
International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

18

Fair Resource Allocation in Cloud Using
Virtual Machines

A.Nandishwar
Mtech-CSE, Teegala Krishna Reddy Engineering College, Medbowli, RN.Reddy nager, Meerpet, Andhra Pradesh, India.

Abstract--

Cloud computing is an emerging technology in the
present generation. Cloud provides various resources
and services to its users most of them are for free of
cost. Cloud computing allows business customers to
develop their business by providing resource usage
based on needs. Many of the touted gains in the cloud
model come from resource multiplexing through
virtualization technology. In this paper, we present a
system that uses virtualization technology for fair
allocation of data center resources based on
application demands and support green computing by
optimizing the number of servers in use. In this paper
we introduce the concept of “skewness” to measure
the unevenness in the multi-dimensional resource
utilization of a server. By minimizing skewness, we
can combine different types of workloads nicely and
improve the overall utilization of server resources.
We develop a set of heuristic solutions that prevent
overload in the system effectively while saving energy
used. Our experimental simulation and results
demonstrate that our algorithm achieves good and
offers better performance.

Keywords—Virtualization, Skewness, Green

Computing, Resource Multiplexing.

1 INTRODUCTION
The services and the resources offering by the
cloud are attracting manybusinesses. There is a
lot of discussion on the benefits and costs of
the cloud model and on how to move legacy
applications onto the cloud platform. Here we
study a different problem: how can a cloud
service provider best multiplex its virtual
resources ontothe physical hardware? This is
important because much of the touted gains in
the cloud model come from such
multiplexing.Studies have found that servers in
many existing data centers are often severely
under-utilized due to over-provisioning for the
peak demand. The cloud model is expected to
make such practice unnecessary by offering

automatic scale up and down in response to
load variation. Besides reducing the hardware
cost, it also saves on electricity which
contributes to a significant portion of the
operational expenses in large data centers.
Virtual machine monitors (VMMs) like Xen
provide a mechanism for mapping virtual
machines (VMs) to physical resources. This
mapping is largely hidden from the cloud
users. It is up to the cloud provider to make
sure the underlying physical machines (PMs)
have sufficient resources to meet their needs.
VM live migration technology makes it
possible to change the mapping between VMs
and PMs While applications are running.
However, a policy issue remains as how to
decide the mapping adaptively so that the
resource demands of VMs are met while the
number of PMs used is minimized. This is
challengingwhen the resource needs of VMs
are heterogeneous due to the diverse set of
applications they run and vary with time as the
workloads grow and shrink. The capacity of
PMs canalso be heterogenous because multiple
generations of hardware Co-exist in a data
center.We aim to achieve two goals in our
algorithm:
_ Overload avoidance: the capacity of a PM
should be sufficient to satisfy the resource
needs of all VMs running on it. Otherwise, the
PM is overloaded and can lead to degraded
performance of its VMs.
_ Green computing: the number of PMs used
should be minimized as long as they can still
satisfy the needs of all VMs. Idle PMs can be
turned off to save energy. There is an inherent
trade-off between the two goals in the face of
changing resource needs of VMs. For overload
avoidance, we should keep the utilization of
PMs Low to reduce the possibility of overload
in case the resource needs of VMs increase
later. For green computing, we should keep the
utilization of PMs reasonably high to make
efficient use of their energy. In this paper, we
present the design and implementation of an

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

19

automated resource management system that
achieves agood balance between the two goals.

Fig. 1. System Architecture

2 OVERVIEW
The architecture of the system is presented in
Figure 1. Each PM runs the Xen hypervisor
(VMM) which supports a privileged domain 0
and one or more domain U [3]. Each VM in
domain U encapsulates one or more
applications such as Web server, remote
desktop, DNS, Mail, Map/Reduce, etc. We
assume all PMs Share backend storage. The
multiplexing of VMs to PMs is managed using
the Usher framework. The main logic of our
system is implemented as a set of plug-ins to
Usher. Each node runs an Usher local node
manager (LNM) on domain 0 which collects
the usage statistics of resources for each VM
on that node. The CPU and network usage can
be calculated by monitoring the scheduling
events in Xen. The memory usage within a
VM, however, is not visible to the hypervisor.
One approach is to infer memory shortage of a
VM by observing its swap activities.
Unfortunately, the guest OS is required to
install a separate swap partition. Furthermore,
it may be too late to adjust the memory
allocation by the time swapping occurs.
Instead we implemented a working set prober
(WS Prober) on each hypervisor to estimate
the working set sizes of VMs running on it.
We use the random page sampling technique
as in the VMware ESX Server. The statistics
collected at each PM are forwarded to the
Usher central controller (Usher CTRL) where

