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Abstract--  

Cloud computing is an emerging technology in the 
present generation. Cloud provides various resources 
and services to its users most of them are for free of 
cost.  Cloud computing allows business customers to 
develop their business by providing resource usage 
based on needs. Many of the touted gains in the cloud 
model come from resource multiplexing through 
virtualization technology. In this paper, we present a 
system that uses virtualization technology for fair 
allocation of data center resources based on 
application demands and support green computing by 
optimizing the number of servers in use. In this paper 
we introduce the concept of “skewness” to measure 
the unevenness in the multi-dimensional resource 
utilization of a server. By minimizing skewness, we 
can combine different types of workloads nicely and 
improve the overall utilization of server resources. 
We develop a set of heuristic solutions that prevent 
overload in the system effectively while saving energy 
used. Our experimental simulation and results 
demonstrate that our algorithm achieves good and 
offers better performance. 

Keywords—Virtualization, Skewness, Green 

Computing, Resource Multiplexing. 

 

1 INTRODUCTION 
The services and the resources offering by the 
cloud are attracting manybusinesses. There is a 
lot of discussion on the benefits and costs of 
the cloud model and on how to move legacy 
applications onto the cloud platform. Here we 
study a different problem: how can a cloud 
service provider best multiplex its virtual 
resources ontothe physical hardware? This is 
important because much of the touted gains in 
the cloud model come from such 
multiplexing.Studies have found that servers in 
many existing data centers are often severely 
under-utilized due to over-provisioning for the 
peak demand. The cloud model is expected to 
make such practice unnecessary by offering 

automatic scale up and down in response to 
load variation. Besides reducing the hardware 
cost, it also saves on electricity which 
contributes to a significant portion of the 
operational expenses in large data centers. 
Virtual machine monitors (VMMs) like Xen 
provide a mechanism for mapping virtual 
machines (VMs) to physical resources. This 
mapping is largely hidden from the cloud 
users. It is up to the cloud provider to make 
sure the underlying physical machines (PMs) 
have sufficient resources to meet their needs. 
VM live migration technology makes it 
possible to change the mapping between VMs 
and PMs While applications are running. 
However, a policy issue remains as how to 
decide the mapping adaptively so that the 
resource demands of VMs are met while the 
number of PMs used is minimized. This is 
challengingwhen the resource needs of VMs 
are heterogeneous due to the diverse set of 
applications they run and vary with time as the 
workloads grow and shrink. The capacity of 
PMs canalso be heterogenous because multiple 
generations of hardware Co-exist in a data 
center.We aim to achieve two goals in our 
algorithm: 
_ Overload avoidance: the capacity of a PM 
should be sufficient to satisfy the resource 
needs of all VMs running on it. Otherwise, the 
PM is overloaded and can lead to degraded 
performance of its VMs. 
_ Green computing: the number of PMs used 
should be minimized as long as they can still 
satisfy the needs of all VMs. Idle PMs can be 
turned off to save energy. There is an inherent 
trade-off between the two goals in the face of 
changing resource needs of VMs. For overload 
avoidance, we should keep the utilization of 
PMs Low to reduce the possibility of overload 
in case the resource needs of VMs increase 
later. For green computing, we should keep the 
utilization of PMs reasonably high to make 
efficient use of their energy. In this paper, we 
present the design and implementation of an 
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automated resource management system that 
achieves agood balance between the two goals. 

 

Fig. 1. System Architecture 

 

2 OVERVIEW 
The architecture of the system is presented in 
Figure 1. Each PM runs the Xen hypervisor 
(VMM) which supports a privileged domain 0 
and one or more domain U [3]. Each VM in 
domain U encapsulates one or more 
applications such as Web server, remote 
desktop, DNS, Mail, Map/Reduce, etc. We 
assume all PMs Share backend storage. The 
multiplexing of VMs to PMs is managed using 
the Usher framework. The main logic of our 
system is implemented as a set of plug-ins to 
Usher. Each node runs an Usher local node 
manager (LNM) on domain 0 which collects 
the usage statistics of resources for each VM 
on that node. The CPU and network usage can 
be calculated by monitoring the scheduling 
events in Xen. The memory usage within a 
VM, however, is not visible to the hypervisor. 
One approach is to infer memory shortage of a 
VM by observing its swap activities. 
Unfortunately, the guest OS is required to 
install a separate swap partition. Furthermore, 
it may be too late to adjust the memory 
allocation by the time swapping occurs. 
Instead we implemented a working set prober 
(WS Prober) on each hypervisor to estimate 
the working set sizes of VMs running on it. 
We use the random page sampling technique 
as in the VMware ESX Server. The statistics 
collected at each PM are forwarded to the 
Usher central controller (Usher CTRL) where 

