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Abstract— This paper considers two types of protein data. 

First, data about protein function described in a number of 
ways, such as, GO terms and PFAM families. Second, data 
about whether individual proteins are experimentally associated 
with cancer by an anomalous elevation or lowering of their 
expressions within cancerous cells. We combine these two types 
of protein data and test whether the first type of data, that is, the 
functional descriptors, can predict the second type of data, that 
is, cancer-relatedness. By using data mining and machine 
learning, we derive a classifier algorithm that using only GO 
term and PFAM family descriptions of a protein can predict 
with over 73 percent accuracy whether it is associated with 
pancreatic cancer. 

 
Index Terms— Data mining, GO term, pancreatic cancer, 

PFAM family, protein. 
 

I. INTRODUCTION 

  Data mining is increasingly applied to non-relational 
databases, including genome and protein databases [1]-[5]. 
Data mining and data classification methods are developed 
for protein structure and function [6]-[8], protein evolution 
[9], [10], protein interaction networks [11], and medical data 
that may include genomes or proteins [12]--[14]. In the 
present paper, preliminary versions of which were presented 
in [15] and [16], we focus on a pancreatic cancer protein 
database. This database was collected by Robert Powers and 
Bradley 

Worley, in the Department of Chemistry at the University 
of Nebraska-Lincoln, based on earlier pancreatic cancer 
research [17]-[23]. 

Pancreatic cancer was chosen as a test case because it has 
the lowest survival rate among different types of cancer. Data 
mining was used to investigate the relationship among 
anomalous proteins, which have unusually high or low levels 
in pancreatic patients. Early recognition of some patterns 
developing among these anomalous proteins may allow 
treatment to start earlier and increase the survival rate of 
pancreatic cancer patients.  

Data mining of protein databases poses special challenges 

 
 

because many protein databases often contain set data types, 
whereas most data mining and machine learning algorithms 
assume relational database inputs. We overcame this problem 
by describing effecting ways to restructure the protein 
databases into relational databases. The restructured 
databases allowed the use of several types of classifiers, such 
as, Support Vector Machines (SVMs) and decision trees. 
Other types of data mining algorithms could be also used, but 
we chose these two types because they are currently the most 
frequently used data mining methods. 

 

II.  BACKGROUND CONCEPTS AND TOOLS 

          In this section, part A gives an introduction to 
classifiers and part B describes the WEKA system that 
contains a library of implemented classifiers. 

A. Classifiers 

Let   be a relation, where the set of attributes X=   is called 
the feature space and the y attribute is called a label. Each 
tuple of the relation describes some entity based on specific 
values of the feature space and the label. For example, each 
row may describe a protein with specific feature attributes, 
such as, molecular weight, amino acid sequence etc., and a 
label attribute, such as, whether it is involved in pancreatic 
cancer. 

Given such a relation R, a classifier is mapping from X to y. 
If a classifier is correct on all tuples of relation R, then the 
value of y can be always predicted from the values of  X. In 
practice, the classifier may not be correct on all proteins. 
Further, classifiers are intended to be able to classify even 
those proteins that are new, not just those that are already in R.  

Popular classifiers include decision trees and Support 
Vector Machines (SVMs). A decision tree is a tree which is 
read from the root towards the leaves, and whose internal 
nodes are tests and whose leaf nodes are categories [24]. For 
example, C4.5 is a well-known decision tree algorithm [25]. 
SVMs perform classification by constructing for relation R an 
n-dimensional hyper plane that optimally separates the data 
into two categories (for example when y = 0 and y = 1). An 
example of SVM is the libSVM implementation [26]. 
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B. The WEKA Library 

In our experiments we used the Waikato Environment for 
Knowledge Analysis (WEKA) system developed at the 
University of Waikato [27], [28]. WEKA provides an 
extensive library of data mining and machine learning 
algorithms. In WEKA, the input data is a relation or table 
which is represented by an Attributes Relation File Format 
(ARFF) file. Each ARFF file starts with a title to let the user 
know what kind of data is stored in the file. The title is 
followed by a relation type and then all the attributes and their 
types. Finally, the attribute declarations are followed by the 
actual data rows. 

