need to be stored for 

reuse and sharing. Storing all the generated application 

datasets in the cloud may result in a high storage cost since 

some datasets (e.g. intermediate results) may be never 

reused but large in size. Hence, there is a trade-off between 

computation and storage for storing generated  application 

datasets in the cloud. Based on this trade-off, different 

storage strategies are designed for the generated datasets in 

order to reduce the total application cost in the cloud. 

The benchmark referred in this paper is the 

minimum cost for storage and regeneration of the datasets 

for the required users for the renewable of backup, which is 

used to evaluate the cost effectiveness of storage strategies 

used in cloud applications. Due to the dynamic provisioning 

mechanism in cloud computing, this minimum cost varies 

from time to time whenever new datasets are generated or 

the dataset’s usage frequencies are changed. .In this paper, 

by studing the issue of computation and storage trade-off for 

the required users, we describe a novel Aggressive 

convention for source regeneration of  scientific datasets in 

the cloud approach with highly efficient algorithms that can 

calculate the minimum cost for datasets storage in the 

cloud,so that a effective cloud would be created . In the 

approach we update a Partitioned Solution Space (PSS), 

which saves all the possible minimum cost storage strategies 

of the datasets in the cloud. Therefore, whenever the 

application cost changes at runtime, our benchmarking 

algorithm can dynamically derive the new minimum cost 

from the PSS to keep the benchmark updated from user to 

user. Hence this approach can be utilised on-the-fly to either 

proactively report the dynamic minimum cost benchmark  to  

SaaS  providers  or  instantly respond to their benchmarking 

requests. Experimental results show the excellent efficiency, 

scalability and practicality of our approach. 

II .RELATED WORKS 

Cloud computing system for scientific applications, i.e. 

science cloud, has already commenced . This paper is 

mainly inspired by the work in two research areas: cache 
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management and scheduling. With smart caching 

mechanism system performance can be greatly improved. 

The similarity is that both pre-store some data for future use, 

while the difference is that caching is to reducing data 

accessing delay but our work is to find the minimum 

application cost. Some works in scheduling focus on 

reducing various costs for either applications  or systems. 

However these works mainly focus on resource utilisation 

rather than the perspective of the trade-off between 

computation and storage. This trade-off is a unique issue in 

the cloud due to the pay-as-you-go model, hence our 

benchmarking approach is brand new which is different 

from other existing benchmarking counterparts in the cloud . 

Researchers are exploring the cost-effectiveness of 

the cloud, because comparing to the traditional computing 

systems like cluster and grid, a cloud computing system has 

a cost benefit in various aspects.  Assunção et al 

demonstrate that cloud computing can extend the capacity of 

clusters with a cost benefit. With Amazon clouds’ cost 

model and BOINC volunteer computing middleware, the 

work in  analyses the cost benefit of cloud computing versus 

grid computing. The work by Deelman et al. also applies 

Amazon clouds’ cost model and demonstrates that cloud 

computing offers a cost-effective way to deploy scientific 

applications. The above works mainly focus on the 

comparison of cloud computing systems and the traditional 

computing paradigms, which shows that applications 

running in the cloud have cost benefits, but they do not 

touch the issue of computation and storage trade-off for 

datasets in the cloud. 

Due to the importance of data provenance in 

scientific applications, many works about recording data 

provenance of the system have been done . Recently, 

research on data provenance in cloud computing systems has 

also appeared . More specifically, Osterweil et al.  present 

how to generate a data derivation graph for the execution of 

a scientific workflow, where one graph records the data 

provenance of one execution, and Foster et al. propose the 

concept of Virtual Data in the Chimera system, which 

enables the automatic regeneration of datasets when needed. 

Our DDG is based on data provenance in scientific 

applications, which depicts the dependency relationships of 

all the datasets in the cloud. With DDG, we know where the 

datasets are derived from and how to regenerate them.  