our VM scheduler runs. The VM Scheduler is 
invoked periodically and receives from the 
LNM the resource demand history of VMs, the 
capacity and the load history of PMs, and the 
current layout of VMs on PMs. The scheduler 
has several components. The predictor predicts 
the future resource demands of VMs and the 
future load of PMs based on past statistics. We 
compute the load of a PM by aggregating the 
resource usage of its VMs. The details of the 
load prediction algorithm will be described in 
the next section. The LNM at each node first 
attempts to satisfy the new demands locally by 
adjusting the resource allocation of VMs 
sharing the same VMM. Xen can change the 
CPU allocation among the VMs by adjusting 
their weights in its CPU scheduler. The MM 
Alloter on domain 0 of each node is 
responsible for adjusting the local memory 
allocation. The hot spot solver in our VM 
Scheduler detects if the resource utilization of 
any PM is above the hot threshold (i.e., a hot 
spot). If so, some VMs running on them will 
be migrated away to reduce their load. The 
cold spot solver checks if the average 
utilization of actively used PMs (APMs) is 
below the green computing threshold. If so, 
some of those PMs could potentially be turned 
off to save energy. It identifies the set of PMs 
whose utilization is below the cold threshold 
(i.e., cold spots) and then attempts to migrate 
away all their VMs. It then compiles a 
migration list of VMs and passes it to the 
Usher 
CTRL for execution. 

3 PREDICTING RESOURCES 
We need to predict the future resource needs 
of VMs. As said earlier, our focus is on 
Internet applications. One solution is to look 
inside a VM for application level statistics, 
e.g., by parsing logs of pending requests. 
Doing so requires modification of the VM 
which may not always be possible. Instead, we 
make our prediction based on the past external 
behaviours of VMs. Our first attempt was to 
calculate an exponentially weighted moving 
average (EWMA) using a TCP-like scheme: 
E (t) = α ∗E (t− 1) + (1 − α) ∗O (t), 

 0 ≤ α ≤ 1 

WhereE (t) and O (t) are the estimated and the 
observed load at time t, respectively. _ reflects 
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a trade-off between stability and 
responsiveness. We use the EWMA formula to 
predict the CPU load on the DNS server in our 
university. We measure the load every minute 
and predict the load in the next minute. Figure 
2 (a) shows the results for _ = 0:7. Each dot in 
the figure is an observed value and the curve 
represents the predicted values. Visually, the 
curve cuts through the middle of the dots 
which indicates a fairly accurate prediction. 
This is also verified by the statistics in Table 1. 
The parameters in the parenthesis are the _ 
values. W is the length of the measurement 
window (explained later). The “median” error 
is calculated as a percentage of the observed 
value: :|E( t) − O( t) |/O( t). The “higher” and 
“lower” error percentages are the percentages 
of predicted values that are higher or lower 
than the observed values, respectively. As we 
can see, the prediction is fairly accurate with 
roughly equal percentage of higher and lower 
values. 
TABLE 1 
Load prediction algorithms 
 ewma(0.7) 

W = 1 
fusd(-
0.2, 0.7) 
W = 1 

fusd(-
0.2, 0.7) 
W = 8 
 

median 
error 

5.6% 9.4%  3.3% 

high 
error 

56% 77% 58% 

low error 44% 23%  41% 
 
Although seemingly satisfactory, this formula 
does not capture the rising trends of resource 
usage. For example, when we see a sequence 
of O (t) = 10; 20; 30; and 40, it is reasonable 
to predict the next value to be 50. 
Unfortunately,when α is between 0 and 1, the 
predicted value is always between the 
historic value and the observed one. To 
reflect the “acceleration”, we take an 
innovative approach by setting α to a 
negative value. When − 1 ≤ α <0, the above 
formula can be transformed into the 
following: 
E(t)=−|α| ∗ E( t −  1) + (1 + |α|) ∗ O( t)   

       =O(t) + |α| ∗( O( t) − E( t −  1)) 

Fig. 2. CPU load prediction for the DNS server at our 
university. W is the measurement window. 