 

C. The Restructuring Method in Theory 

In the pancreatic protein database collection of about 
eighty tables, we chose for our study the GO_np and 
PFAM_np tables, which contain data about pancreatic 
proteins that are not involved in cancer, and the GO_pdac and 
PFAM_pdac tables, which contain data about pancreatic 
proteins that are related to pancreatic cancer. GO_np had 
70,331, PFAM_np had 7,054, GO_pdac had 30,888, and 
PFAM_pdac had 7,272 rows, that is, a total number of 
115,545 rows.  

 
A simplified version of the GO_pdac looks as follows: 
 
Table 1: GO_pdac table  
UID GO 
O43491 GO:0003779 
O43491 GO:0005198 
O43491 GO:0005886 
O43491 GO:0008091 
O43491 GO:0019898 
O43491 GO:0030866 
Q96C24 GO:0005215 
Q96C24 GO:0005886 
Q96C24 GO:0019898 
Q96C24 GO:0030658 
Q96C24 GO:0042043 
…. ..... 
 
The GO_pdac table lists all (UID, GO) pairs, such that UID 

is the universal identifier of a pancreatic protein and GO is a 
feature descriptor, also called a GO term. The UID and the 
GO terms can be found in the UNIPROT database. There is a 
many-to-many relationship between the UIDs and the GO 
terms. For example, rows three and five with the same UID 
O43491 are related to two different GO terms, GO:0005886 
and GO:0019898. On the other hand, rows three and eight 
with the same GO term GO:0005886 are related to two 
different UIDs, O43491 and Q96C24. 

The GO_np tables listed (UID, GO) pairs of non-pancreatic 
proteins. We merged the GO_np and GO_pdac tables without 
losing the information whether the protein is related to cancer 
or not. Hence we extended the GO_np and the GO_pdac 
tables with a Y column, which denotes whether the protein is 
related to pancreatic cancer or not. All the proteins in the 
GO_np table are extended with a Y value of "0", while all the 

proteins in the GO_pdac table are extended with a Y value of 
"1" by the following SQL query, which we call SQL 1 in Fig. 
1:  

 
 Fig. 1 Generating GO_PFAM_merge. 
 
Syntax for generating GO_PFAM_merge 
    create view GO_merge (UID, GO, Y) as 
    select UID, GO, 0 from GO_np 
    union 
    select UID, GO, 1 from GO_pdac; 
         After the above query is executed the GO_merge 

table looks as follows: 
   Table 2 The GO_merge table. 
 
UID GO Y 
O43491 GO:0003779 1 
O43491 GO:0005198 1 
O43491 GO:0005886 1 
O43491 GO:0008091 1 
O43491 GO:0019898 1 
O43491 GO:0030866 1 
Q96C24 GO:0005215 1 
Q96C24 GO:0005886 1 
Q96C24 GO:0019898 1 
Q96C24 GO:0030658 1 
Q96C24 GO:0042043 1 
….. ...... ..... 
 
We restructured or “flattened” the above table by an SQL 

query that transformed GO_merge into another table 
GO_merge_flat in which all information about a single 
protein appears in one row, as shown in Table 2. 

 
In theory, the number of attributes in the restructured 

relation is n+2, where n is the number of distinct GO terms. 
Apart from UID and Y, these distinct GO terms form the 
attributes of the restructured relation. Below each GO term a 
‘1’ or ‘0’ indicates whether the GO term applies to the protein 
indicated by the UID on the left. 

 

D. Simplifying the Restructuring Problem 

 
 The restructuring method described in the part C is not 

practical because it requires a huge matrix. For example, since 
GO_merge table contains 17943 distinct UIDs and 7935 
distinct GO terms, a straightforward application of the 
restructuring method would yield a table with entries. The 
WEKA and other machine learning systems simply cannot 
handle such big matrices. Moreover, the matrix could become 
even bigger when we consider not only GO terms but PFAM 
families and other attributes as described in part E below. 

One possible way to reduce the size of the matrix is using 
Principal Component Analysis. Using Principal Component 
Analysis, the matrix could be rewritten into another matrix 
with a smaller number of columns. The new columns would 
be linear combinations of the existing columns, that is, the 
7935 GO terms. While this would reduce the size of the 
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matrix and alleviate the runtime problems with WEKA and 
other machine learning systems, it would still not be a good 
solution. 