In Deelman  et al. present that storing some popular 

intermediate data can save the cost in comparison to always 

regenerating them from the input data. Adams et al. propose 

a model to represent the trade-off between computation cost 

and storage cost, but have not given the strategy to find this 

trade-off  proposes practical cost-effective strategies for 

datasets storage of scientific applications, but it is not the 

minimum cost storage strategy in the cloud.  Yuan et al. 

propose the CTT-SP algorithm with a polynomial time 

complexity (i.e. O(n9)) that can calculate the minimum cost 

of storing scientific datasets in the cloud with fixed usage 

frequencies. However, this algorithm is only suitable for 

static scenarios. Whenever datasets’ usage frequencies are 

changed or new datasets are generated, we have to run the 

CTT-SP algorithm on all datasets stored in the cloud to 

calculate the new benchmark, which is not efficient. Hence, 

it can only be utilised for ondemand minimum cost 

benchmarking.  

In this paper, we propose an entirely new approach 

for dynamic on-the-fly minimum cost benchmarking of 

datasets storage in the cloud. Significantly different from the 

on-demand benchmarking  approach , we divide the DDG 

into small segments and pre-calculate all the possible 

minimum cost storage strategies (i.e. the solution space) of 

every DDG segment using the CTT-SP algorithm. By 

utilising the pre-calculated results, whenever new datasets 

are generated and/ or existing  datasets’ usage frequencies 

are changed, we develop efficient algorithms that can 

dynamically calculate the changing minimum cost 

benchmark at runtime by calling the CTT-SP algorithm only 

on the local DDG segment. By keeping the minimum cost 

benchmark updated on the fly, SaaS providers’ 

benchmarking request can be instantly responded. Hence, it 

is a practical approach for dynamic minimum cost 

benchmarking of storing generated datasets in the cloud. 

The efficiency and scalability of the PSS based dynamic 

benchmarking algorithms comparing to the original CTT-SP 

algorithm for on-demand benchmarking . 

 

 

III . ALGORITHM 

3.1:CTT-SP ALGORITHM: 

The CTT SP algorithm compares all possible paths through 

the graph between each pair of vertices. It is able to do this 

with Θ(|V|
3
) comparisons in a graph. This is remarkable 

considering that there may be up to Ω(|V|
2
) edges in the 

graph, and every combination of edges is tested. 
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 Consider a graph G with vertices V numbered  

from 1 through  N.Further consider a function 

shortestPath(i,j,k) that returns the shortest possible path fron 

i to j using vertices only from the set{1,2,…,k} as 

intermediate points along the way. Now, given this function, 

our goal is to find the shortest path from each i to each j 

using only vertices from 1 to K+1. 

 For eachof these pair of vertices, the true shortest 

path could be either  

(1) A path that only uses vertices in the set{1,2,….,k} 

(2) A path that goes from i to K+1 and then from K+1 

to j. 

We know that the best path from i to j 

only uses vertices 1 through k is defined by shortest 

path(i,j,k), and it is clear that if there were a better path from 

i to k+1 and k+1 to j,then the length of this path would be 

the concatenation of the shortest path from i to k+1(using 

vertices in {1,…k})and the shortest path from  k+1 to j (also 

using vertices in{1,….k}). 

 If w(i,j) is the weight of the edge between vertices i 

and  j, we candefine shortest Path(i,j,k+1) in terms of the 

following recursive formula:the base case is 

shortestPath(i,j,0)=w(i,j)  

 and the recursive case is 

 shortestPath(i,j,k+1)=min(shortestPath(i,j,k), 

shortestpath(i,k+1,k)+shortestPath(k+1,j,k)) 

 

3.2:BRUTE-FORCE ALGORITHM: 

Brute-force: 

 

Brute-force (checking every element with every 

other element) takes O(n
2
). 

 

 

Sorting: 

 

Sorting takes O(n log n), which is generally 

considered to be a fairly decent running time.Sorting has the 

advantage above the below (hash table) approach in that it 

can be done in-place (O(1) extra space), where-as the below 

takes O(n) extra space. 

 

 

Hash table: 

 

An alternative is to use a hash table. 

For each item:Check if that item exists in the hash table (if it 

does, all items are not distinct) and 

Insert that item into the hash table 

Since insert and contains queries run in expected O(1) on a 

hash table, the overall running time would be expected O(n), 

and, as mentioned above, O(n) extra space. 

