International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 9 — JUNE 2017.

AN APPLICATION ORIENTED INTERFACING
OF KEYBOARD WITH MIPS SIMULATOR

P.Kopperundevi
ME- Applied Electronics
Department of ECE
Sri Venkateswara College of Engineering,India

Abstract- A MIPS is a version of RISC processor. A new
tool for MIPS-32 processor simulation has been degied
and developed. MIPS simulator is based on java langge.
This tool is mainly intended for educational use taeach
computer architecture and test the working of MIPS
assembly language programs. It supports syntax
highlighting process which makes it easier to deabith
multiple commands, variables and comments. Although
the MIPS IDE is clearly designed for programmers ad
MIPS developers, it includes features such as comma
description, spread sheet view of registers, whicban help
the less experienced one.The integrated art of infacing
of MIPS processor with its simulator is discussedni this
paper. The tools are designed in such a way thati$ easy
to use. Bitmap display and keyboard and MMIO
simulator are the tools used for interfacing. As an
application of keyboard interfacing master snake gme is
designed and simulated based on MIPS assembly larage
using MIPS simulator.

Keywords:assembly languag®MIPS
I. INTRODUCTION

The MIPS is a RISC architecture and correspondasgmmbly
language use a limited number of instruction fosnatpical
student programs may use register-to-register, /$t@ct,
branch, jump, system call, and floating-point instions.
Thirty-two general-purpose registers are availdbteinteger
operations (some have dedicated uses), as arg-thot
single-precision floating point registers. MIPS-32a clean
design with simple instructions. Since computeesce and
computer engineering departments may not have adeq
access to MIPS equipment to support laboratoryvities,
software-based MIPS simulators may be used. Ml
simulator is designed as an alternative to SPIMi§pally
for the needs of typical undergraduate students tied
instructors. It should be useful in courses suclt@sputer

16

S.Muthukumar
Professor
Department of ECE
Sri Venkateswara College of Engineering,India

organization and architecture,
programming, and compiler writing.

assembly

A. MIPS Simulator Features

MIPS simulator is an Integrated Development Enwinent
(IDE) controlled by a modern GUI whose featuredude
Thirty-two registers visible at the same time,
selectable via tabbed interfaces,

“Spreadsheet” modification of values in registend a

memory,
e Selection of data value display in decimal or
hexadecimal,

Resizable windows,
“Surfing” through memory using buttons to change
display to next/previous, stack location, global
partition, and the start of the memory segment,
Toolbar icons for every menu item

An integrated editor and assembler as part oDE |
The MIPS simulator implements the educationally am@nt
portions of the MIPS instruction set utilized by router
Organization and Design Third Edition (COD3)[7].

ILRELATED WORK
A. Simulator — Based on VHDL Language

S. P. Ritpurkar et al (2014), Synthesis and Simdabf a
32Bit MIPS RISC Processor using VHDL[8]. In thispea,
they have analyzed Instructionfetch module, Decoadedule,
Execution module. In terms of performance data, ttiteal
clock cycles are provided. Instruction set ina knglock

lf:ycle. All the modules in the design are coded iDIHvith

P

e parallelism of digitalhardware. Finally, Syrdlse and
imulation of the design is donein XILINX 13.1i ISE
simulator performance is verified using cadencel toath
analog and digital view and result are verified.

language

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 9 — JUNE 2017.

) D:\pong.asm.asm - MIPS Simulator = | & ==
File Edit Run Settings
* L DAT X090
Edit | Execute| Registers | Coproc 1 | Coproc o]
pong.asm.asm | Hame Mumber Value
1 .data - szero 0 0x00000000
2 xDir: = e =1l| |lsat 1 0x00000000
3 ySpesd: sv0 2 0x000000080
4 yDir: SV 3 0x00000000
s P1Score: <20 1 000000000
& PaScore: sal 5| 0x00000000
D caz s 0x00000000
: C‘mpzomé'_ 3 223 7 000000000
& SoppRec - 5t0 8 0x00000008
: ARl Stl k] 0x00000000
18 CD;DI?:‘E: sT2 10| 0x00000000
L SOlarTD: st3 11 000000000
o= —— std 12 000000000
13 backgroundColor: 215 13 0x00000000
14 Hlustodor! ste 14 0x00000000
1s mode: 67 15 0x00000000
16 $s0 14| 0x00000000
17 Re f more $31 17| 0x00000000
18 ss2 12 000000000
19 .text £33 13 0x00000000
20 24 20 0x00000000
21 NewGame: 535 21 0x00000000
22 jal ClearBoard £38 22| 0x00000000
23 £37 23 0x00000000
= —_— - =2 a1 0%00000000
i T v B 25 0x00000000
Line: 1 Column: 1 [7] Show Line Numbers L 8 0 GRARAng
skl 27 0x00000000
i sgp 28 0x10008000
[Messages| Run 10 | sop 29 0x7EEfeffc
sfp 30| 0x00000000
sra 31 0x00000000
== be 000400000
bi 0x00000000
1o 0x00000000
Figure 1: MIPS Simulator Editor Window is Active
B. Simulator — Based on Instruction Set Architegtur online not on offline view. Its simple to use arelry graded.