our VM scheduler runs. The VM Scheduler is
invoked periodically and receives from the
LNM the resource demand history of VMs, the
capacity and the load history of PMs, and the
current layout of VMs on PMs. The scheduler
has several components. The predictor predicts
the future resource demands of VMs and the
future load of PMs based on past statistics. We
compute the load of a PM by aggregating the
resource usage of its VMs. The details of the
load prediction algorithm will be described in
the next section. The LNM at each node first
attempts to satisfy the new demands locally by
adjusting the resource allocation of VMs
sharing the same VMM. Xen can change the
CPU allocation among the VMs by adjusting
their weights in its CPU scheduler. The MM
Alloter on domain 0 of each node is
responsible for adjusting the local memory
allocation. The hot spot solver in our VM
Scheduler detects if the resource utilization of
any PM is above the hot threshold (i.e., a hot
spot). If so, some VMs running on them will
be migrated away to reduce their load. The
cold spot solver checks if the average
utilization of actively used PMs (APMs) is
below the green computing threshold. If so,
some of those PMs could potentially be turned
off to save energy. It identifies the set of PMs
whose utilization is below the cold threshold
(i.e., cold spots) and then attempts to migrate
away all their VMs. It then compiles a
migration list of VMs and passes it to the
Usher
CTRL for execution.

3 PREDICTING RESOURCES
We need to predict the future resource needs
of VMs. As said earlier, our focus is on
Internet applications. One solution is to look
inside a VM for application level statistics,
e.g., by parsing logs of pending requests.
Doing so requires modification of the VM
which may not always be possible. Instead, we
make our prediction based on the past external
behaviours of VMs. Our first attempt was to
calculate an exponentially weighted moving
average (EWMA) using a TCP-like scheme:
E (t) = α ∗E (t− 1) + (1 − α) ∗O (t),

 0 ≤ α ≤ 1

WhereE (t) and O (t) are the estimated and the
observed load at time t, respectively. _ reflects

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

20

a trade-off between stability and
responsiveness. We use the EWMA formula to
predict the CPU load on the DNS server in our
university. We measure the load every minute
and predict the load in the next minute. Figure
2 (a) shows the results for _ = 0:7. Each dot in
the figure is an observed value and the curve
represents the predicted values. Visually, the
curve cuts through the middle of the dots
which indicates a fairly accurate prediction.
This is also verified by the statistics in Table 1.
The parameters in the parenthesis are the _
values. W is the length of the measurement
window (explained later). The “median” error
is calculated as a percentage of the observed
value: :|E(t) − O(t) |/O(t). The “higher” and
“lower” error percentages are the percentages
of predicted values that are higher or lower
than the observed values, respectively. As we
can see, the prediction is fairly accurate with
roughly equal percentage of higher and lower
values.
TABLE 1
Load prediction algorithms
 ewma(0.7)

W = 1
fusd(-
0.2, 0.7)
W = 1

fusd(-
0.2, 0.7)
W = 8

median
error

5.6% 9.4% 3.3%

high
error

56% 77% 58%

low error 44% 23% 41%

Although seemingly satisfactory, this formula
does not capture the rising trends of resource
usage. For example, when we see a sequence
of O (t) = 10; 20; 30; and 40, it is reasonable
to predict the next value to be 50.
Unfortunately,when α is between 0 and 1, the
predicted value is always between the
historic value and the observed one. To
reflect the “acceleration”, we take an
innovative approach by setting α to a
negative value. When − 1 ≤ α <0, the above
formula can be transformed into the
following:
E(t)=−|α| ∗ E(t − 1) + (1 + |α|) ∗ O(t)

 =O(t) + |α| ∗(O(t) − E(t − 1))

Fig. 2. CPU load prediction for the DNS server at our
university. W is the measurement window.

4 SKEWNESSALGORITHMS
We introduce the concept of skewness to
quantify the unevenness in the utilization of
multiple resources on a server. Let n be the
number of resources we consider and ribe the
utilization of the i-th resource. By minimizing
theskewness, we can combine different types
of workloads nicely and improve the overall
utilization of server resources. In the
following, we describe the details of our
algorithm.