 

 

IV .PSEUDOCODE FOR BRUTE-FORCE 

VertexCover(edges, k): 

  if edges = {} 

    # we win 

    return true 

  else if k = 0: 

    # we lose, keep trying 

    return false 

  else: 

    for each endpoint x of edges[1]: 

      let edges' = { e in edges : x is not an endpoint of e } 

      if VertexCover(edges', k-1) = true 

        # we found one, stop looking 

        return true 

    # else we didn't find one, keep trying 

return false 

CLOUD SERVER: 

  In some respects cloud servers work in the same 

way as physical servers but the functions they provide can 

be very different. When opting for cloud hosting, clients are 

renting virtual server space rather than renting or purchasing 

physical servers. They are often paid for by the hour 

depending on the capacity required at any particular time. 

 Traditionally there are two main options for 

hosting: shared hosting and dedicated hosting. Shared 

hosting is the cheaper option whereby servers are shared 

between the hosting provider’s clients. Dedicated hosting is 

a much more advanced form of hosting, whereby clients 

purchase whole physical servers. Dedicated servers allow 

for full control over hosting. 

CLIENT REGISTRATION: 

In this module the new client register their details 

to be a member of the Cloud server. Client must give their 

username and password for login purpose. Using these 

username and password only they can able to login. 

BACKUP AND DELETE: 

http://en.wikipedia.org/wiki/Hash_table
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Cloud has splitted into normal cloud and virtual 

cloud. Virtual cloud is created to hold the backup of the 

deleted file for future use purpose. 

User may mention their details regarding their 

backup. If a user wants to register with the backup details, 

user need to pay more amout than required for space. Once 

they registered like that user may able to get the file backup 

even through they have deleted the file.Moreover tat user 

may not to pay more amount for that.And if the user have 

only registered with the required details and are deleted any 

file and to get it back they may have to pay more amount to 

get it back. 

FILE UPLOADING: 

In this module the Cloud user can take their 

Personal backup in Cloud Server and the data are stored in 

the Upload Folder. Server not has the authentication to 

delete uploaded files. Server can able to monitor the all the 

uploaded files and information of uploders and other 

Clients. 

FILE DOWNLOADING: 

In this module the user downloads their file from 

the cloud server by using their account. If the user is stored 

their backup in cloud server they can download only from 

cloud server if the requested file is there. 

FILE SIZE FILTER: 

Most of the files in the PC dataset are tiny files that 

less than 10KB in file size, accounting for a negligibly small 

percentage of the storage capacity. 

 To reduce the metadata overhead, ALG-Dedupe 

filters out these tiny files in the file size filter before the 

deduplication process, and groups data from many tiny files 

together into larger units of about 1MB each in the segment 

store to increase the data transfer efficiency over WAN. 

 

APPLICATION-AWARE DEDUPLICATOR: 

 

After data chunking in intelligent chunker module, 

data chunks will be deduplicated in the application-aware 

deduplicator by generating chunk fingerprints in the hash 

engine and detecting duplicate chunks in both the local 

client and remote cloud.  

ALG-Dedupe strikes a good balance between 

alleviating computation overhead on the client side and 

avoiding hash collision to keep data integrity. 

 

V .CONCLUSION 

In this paper,  we have examined the unique issues 

of storing application datasets in the cloud and analysed the 

re-quirements of Aggressive convention for source 

regeneration of scientific datasets in the cloud. We have 

updated a novel PSS (Partitioned So-lution Space) based 

practical approach with innovative algorithms that can 

dynamically calculate the minimum cost benchmark for 

storing generated application datasets in the cloud from user 

to user, which achieves the best trade-off between 

computation cost and storage cost of the cloud resources for 

renewable of backup. Both theoretical analysis and 

experimental results demon-strate that our novel dynamic 

minimum cost benchmark-ing approach is highly efficient 

and scalable. Hence, it can be practically utilised on the fly 

at runtime in the cloud, which was unavailable before.  
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