
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 12 – SEPTEMBER 2017.

14

Abstract— Distributed Storage is a service where data is

remotely maintained, managed and backed up. Whenever data
is broadcast to the network for communication, it is routed to
the server for storage. But accumulating the existing data
repeatedly will cause the server to overload and leads to increase
in the need of the data storage servers and further increases
latency during data retrieval. Hence in order to overcome this
issue, whenever the data is uploaded to the server it will be
compared with the existing data in the server and if the data
exists previously, an additive implication is exploited to locate
and retrieve the respective data. The additive implication
resolves the issue of redundancy and helps in efficient access of
data. This paper proposes an Efficient Hash-Based Data
De-Duplication approach in Storage System which avoids the
replication of data in the server and also provides an effective
way of accessing the data with reduced latency thereby
guaranteeing the content delivery efficiently at the other end.
The proposed Hash-Based Data De-Duplication technique
spawns the unique identification which encounters the existence
of data and the further analysis of data profound reduces the
collision effect.

Index Terms— Data De-Duplication, Hash-based data

De-Duplication, Large scale distributed storage.

I. INTRODUCTION

 In computing, a data server or file server is a computer
attached to a network meant for providing a location
for shared disk access, i.e. shared storage of computer files
such as documents, sound files, photographs, movies, images,
databases, etc., that can be accessed via workstations that are
attached to the same computer network. The large scale
distributed data servers are designed primarily to enable data
storage and data retrieval and at the same time the
computation task is also conceded out by the workstations.
Due to increase in redundant data exponentially, issues
related to the storage space, effective retrieval and network
complexity are augmented. Data de-duplication is one of the
important data compression techniques for eliminating
duplicate copies of repeating data, and has been widely used
in cloud storage to reduce the amount of storage space and
save bandwidth [4]. In the existing approach data

de-duplication technique is carried out during the storage
process in the server, after undergoing many process required
before storage which is time consuming. The above
mentioned issue has been overcome in the proposed approach
where the data de-duplication is carried during the upload
process in the storage server. Thus, the proposed efficient
hash based data de-duplication approach, reduces the space in
storage system by eliminating the redundant data in storage
system.

The remaining section of the paper is organized as follows:
Section 2 summarizes the related work and problem
statement. Section 3 describes the proposed system model.
Section 4 illustrates the Hash based secure data
de-duplication approach and issues of the proposed model.
The performance evaluation of proposed model is shown in
Section 5 and finally draws conclusions at Section 6.

II. RELATED WORK

The proposed hash-based data de-duplication approach
has been developed with analysis of storage issues such as
availability of redundant data in storage servers, increased
latency during data retrieval etc., which has been addressed in
[1], [3]. while a complete survey of data de-duplication is
provided with encryption and decryption. The de-duplication
is done with integration of files into useful resources that are
can be accessed via centralized management and
virtualization [2] help to set the goal of proposed work. The
idea of Authorized duplicate check scheme incurs minimal
overhead compared to convergent encryption and transfer has
been mentioned in [4] which gives an idea about duplication
check in storage server. Data consistency in performance
oriented De-duplication [8] furnishes an idea about the
referenced data be reliably stored on disks and the key data
structures not to be lost in case of a power failure. However,
not a large amount of work has yet been done to address hash
based data de-duplication and its associated issues.

An Efficient Hash Based Data De-Duplication
Approach in Large Scale Distributed Storage

Servers

S.U.Muthunagai #1 and R. Anitha *2
Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, India

*Department of Information Technology, Sri Venkateswara College of Engineering, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 12 – SEPTEMBER 2017.

15

III. SYSTEM MODEL

Fig. 1 shows the architecture diagram of the proposed
model. The operations are performed in order to avoid
redundant data in the storage system.

Fig. 1. Hash Based Data De-duplication Model

In this model, when a user uploads the file the

corresponding hash value is generated using SHA3 and the
file is stored in the large scale distributed storage servers. If
the other user attempts to upload the same file, the hash value
generated by the file remains the same. In this case, link is
created for file located in the storage system through which 'n'
users can access the same file and thus shrinks the space in a
database and increases the efficiency by means of quick
processing.