4.1 Hot spots and cold spots
Our algorithm executes periodically to
evaluate the resource allocation status based
on the predicted future resource demands of
VMs. We define a server as a hot spot if the
utilization of any of its resources is above a
hot threshold. This indicates that the server is
overloaded and hence some
VMs running on it should be migrated away.
We define thetemperature of a hot spot p as
the square sum of its resource utilization
beyond the hot threshold.We define a server as
a cold spot if the utilizations of allits resources
are below a cold threshold. This indicates
thatthe server is mostly idle and a potential
candidate to turn offto save energy. However,
we do so only when the averageresource
utilization of all actively used servers (i.e.,
APMs)in the system is below a green
computing threshold. A serveris actively used
if it has at least one VM running. Otherwise,it
is inactive. Finally, we define the warm
threshold to be alevel of resource utilization
that is sufficiently high to justifyhaving the
server running but not so high as to risk
becominga hot spot in the face of temporary
fluctuation of applicationresource demands.

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

21

4.3 Green computing
Green computing is the practice of using computing
resources efficiently. The goals are to reducethe use
of hazardous materials, maximize energy efficiency
during the product's lifetime,
andpromote recyclability orbiodegradability of
defunct products and factory waste. Such
practicesinclude the implementation of energy-
efficient central processing units (CPUs),
servers andperipherals as well as reduced
resourceconsumption and proper disposal of electronic
 waste (ewaste). In 1992, the U.S. Environmental Protec
tion Agency launched Energy Star, a voluntarylabelin
g program which is designed to promote
and recognize energy-efficiency in monitors,
climate control equipment, and other
technologies. This resulted in
thewidespread adoption of sleep mode among
consumer electronics. The term "green
computing" wasprobably coinedshortly after the
Energy Star program began; there are several USENET
posts dating back to 1992 which use the term in this
manner.
Our green computing algorithm is invoked
when the averageutilizations of all resources
on active servers are below the green
computing threshold. We sort the list of cold
spots in the system based on the ascending
order of their memory size. Since we need to
migrate away all its VMs before we can shut
down an under-utilized server, we define the
memory size of a cold spot as the aggregate
memory size of all VMs running on it. Recall
that our model assumes all VMs connect to a
shared
back-endstorage. Hence, the cost of a VM live
migration is determined mostly by its memory
footprint.We try to eliminate the cold spot with
the lowest cost first. For a cold spot p, we
check if we can migrate all its VMs
somewhere else. For each VM on p, we try to
find a destination server to accommodate it.
The resource utilizations of the server after
accepting the VM must be below the
Warmthreshold. While we can save energy by
consolidating under-utilized servers, overdoing
it may create hot spots in the future. The warm
threshold is designed to prevent that. If
multiple servers satisfy the above criterion, we
prefer one that is not a current cold spot. This
is because increasing load on a cold spot
reduces the likelihood that it can be
eliminated. However, we will accept a cold

spot as the destination server if necessary. All
things being equal, we select a destination
server whose skewness can be reduced the
most by accepting this VM. If we can find
destination servers for all VMs on a cold spot,
we record the sequence of migrations and
update the predicted load of related servers.
Otherwise, we do not migrate any of its VMs.
The list of cold spots is also updated because
some of them may no longer be cold due to the
proposed VM migrations in the above process.
The above consolidation adds extra load onto
the related servers. This is not as serious a
problem as in the hot spot mitigation case
because green computing is initiated only
when the load in the system is low.
Nevertheless, we want to bound the extra load
due to server consolidation. We restrict the
number of cold spots that can be eliminated in
each run of the algorithm to be no more than a
certain percentage of active servers in the
system. This is called the consolidationlimit.

5 EXPERIMENTALSIMULATIONS
We evaluate the performance of our algorithm
using trace driven simulation. Note that our
simulation uses the same code base for the
algorithm as the real implementation in the
experiments. This ensures the fidelity of our
simulation results. Traces are per-minute
server resource utilization, such as CPU rate,
memory usage, and network traffic statistics,
collected using tools like “perfmon”
(Windows), the “/proc” file system (Linux),
“pmstat/vmstat/netstat” commands (Solaris),
etc.. Theraw traces are pre-processed into
“Usher” format so that the simulator can read
them. We collected the traces from a variety of
sources like: Web InfoMall: the largest online
Web archive in China (i.e., the counterpart of
Internet Archive in the US) with more than
three billion archived Web pages.RealCourse:
the largest online distance learning systemin
China with servers distributed across 13 major
cities.AmazingStore: the largest P2P storage
system in China. We also collected traces from
servers and desktop computers in our
university including one of our mail servers,
the central DNS server, and desktops in our
department. We post-processed the traces
based on days collected and use random
sampling and linear combination of the data
sets to generate the workloads needed. All

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

22

simulation in this section uses the real trace
workload unless otherwise specified.