4 SKEWNESSALGORITHMS 
We introduce the concept of skewness to 
quantify the unevenness in the utilization of 
multiple resources on a server. Let n be the 
number of resources we consider and ribe the 
utilization of the i-th resource. By minimizing 
theskewness, we can combine different types 
of workloads nicely and improve the overall 
utilization of server resources. In the 
following, we describe the details of our 
algorithm. 
 
4.1 Hot spots and cold spots 
Our algorithm executes periodically to 
evaluate the resource allocation status based 
on the predicted future resource demands of 
VMs. We define a server as a hot spot if the 
utilization of any of its resources is above a 
hot threshold. This indicates that the server is 
overloaded and hence some 
VMs running on it should be migrated away. 
We define thetemperature of a hot spot p as 
the square sum of its resource utilization 
beyond the hot threshold.We define a server as 
a cold spot if the utilizations of allits resources 
are below a cold threshold. This indicates 
thatthe server is mostly idle and a potential 
candidate to turn offto save energy. However, 
we do so only when the averageresource 
utilization of all actively used servers (i.e., 
APMs)in the system is below a green 
computing threshold. A serveris actively used 
if it has at least one VM running. Otherwise,it 
is inactive. Finally, we define the warm 
threshold to be alevel of resource utilization 
that is sufficiently high to justifyhaving the 
server running but not so high as to risk 
becominga hot spot in the face of temporary 
fluctuation of applicationresource demands. 
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4.3 Green computing 
Green computing is the practice of using computing 
resources efficiently. The goals are to reducethe use 
of hazardous materials, maximize energy efficiency 
during the product's lifetime, 
andpromote recyclability orbiodegradability of 
defunct products and factory waste. Such 
practicesinclude the implementation of energy-
efficient central processing units (CPUs), 
servers andperipherals as well as reduced 
resourceconsumption and proper disposal of electronic
 waste (ewaste). In 1992, the U.S. Environmental Protec
tion Agency launched Energy Star, a voluntarylabelin
g program which is designed to promote 
and recognize energy-efficiency in monitors, 
climate control equipment, and other 
technologies. This resulted in 
thewidespread adoption of sleep mode among 
consumer electronics. The term "green 
computing" wasprobably coinedshortly after the 
Energy Star program began; there are several USENET 
posts dating back to 1992 which use the term in this 
manner. 
Our green computing algorithm is invoked 
when the averageutilizations of all resources 
on active servers are below the green 
computing threshold. We sort the list of cold 
spots in the system based on the ascending 
order of their memory size. Since we need to 
migrate away all its VMs before we can shut 
down an under-utilized server, we define the 
memory size of a cold spot as the aggregate 
memory size of all VMs running on it. Recall 
that our model assumes all VMs connect to a 
shared 
back-endstorage. Hence, the cost of a VM live 
migration is determined mostly by its memory 
footprint.We try to eliminate the cold spot with 
the lowest cost first. For a cold spot p, we 
check if we can migrate all its VMs 
somewhere else. For each VM on p, we try to 
find a destination server to accommodate it. 
The resource utilizations of the server after 
accepting the VM must be below the 
Warmthreshold. While we can save energy by 
consolidating under-utilized servers, overdoing 
it may create hot spots in the future. The warm 
threshold is designed to prevent that. If 
multiple servers satisfy the above criterion, we 
prefer one that is not a current cold spot. This 
is because increasing load on a cold spot 
reduces the likelihood that it can be 
eliminated. However, we will accept a cold 

spot as the destination server if necessary. All 
things being equal, we select a destination 
server whose skewness can be reduced the 
most by accepting this VM. If we can find 
destination servers for all VMs on a cold spot, 
we record the sequence of migrations and 
update the predicted load of related servers. 
Otherwise, we do not migrate any of its VMs. 
The list of cold spots is also updated because 
some of them may no longer be cold due to the 
proposed VM migrations in the above process. 
The above consolidation adds extra load onto 
the related servers. This is not as serious a 
problem as in the hot spot mitigation case 
because green computing is initiated only 
when the load in the system is low. 
Nevertheless, we want to bound the extra load 
due to server consolidation. We restrict the 
number of cold spots that can be eliminated in 
each run of the algorithm to be no more than a 
certain percentage of active servers in the 
system. This is called the consolidationlimit. 
 