 Our ultimate goal is to be able to easily and accurately 
identify whether a new protein may be associated with cancer. 
Intuitively, we would like to characterize the cancer-related 
proteins based only on a small subset of the GO terms because 
it is impractical to test each of the 7935 GO terms whether it 
applies to a new protein. 

 The Principal Component Analysis would still require that 
we test each of the 7935 GO terms, and then linearly combine 
their (1 or 0) values to find the new columns. That is why the 
Principal Component Analysis would not yield a satisfying 
solution. 

 We need another method to find a small subset of the GO 
terms that characterizes the proteins in terms of cancer 
relatedness as accurately as the entire set of GO terms would 
characterize those. How can we find such a subset of the GO 
terms by using  the restructuring matrix would be very sparse 
because most of the UIDs are characterized by less than ten 
GO terms. Hence most of the 7935 distinct GO terms would 
have a value of 0 in most rows. GO terms that occur only 
rarely do not connect many different UIDs hence they are not 
very useful as efficient cancer indicators.  Hence we 
experimented with selecting only the top n most frequent GO 
terms. We observed that in general when n increases the 
accuracy also increases. At some point the increase in the 
accuracy diminishes with further increments in n. Hence it is 
not worth to increase further the value of n beyond that point. 
In our case, this value  

 
{ 
create view GOcount(GO,count) as 
select GO, count(*) 
from GO_merge 
group by GO; 
} 
The new table GOcount(GO,count) contains the count of 
each GO term. We extracted the top 200 most frequent GO 

terms into a text file as follows: 
\ 
{ 
select GO from GOcount 
order by count desc limit 200 
into outfile `/tmp/MergeTop200GO.txt'; 
} 
 We wrote a C++ program, which is shown in detail in the 

code, to automatically generate the restructuring SQL query. 
Apart from some initialization and ending, the program 
repeatedly reads the next GO term from the input file 
MergeTop200GO.txt and writes to an output file 
SQL_flatten.txt the line of the SQL query that corresponds to 
the GO term. Below is how the SQL_flatten.txt file looks like.  

 
select UID, 
  max(case when GO = `GO:0016021' then 1 else 0 end) as 

`GO:0016021', 
 max(case when GO = `GO:0005515' then 1 else 0 end) as 

`GO:0005515', 
max(case when GO = `GO:0005634' then 1 else 0 end) as 

`GO:0005634', 
max(case when GO = `GO:0005737' then 1 else 0 end) as 

`GO:0005737', 
max(case when GO = `GO:0008270' then 1 else 0 end) as 

`GO:0008270', 
max(case when GO = `GO:0006350' then 1 else 0 end) as 

`GO:0006350', 
max(case when GO = `GO:0007165' then 1 else 0 end) as 

`GO:0007165', 
max(case when GO = `GO:0005886' then 1 else 0 end) as 

`GO:0005886', 
max(case when GO = `GO:0005524' then 1 else 0 end) as 

`GO:0005524', 
max(case when GO = `GO:0003677' then 1 else 0 end) as 

`GO:0003677', 
… 
Y 
from GO_merg  
group by UID 
 
 When the above SQL query is executed, for each UID it 

checks all the GO terms. If any of the GO terms the UID is 
associated with matches a particular GO term for which we 
are creating a column in the flattened table, then that GO term 
will get a value of ``1" else it will get a value of ``0". The 
process then continues until it does not read any more UID 
groups. 

 

E. Merging GO_merge and PFAM_merge 

 
        The PFAM table is similar to the GO table. The 

PFAM table contains the UID of proteins and the PFAM 
terms, which form another set of characterizations of proteins 
as an alternative to the GO term characterization. We can 
create PFAM_merge by merging PFAM_np and PFAM_pdac 
similarly to how we created GO_merge. Fig. 1 outlines the 
process of merging the GO_merge and the PFAM_merge 
tables together when we need to use both the GO and the 
PFAM terms. Table 3: is an example PFAM_merge table. The 
SQL query, called SQL 2 in Fig. 1, to generate the 
PFAM_merge table is similar to the SQL 1 query we saw 
before. 

 
Table 3: The PFAM_merge table. 
 
UID PFAM Y 
P02656 PF05778 0 
P09651 PF00076 0 
Q9BY79 PF00431 0 
Q9BY79 PF01392 0 
Q9BY79 PF00057 0 
O43491 PF00385 0 
Q9UKU0 PF00501 0 
P10323 PF00089 0 
Q17RR3 PF00151 0 
Q17RR3 PF01477 0 
….. ...... ..... 
 