 Fig.3. Impact of thresholds on the number of APMs

5.2 Scalability of the algorithm
We evaluate the scalability of our algorithm by
varying the number of VMs in the simulation
between 200 and 1400. The ratio of VM to PM
is 10:1. The results are shown in Figure 4. The
left figure shows that the average decision
time of our algorithm increases with the
system size. The speed of increase is between
linear and quadratic. We break down the
decision time into two parts: hot spot
mitigation (marked as ‘hot’) and green
computing (marked as ‘cold’). We find that
hot spot mitigation contributes more to the
decision time. We also find that the decision
time for the synthetic workload is higher than
that for the real trace due to the large variation
in the synthetic workload. With 140 PMs and
1400 VMs, the decision time is about 1.3
seconds for the synthetic workload and 0.2
second for the real trace. The middle figure
shows the average number of migrations in the
whole system during each decision. The
number of migrations is small and increases
roughly linearly with the system size. We find
that hot spot contributes more to the number of
migrations. We also find that the number of
migrations in the synthetic workload is higher
than that in the real trace. With 140 PMs and
1400 VMs, on average each run of our
algorithm incurs about three migrations in the
whole system for the synthetic workload and
only 1.3 migrations for the real trace. This is
also verified by the right figure which

computes the average number of migrations
per VM in each decision. The figure indicates
that each VM experiences a tiny, roughly
constant number of migrations during a
decision run, independent of the system size.
This number is about 0.0022 for the synthetic
workload and 0.0009 for the real trace.
Thistranslates into roughly one migration per
456 or 1174 decision intervals, respectively.
The stability of our algorithm is very good.
We also conduct simulations by varying the
VM to PM ratio. With a higher VM to PM
ratio, the load is distributed more evenly
among the PMs. The results are presented in
Section 4 of the supplementary file

Fig. 4. Scalability of the algorithm with system size

6 EXPERIMENTS
6.1 Impact of live migration
One concern about the use of VM live
migration is its impact on application
performance. Previous studies have found this
impact to be small [5]. We investigate this
impact in our own experiment. We extract the
data on the 340 live migrations in

 Fig. 5. #APMs varies with TPC-W load

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

23

Fig. 6. Impact of live migration on TPC-W performance

Our 30 server experiment above. We find that
139 of them arefor hot spot mitigation. We
focus on these migrations because that is when
the potential impact on application
performance is the most. Among the 139
migrations, we randomly pick 7 corresponding
TPC-W sessions undergoing live migration.
All these sessions run the “shopping mix”
workload with 200 emulated browsers. As a
target for comparison, we re-run the session
with the same parameters but perform no
migration and use the resulting performance as
the baseline. Figure 6 shows the normalized
WIPS (Web Interactions per Second) for the 7
sessions. WIPS is the performance metric used
by TPC-W. The figure shows that most live
migration sessions exhibit no noticeable
degradation in performance compared to the
baseline: the normalized WIPS is close to 1.
The only exception is session 3 whose
degraded performance is caused by an
extremely busy server in the original
experiment. Next we take a closer look at one
of the sessions in figure 9 and show how its
performance varies over time in figure 10. The
dots in the figure show the WIPS every
second. The two curves show the moving
average over a 30 second window as computed
by TPC-W. We marked in the figure when live
migration starts and finishes. With self-
ballooning enabled, the amount of memory
transferred during the migration is about
600MB. The figure verifies that live migration
causes no noticeable performance degradation.
The duration of the migration is under 10

seconds. Recall that our algorithm is invoked
every 10 minutes.

Fig. 7. TPC-W performance with and without live migration

7 RELATED WORK
7.1 Resource allocation by using live VM
migration
VM live migration is a widely used technique
for dynamic resource allocation in a
virtualized environment. Our work also
belongs to this category. Sandpiper combines
multi-dimensional load information into a
single Volume metric. It sorts the list of PMs
based on their volumes and the VMs in each
PM in their volume-to-size ratio (VSR). This
unfortunately abstracts away critical
information needed when making the
migration decision. It then considers the PMs
and the VMs in the pre-sorted order. We give a
concrete example in Section 1 of the
supplementary file where their algorithm
selects the wrong VM to migrate away during
overload and fails to mitigate the hot spot. We
also compare our algorithm and theirs in real
experiment. The results are analyzed inthe
supplementary file to show how they behave
differently. In addition, their work has no
support for green computing and differs from
ours in many other aspects such as load
prediction. The HARMONY system applies
virtualization technology across multiple
resource layers. It uses VM and data migration
to mitigate hot spots not just on the servers,
but also on network devices and the storage

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

24

nodes as well. It introduces the Extended
Vector Product (EVP) as an indicator of
imbalance in resource utilization. Their load
balancing algorithm is a variant of the Toyoda
method for multi-dimensional knapsack
problem. Unlike our system, their system does
not support green computing and load
prediction is left as future work. In Section 6
of the supplementary file, we analyze the
phenomenon that VectorDot behaves
differently compared with our work and point
out the reason why our algorithm can utilize
residual resources better. Dynamic placement
of virtual servers to minimize SLA violations
is studied in. They model it as a bin packing
problem and use the well-known first-fit
approximation algorithm to calculate the VM
to PM layout periodically. That algorithm,
however, is designed mostly for off-line use. It
is likely to incur a large number of migrations
when applied in on-line environment where
the resource needs of VMs change
dynamically.