IV. HASH BASED DATA DE-DUPLICATION

The proposed efficient hash based data de-duplication
approach in large scale storage servers is designed to run on
commodity hardware. The proposed model decreases the
space consumption and increases the efficiency of the storage
system. This system performs two different tasks: massive
data storage and fast processing. The succeed modules of the
proposed model performs the crucial part of the storing the
data in the storage server. Similar content of the data or
images in pixels are identified at the initial stage and the link
has been generated else different images or data gets uploaded
on the already existed name of the file then the conflict occurs
between the two data.

A. User Specific File Management and Hash Generator

In this module, the various user management tasks are

performed. This includes the user login, data accessing, data
deleting etc., A user can register themselves and login using
their credentials. Once the user logs in he/she can use their

account to manage the files. The files are specific to each user.
Similar files are shared but a hashing algorithm is used to
compare and differentiate files of different user. Separate file
comparison algorithms are developed for text and image files.
The Hash based file existence algorithm ensures that the
uploaded file is existed in the database. The comparison is
done with the new generated hash value and existed hash
value hoarded in the log entries.

B. File Existence Algorithm

This algorithm ensures that the uploaded file is existing or

not, by means of comparing the generated hash value with the
stored hash value in the storage server. If hash value collides,
the individual files are compared by using separate file
comparison algorithms. After the contents are compared the
result is passed out to data storing algorithm whether the file is
similar or not.

FileExist (inputFile , inputHash)
FileIDs[]=hashTable(inputHash);
for FileID in FileIDs[] do
if(compare (inputFile , File. FileID)
return FileID ; //returns Existing file_id
return DOESN’T_EXIST; //returns NULL if doesn’t exist
END
C. Data Storing Algorithm

The data storing algorithm decides the storing part of the

proposed work. This ensures whether the uploaded file has to
be saved in the repository or it is sufficient to link the Id for
the file. Hence the two users will share the same file through
link bent. When one user edits the already stored shared file
then a new file is created for that user.

DataStoring (inputFile , inputHash)
FileID = FileExist (inputFile , inputHash);
if (FileID == NULL)
inputFile.Link_ID=NULL;
LOAD(inputFile); //Stores File in Repository
UPDATE DB; //Updates DB
else
inputFile.Link_ID = FileID ;
UPDATE DB; //Updates DB alone
 END

V. IMPLEMENTATION RESULTS

The experiments were carried out in large scale distributed
system. In our experiment, hundreds of file has been uploaded
in the storage system. Once the file is uploaded either text file
or image file the hash value is generated for each file so that
the comparison between new file and existing file is made
which is shown in Fig. 2 and Fig. 3.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 12 – SEPTEMBER 2017.

16

Fig. 2. Generation of Hash Value for Text File

Fig. 3. Generation of Hash Value for Image File

The duplicate file of a content will not get uploaded to the

storage server, instead, it will be presented with the uploaded
name and a link will be set to the original file which is shown
in Fig. 4.

Fig. 4. Comparison of File with Hash value

Fig. 5. Result of Data Storing Algorithm.

In comparison, if the uploaded data is found to be new then

the file is saved as a unique file by means of data storing
algorithm as shown in Fig. 5. The File_ID and Hash value are
generated for the new file which is uploaded.

The proposed hash-based de-duplication paves the way for
eliminating redundant data from storage with the help of
unique hash value generated for each data during upload of
data into the storage system.

Fig. 6. Evaluation of Efficiency

The Efficiency of hash based data de-duplication algorithm
is compared with Hybrid approach and feedback scheme
approach for efficiency evaluation. The above Fig. 6 shows
that the latency time of file retrieval from storage increases if
the number of files increases in the storage system. since there
approach is dealt with cryptographic and feedback schemes.
whereas in the hash based approach the time obtained to
retrieve the file decreases since it creates link to access the file
by many user simultaneously.

The proposed hash based data de-duplication uses the
technique prior to the data residing in the storage system
henceforth it takes minimal time to retrieve the data from
storage system.