{ 
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select T.UID, 
max(case when GO = `GO:0016021' then 1 else 0 end) as 
`GO:0016021', 
… 
max(case when family = `PF07647' then 1 else 0 end) as 
`PF07647' 
… 
, T.Y 
from GO_merge T JOIN PFAM_merge ON T.UID = 
PFAM_merge.UID 
group by UID 
} 
 
In our experiments, we used the top n most frequent GO 

terms as well as the top m most frequent PFAM terms, 
yielding a relation with n+m+2 attributes. We varied the 
values of n and m as described in the next section. 

 

III.  EXPERIMENTAL RESULTS 

     Given a flattened file, as in Table 2, it is easy to generate 
an ARFF file, which is needed for the WEKA system. In the 
ARFF file, the UID attribute ranges over strings that describe 
protein IDs, and the "relation" attribute substitutes for the "Y" 
attribute. For example, Table 2 is described using ARFF as 

follows: 
 
@relation GO_merge_flat 
@attribute ``UID" {O43491, Q96C24} 
@attribute ``GO:0003779” {0, 1} 
@attribute ``GO:0005198” {0, 1} 
@attribute ``GO:0005215” {0, 1} 
@attribute ``GO:0005886” {0, 1} 
@attribute ``GO:0008091” {0, 1} 
@attribute ``GO:0019898” {0, 1} 
@attribute ``GO:0030866” {0, 1} 
@attribute ``relation" {0, 1} 
@data 
``O43491",1,1,0,1,1,1,1,1 
``Q96C24",0,0,1,1,0,1,0,1 
 
      From our WEKA library, we used the libSVM support 

vector machine, which was previously added to the library, 
and the J48 decision tree. Both of these accepted input in 
ARFF format. The stratified cross-validation was used in all 
our classifications. 
 

A. Support Vector Machine Results 

 
            Using libSVM with the GO_merge_flat file, 

WEKA gave the following: 
 
CORRECTLY CLASSIFIED 12947 72.156 % 
 
INCORRECTLY CLASSIFIED 4996 27.844 % 
TOTAL NUMBER 17943 100 % 
 
WEKA also gave the following confusion matrix: 

a b CLASSIFIED 
12794 305 a=0 
4691 153 b=1 
 
The confusion matrix displays the relationship between two 

or more categorical variables. The number of correctly 
classified instances is the sum of the diagonals in the 
confusion matrix; all the others are incorrectly classified. For 
lib SVM with the PFAM_merge file and stratified 
cross-validation, the data mining results with were as follows: 

 
CORRECTLY CLASSIFIED 11590 71.707 % 
INCORRECTLY CLASSIFIED 4573 28.293 % 
TOTAL NUMBER 16163 100 % 
 
The classification for all our instance was correct for about 

71.7 % of the instances. Below is the confusion matrix: 
 
a b CLASSIFIED 
163 4263 a=0 
310 11427 b=1 
 

B. Decision Tree Results 

      Our next set of experiments used the J48 decision tree. 
The decision tree with the GO_merge_flat file gave the 
following results: 

 
CORRECTLY CLASSIFIED 12922 72.017 % 
 
INCORRECTLY CLASSIFIED 5021 27.983 % 
TOTAL NUMBER 17943 100 % 
 
  The classification was again about 72 % correct. Below is 

the confusion matrix for the J48 decision tree: 
 
a b CLASSIFIED 
12562 537 a=0 
4484 360 b=1 
 
   For decision tree with the PFAM_merge_flat file, the 

data mining results were as follows:  
 
CORRECTLY CLASSIFIED 11719 72.505 % 
 
INCORRECTLY CLASSIFIED 4444 27.495 % 
 
TOTAL NUMBER 16163 100 % 
 
       The classification for all our instances was correct for 

over 72 % of the instances. It was slightly better than for 
GO_merge_flat with the decision tree classification. Below is 
the confusion matrix for the PFAM_merge decision tree: 

 
 
a b CLASSIFIED 
144 4282 a=0 
162 11575 b=1 
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C. Improving the Accuracy 