7.2 Green Computing
Many efforts have been made to curtail energy
consumption in data centers. Hardware based
approaches include novel thermal design for
lower cooling power, or adopting power-
proportional and low-power hardware. Our
work uses Dynamic Voltage and Frequency
Scaling (DVFS) to adjust CPU power
according to its load. We do not use DVFS for
green computing, as explained in the
complementary file. PowerNap resorts to new
hardware technologies such as Solid State
Disk(SSD) and Self-Refresh DRAM to
implement rapid transition(less than 1ms)
between full operation and low power state, so
that it can “take a nap” in short idle intervals.
When a server goes to sleep, Somniloquy
notifies an embedded system residing on a
special designed NIC to delegate the main
operating system. It gives the illusion that the
server is always active. Our work belongs to
the category of pure-software low-cost
solutions. Similar to Somniloquy, Sleep Server
initiates virtual machines on a dedicated server
as delegate, instead of depending on a special
NIC. LiteGreen does not use a delegate.
Instead it migrates the desktop OS away so
that the desktop can sleep. It requires that the
desktop is virtualized with shared storage.
Jettisoninvents “partial VM migration”, a

variance of live VM migration, which only
migrates away necessary working set while
leaving infrequently used data behind.

8 CONCLUSION
We have presented the design,
implementation, and evaluation of a resource
management system for cloud computing
services. Our system multiplexes virtual to
physical resources adaptively based on the
changing demand. We use the skewness metric
to combine VMs with different resource
characteristics appropriately so that the
capacities of servers are well utilized. Our
algorithm achieves both overload avoidance
and green computing for systems with multi-
resource constraints.

REFERENCES
[1] M. Armbrust et al., “Above the clouds: A
Berkeley view of cloud Computing,”
University of California, Berkeley, Tech. Rep.,
Feb 2009.
[2] L. Siegele, “Let it rise: A special report on
corporate IT,” in The Economist, Oct. 2008.
[3] P. Barham, B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield, “Xen and the art of
Virtualization,” in Proc. of the ACM
Symposium on Operating Systems
Principles (SOSP’03), Oct. 2003.
[4] “Amazon elastic compute cloud (Amazon
EC2), http://aws.amazon.com/ec2/.”
[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen,
E. Jul, C. Limpach, I. Pratt, and A. Warfield,
“Live migration of virtual machines,” in
Proc.of the Symposium on Networked Systems
Design and Implementation(NSDI’05), May
2005.
[6] M. Nelson, B.-H. Lim, and G. Hutchins,
“Fast transparent migration for virtual
machines,” in Proc. of the USENIX Annual
Technical Conference, 2005.
[7] M. McNett, D. Gupta, A. Vahdat, and G.
M. Voelker, “Usher: An extensible framework
for managing clusters of virtual machines,” in
Proc. of the Large Installation System
Administration Conference(LISA’07), Nov.
2007.
[8] T. Wood, P. Shenoy, A. Venkataramani,
and M. Yousif, “Black-box and gray-box
strategies for virtual machine migration,” in
Proc. Ofthe Symposium on Networked Systems

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014.

25

Design and Implementation(NSDI’07), Apr.
2007.
[9] C. A. Waldspurger, “Memory resource
management in VMware ESX server,” in
Proc. of the symposium on Operating systems
design andimplementation (OSDI’02), Aug.
2002.
[10] G. Chen, H. Wenbo, J. Liu, S. Nath, L.
Rigas, L. Xiao, and F. Zhao, “Energy-aware
server provisioning and load dispatching for
connection-intensive internet services,” in
Proc. of the USENIXSymposium on Networked
Systems Design and
Implementation(NSDI’08), Apr. 2008.
[11] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu,
M. Uysal, Z. Wang, S. Singhal, and A.
Merchant, “Automated control of multiple
virtualized resources,” in Proc. of the ACM
European conference on Computersystems
(EuroSys’09), 2009.
[12] N. Bobroff, A. Kochut, and K. Beaty,
“Dynamic placement of virtual machines for
managing slaviolations,” in Proc. of the
IFIP/IEEEInternational Symposium on
Integrated Network Management (IM’07),
2007.