5 EXPERIMENTALSIMULATIONS 
We evaluate the performance of our algorithm 
using trace driven simulation. Note that our 
simulation uses the same code base for the 
algorithm as the real implementation in the 
experiments. This ensures the fidelity of our 
simulation results. Traces are per-minute 
server resource utilization, such as CPU rate, 
memory usage, and network traffic statistics, 
collected using tools like “perfmon” 
(Windows), the “/proc” file system (Linux), 
“pmstat/vmstat/netstat” commands (Solaris), 
etc.. Theraw traces are pre-processed into 
“Usher” format so that the simulator can read 
them. We collected the traces from a variety of 
sources like: Web InfoMall: the largest online 
Web archive in China (i.e., the counterpart of 
Internet Archive in the US) with more than 
three billion archived Web pages.RealCourse: 
the largest online distance learning systemin 
China with servers distributed across 13 major 
cities.AmazingStore: the largest P2P storage 
system in China. We also collected traces from 
servers and desktop computers in our 
university including one of our mail servers, 
the central DNS server, and desktops in our 
department. We post-processed the traces 
based on days collected and use random 
sampling and linear combination of the data 
sets to generate the workloads needed. All 
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simulation in this section uses the real trace 
workload unless otherwise specified. 

 
 Fig.3. Impact of thresholds on the number of APMs 

 
5.2 Scalability of the algorithm 
We evaluate the scalability of our algorithm by 
varying the number of VMs in the simulation 
between 200 and 1400. The ratio of VM to PM 
is 10:1. The results are shown in Figure 4. The 
left figure shows that the average decision 
time of our algorithm increases with the 
system size. The speed of increase is between 
linear and quadratic. We break down the 
decision time into two parts: hot spot 
mitigation (marked as ‘hot’) and green 
computing (marked as ‘cold’). We find that 
hot spot mitigation contributes more to the 
decision time. We also find that the decision 
time for the synthetic workload is higher than 
that for the real trace due to the large variation 
in the synthetic workload. With 140 PMs and 
1400 VMs, the decision time is about 1.3 
seconds for the synthetic workload and 0.2 
second for the real trace. The middle figure 
shows the average number of migrations in the 
whole system during each decision. The 
number of migrations is small and increases 
roughly linearly with the system size. We find 
that hot spot contributes more to the number of 
migrations. We also find that the number of 
migrations in the synthetic workload is higher 
than that in the real trace. With 140 PMs and 
1400 VMs, on average each run of our 
algorithm incurs about three migrations in the 
whole system for the synthetic workload and 
only 1.3 migrations for the real trace. This is 
also verified by the right figure which 

computes the average number of migrations 
per VM in each decision. The figure indicates 
that each VM experiences a tiny, roughly 
constant number of migrations during a 
decision run, independent of the system size. 
This number is about 0.0022 for the synthetic 
workload and 0.0009 for the real trace. 
Thistranslates into roughly one migration per 
456 or 1174 decision intervals, respectively. 
The stability of our algorithm is very good. 
We also conduct simulations by varying the 
VM to PM ratio. With a higher VM to PM 
ratio, the load is distributed more evenly 
among the PMs. The results are presented in 
Section 4 of the supplementary file 

 
Fig. 4. Scalability of the algorithm with system size 
 

6 EXPERIMENTS 
6.1 Impact of live migration 
One concern about the use of VM live 
migration is its impact on application 
performance. Previous studies have found this 
impact to be small [5]. We investigate this 
impact in our own experiment. We extract the 
data on the 340 live migrations in 

 
 Fig. 5. #APMs varies with TPC-W load 
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Fig. 6. Impact of live migration on TPC-W performance 
 
 
Our 30 server experiment above. We find that 
139 of them arefor hot spot mitigation. We 
focus on these migrations because that is when 
the potential impact on application 
performance is the most. Among the 139 
migrations, we randomly pick 7 corresponding 
TPC-W sessions undergoing live migration. 
All these sessions run the “shopping mix” 
workload with 200 emulated browsers. As a 
target for comparison, we re-run the session 
with the same parameters but perform no 
migration and use the resulting performance as 
the baseline. Figure 6 shows the normalized 
WIPS (Web Interactions per Second) for the 7 
sessions. WIPS is the performance metric used 
by TPC-W. The figure shows that most live 
migration sessions exhibit no noticeable 
degradation in performance compared to the 
baseline: the normalized WIPS is close to 1. 
The only exception is session 3 whose 
degraded performance is caused by an 
extremely busy server in the original 
experiment. Next we take a closer look at one 
of the sessions in figure 9 and show how its 
performance varies over time in figure 10. The 
dots in the figure show the WIPS every 
second. The two curves show the moving 
average over a 30 second window as computed 
by TPC-W. We marked in the figure when live 
migration starts and finishes. With self-
ballooning enabled, the amount of memory 
transferred during the migration is about 
600MB. The figure verifies that live migration 
causes no noticeable performance degradation. 
The duration of the migration is under 10 

seconds. Recall that our algorithm is invoked 
every 10 minutes. 
 