 
As we saw above, for both the GO_merge_flat and the 

PFAM_merge_flat files and both the lib SVM and the J48 the 
accuracy was around 72 %. A natural question is whether the 
accuracy can be improved by using both the GO terms and the 
PFAM families together. As we saw in Fig. 1, these terms can 
be combined in a relation GO_PFAM_merge. This file can be 
also flattened and represented in ARFF. We performed 
another set of experiments using WEKA and the 
GO_PFAM_merge_flat file. The results for the lib SVM were 
the following: 

 
CORRECTLY CLASSIFIED 13099 73.003% 
INCORRECTLY CLASSIFIED 4844 26.997 % 
 
TOTAL NUMBER 17943 100 % 
 
        Finally, the results for J48 were the following: 
 
CORRECTLY CLASSIFIED 12936 72.095 % 
INCORRECTLY CLASSIFIED 5007 27.905 % 
 
TOTAL NUMBER 17943 100 % 
 
 Our results from the GO_PFAM_merge analysis show that 

the lib SVM has the highest percentage of 73 % compared to 
72 % for the decision tree. 

 

IV.  PROSTAGLANDIN SYNTHESIS 

 
Several recent studies have identified prostaglandin to be a 

major factor in pancreatic cancer [29]-[31]. We retrieved 
from the UNIPROT database (www.uniprot.org) all 
prostaglandin related proteins using the following query: 

The query retrieved 89 proteins, but many of those were 
indicated to belong specifically to the liver, brain or other 
organs. By cross-checking with our pancreatic protein 
database, we identified the 24 pancreatic and prostaglandin 
related proteins shown in study [25] . The 
prostaglandin-related proteins interact with each other as 
shown in Fig. 2. we hypothesize that in pancreatic cancer the 
following chain of events takes place, where “anomaly” 
means either over expressed or under-expressed. 

  
             Fig .2 Prostaglandin synthesis [32] 
 
      Due to various feedback loops, anomalies at some point 

in a chain may be compensated. In pancreatic cancer, we do 
not see further anomalies in the right-side chain of Fig. 2 
starting with HPETE because Glutathione S-transferase 
(O60760) is not elevated. Similarly, we have little evidence 
for anomaly in the two other branches starting from 
Prostaglandin H2 because neither Prostacyclin synthase 
(Q16647) nor Thromboxane-A synthase (P24557) is 
anomalous. Hence the hypothetical process of pancreatic 
cancer can be summarized as follows: 

 
       Q9NP80    P23219    P41222 
                                
                            Q15185    Q9P2B2 
 
 

V. DISCUSSION OF THE RESULTS 

 
The results reveal that the characterizations of the 

pancreatic proteins by either GO terms or PFAM families can 
be used to predict with a good, that is, around 72 %, accuracy 
whether they are involved in cancer. Since the 
characterization of proteins is mainly based on their 
biological functions, the results imply that the likelihood of a 
protein being involved in cancer depends on its particular 
functions. Although the 72 % accuracy is interesting, for 
medical applications a higher, over 90 %, accuracy would be 
necessary. It is not clear how that higher accuracy could be 
achieved.  

Our second set of experiments with both GO terms and 
PFAM families together gave a slight increase in accuracy to 
73 % in the case of lib SVM. It is possible that by adding even 
more protein attributes, the accuracy of classification would 
improve further. It appears that proteins involved in certain 
general functions or particular protein networks within cells 
are more likely to be associated with cancer. It appears that 
within these particular protein synthesis networks entire 
pathways may be predisposed to anomalous behavior and 
cause cancer. In particular, we gave an in-depth study of the 
prostaglandin protein synthesis network. We are not aware of 
any previous work that called attention to the identified 
pathways starting from Q9NP80, although the anomalous 
behavior of Q9NP80 may be traced further back in an 
expanded network. 

 

VI.  CONCLUSION 

 
      Further study is needed to develop an early detection 
method for pancreatic cancer, enabling earlier treatment of 
cancer patients, and thereby increase their survival rate, which 
is currently one of the lowest among cancer patients. The 
result that the functional characterizations of proteins by 
either GO terms or PFAM families enable a good prediction 
of pancreatic cancer link may be also generalized to other 
types of cancers. The putative role of Q9NP80 in the early 
stages of pancreatic cancer should be further investigated.  
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