VI. CONCLUSION

In this paper, the approach of hash-based data
de-duplication is constructed to discharge the redundant data
in the storage system. This proposed work presents the data
storage with the efficient way of handling and maintaining the
data with no placing of the duplicate content in the database
server. Hence, formerly the file content will get stored in the
database regardless how many times when a user endeavors to
upload the same content with diverse name. Thus,
accumulating the content of the file at once in the storage
results in an effective way of using the storage system.
Henceforth, the data content of the file will also be hashed and
so the hashed value has been used for substantiating the
existence of the file. The future work will be implemented
towards the different formats of data like audio, video file
etc., thus in turn reflects with more efficient way of usage of
storage space in the servers for accumulating the huge volume
of data.

 REFERENCES

[1] Junbeom Hur, Dongyoung Koo, Youngjoo Shin, and Kyungtae Kang
“Secure Data Deduplication with Dynamic Ownership Management in
Cloud Storage.” IEEE Transaction On Knowledge And Data
Engineering, Vol. 28, No. 11, pp. 3113-3125, 2016.

[2] Shengmei Luo, Guangyan Zhang, Chengwen Wu, Samee U. Khan and
Keqin Li “Distributed Deduplication for Big Data Storage in the
Cloud.” IEEE Transaction On Cloud Computing, Vol. 61, No. 11, pp.
1-13, 2015.

[3] Victor Chang, Muthu Ramachandran “Towards achieving Data
Security with the Cloud Computing Adoption Framework. ” IEEE
Transactions on Services Computing , Vol. 9, No 1, pp. 138-151,
2016.

[4] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P.C. Lee, and Wenjing Lou
“A Hybrid Cloud Approach for Secure Authorized Deduplication”

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 12 – SEPTEMBER 2017.

17

IEEE Transaction On Parallel And Distributed Systems, Vol. 26, No.
5,pp. 1206-1216, 2015.

[5] Zheng Yan, Wenxiu Ding, Xixun Yu, Haiqi Zhu, and Robert H. Deng
“Deduplication on Encrypted Big Data in Cloud”. IEEE Transaction
On Big Data, Vol. 2, No. 2,pp. 138-150, 2016.

[6] Tin-Yu Wu, Jeng-Shyang Pan, and Chia-Fan Lin “Improving
Accessing Efficiency of Cloud Storage Using De-Duplication and
Feedback Schemes” IEEE systems journal, Vol. 8, No. 1,pp. 208-218,
2014.

[7] T. Baker, B. Al-Dawsari, H.Tawfik, D.Reid, Y.Ngoko “GreeDi: An
energy efficient routing algorithm for big data on cloud”, Journal of
Adhoc Networks, Vol. 35, pp. 83-96, 2015.

[8] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, “Leveraging Data
Deduplication to improve the performance of Primary Storage System
in the cloud”, IEEE Transaction on Computers, Vol. 65, No.6,
pp.1775-1788, 2016.

[9] Maomeng Su, Lei Zhang, Yongwei Wu, Kang Chen, Keqin Li,
“Systematic Data Placement Optimization in Multi-Cloud Storage for
Complex Requirements”, IEEE Transactions on computers, Vol.65,
No.6, pp. 1964-1977, 2016.

[10] Chien-An Chen, Myoungyu Won, Radu Stoleru, Geoffrey G. Xie,
“Energy-Efficient Fault-Tolerant Data Storage and Processing in
Mobile Cloud”, IEEE Transactions on cloud computing, Vol. 3, No.
1,pp.28-41,2015.

[11] Zhen Huang, et al, Jinbang Chen, Yisong Lin, Pengfei You, Yuxing
Peng, “Minimizing data redundancy for high reliable cloud storage”,
Journal of computer Networks, Vol. 81, pp. 164-177, 2015.

[12] Waraporn Leesakul, Paul Townend, Peter Garraghan, Jie Xu,
"Fault-Tolerant Dynamic Deduplication for Utility Computing", IEEE
International Conference on Object/Component/Service-Oriented
Real-Time Distributed Computing, pp. 397-404, 2014.

[13] Leesakul, Waraporn, Paul Townend, and Jie Xu. "Dynamic Data
Deduplication in Cloud Storage." IEEE International Conference on
Service Oriented System Engineering, pp. 1-9, 2014.

[14] Thanasis G. Papaioannou, Nicolas Bonwin, Karl Aberer, “Scalia: An
Adaptive Scheme for Efficient Multi-cloud Storage”, IEEE proceeding
High performance Computing, Networking , Storage and Analysis,
2015.