 
Fig. 7. TPC-W performance with and without live migration 
 

 
7 RELATED WORK 
7.1 Resource allocation by using live VM 
migration 
VM live migration is a widely used technique 
for dynamic resource allocation in a 
virtualized environment. Our work also 
belongs to this category. Sandpiper combines 
multi-dimensional load information into a 
single Volume metric. It sorts the list of PMs 
based on their volumes and the VMs in each 
PM in their volume-to-size ratio (VSR). This 
unfortunately abstracts away critical 
information needed when making the 
migration decision. It then considers the PMs 
and the VMs in the pre-sorted order. We give a 
concrete example in Section 1 of the 
supplementary file where their algorithm 
selects the wrong VM to migrate away during 
overload and fails to mitigate the hot spot. We 
also compare our algorithm and theirs in real 
experiment. The results are analyzed inthe 
supplementary file to show how they behave 
differently. In addition, their work has no 
support for green computing and differs from 
ours in many other aspects such as load 
prediction. The HARMONY system applies 
virtualization technology across multiple 
resource layers. It uses VM and data migration 
to mitigate hot spots not just on the servers, 
but also on network devices and the storage 
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nodes as well. It introduces the Extended 
Vector Product (EVP) as an indicator of 
imbalance in resource utilization. Their load 
balancing algorithm is a variant of the Toyoda 
method for multi-dimensional knapsack 
problem. Unlike our system, their system does 
not support green computing and load 
prediction is left as future work. In Section 6 
of the supplementary file, we analyze the 
phenomenon that VectorDot behaves 
differently compared with our work and point 
out the reason why our algorithm can utilize 
residual resources better. Dynamic placement 
of virtual servers to minimize SLA violations 
is studied in. They model it as a bin packing 
problem and use the well-known first-fit 
approximation algorithm to calculate the VM 
to PM layout periodically. That algorithm, 
however, is designed mostly for off-line use. It 
is likely to incur a large number of migrations 
when applied in on-line environment where 
the resource needs of VMs change 
dynamically. 
 
7.2 Green Computing 
Many efforts have been made to curtail energy 
consumption in data centers. Hardware based 
approaches include novel thermal design for 
lower cooling power, or adopting power-
proportional and low-power hardware. Our 
work uses Dynamic Voltage and Frequency 
Scaling (DVFS) to adjust CPU power 
according to its load. We do not use DVFS for 
green computing, as explained in the 
complementary file. PowerNap resorts to new 
hardware technologies such as Solid State 
Disk(SSD) and Self-Refresh DRAM to 
implement rapid transition(less than 1ms) 
between full operation and low power state, so 
that it can “take a nap” in short idle intervals. 
When a server goes to sleep, Somniloquy 
notifies an embedded system residing on a 
special designed NIC to delegate the main 
operating system. It gives the illusion that the 
server is always active. Our work belongs to 
the category of pure-software low-cost 
solutions. Similar to Somniloquy, Sleep Server 
initiates virtual machines on a dedicated server 
as delegate, instead of depending on a special 
NIC. LiteGreen does not use a delegate. 
Instead it migrates the desktop OS away so 
that the desktop can sleep. It requires that the 
desktop is virtualized with shared storage. 
Jettisoninvents “partial VM migration”, a 

variance of live VM migration, which only 
migrates away necessary working set while 
leaving infrequently used data behind. 
 
8 CONCLUSION 
We have presented the design, 
implementation, and evaluation of a resource 
management system for cloud computing 
services. Our system multiplexes virtual to 
physical resources adaptively based on the 
changing demand. We use the skewness metric 
to combine VMs with different resource 
characteristics appropriately so that the 
capacities of servers are well utilized. Our 
algorithm achieves both overload avoidance 
and green computing for systems with multi-
resource constraints. 
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