Memory reference visualize tool is used. It does$ Inave
WinMIPS 64, EduMIPS 64, and Simple MIPS [9] Pipel'mre pipe"ne concept

simulators for pipeline processors. They focus ardeting
functional aspects of pipeline stages instead ofld®€l logic ProcessorSim can be configured to model severa path
components inside processors. EQuMIPS64 is actaaltg- configurations for the MIPS-32 single-cycle proagss
design and re-implementation of WinMIPS 64 in Javamplementation and provides an animation that shbos
MiniMIPS has the similar goal as this work. Howevé instructions are executed inside processors. iges good
models control units at a higher level insteadreéting them visualization but has some shortcomings. In Prag&s,
as the composition of RT level components, suckhéfsers, only one component can send out messages at a time.
Arithmetic Logic Unit (ALU) controls, and multiplexs. However, components inside a real processor alwayk
These lower level logic components are important faoncurrently. ProcessorSim only shows effectivecatien
understanding processor implementations. Also, rthgaths for an instruction execution. That makesasier for
attributes, such as delay, are needed to modelegsoc students to understand the processor implemengatimrt
performances. From the limited resources that dtaimed hides some important details. ProcessorSim doesmuoaiel
from the authors, it seems that MiniMIPS does namivile component delays and thus can only support limited
animation, only provides cycle count as performadheta, and performance data. ProcessorSim is not based omadgling
is implemented in C and requires Unix machines. and simulation theory and therefore lacks a rigsroasis for
defining the structures and behaviors of the MIB@gonents
WebMIPS[2] only models a pipeline processor. It eisdall and their compositions. Thus, extending Processor8&i
the components inside the processor, and usersieaneach support other processor designs (e.g. MIPS 6&diffisult.
component's input and output data at a certain tiynelicking

on the component. However, the simulator does motvshow Ill. MIPS TOOLS
the signals are sent and received among compouenitsg _ _ _
instruction execution. In terms of performance déta total Keyboard and MMIO simulator and bitmap display

clock cycles are provided. Thus WEBMIPS has limitedsed to interface keyboard .A tool “observes” Mi8mory
number of users. It can manage applications basethe locations and reacts appropriately in responseata dhanges

17

International Journal of Emerging Technology i
ISSN: 0976-1353Volume

in the memory-mapped IO locations defined for thigl. The
source code of a tool is separate from the sowde of MIPS
simulator. Using a dynamic class-loading technidtemm
game programming, any externally-compiled class ctvhi
implements a certain Java interface and residabhantools
folder will be detected and loaded at MIPS simuldéminch
and added to its Tools menu (see Figure 1). Udectsen of
that Tools menu item will invoke a particular irfeare
method, which will typically establish itself as ahserver of
MIPS memory locations. A MIPS program will read amdte
memory locations and the tool will respond accagtlin

A. Keyboard and MMIO simulator

The keyboard and MMIO simulator is used to simula
Memory-Mapped /O (MMIO) for a keyboard input deeic
and character display output device. It may beeithmer from
MARS' Tools menu or as a stand-alone applicatiohil&\the
tool is connected to MIPS, each keystroke in thd &zea
causes the corresponding ASCIl code to be placethén
Receiver Data register (low-order byte of memoryrdvo
0xffff0004), and the Ready bit to be set to 1 ie Receiver
Control register (low-order bit of 0xffff0000). €hReady bit
is automatically reset to 0 when the MIPS prograads the
Receiver Data using an 'lw' instruction.A prograraynwrite
to the display area by detecting the Ready bit(sgtin the
Transmitter Control register (low-order bit of memwyavord
0xffff0008), then storing the ASCII code of the cheter to be
displayed in the Transmitter Data register (lowesrfyte of
0xffff000c) using a 'sw' instruction. This triggerthe
simulated display to clear the Ready bit to 0, gelahile to
simulate processing the data, then set the Readyabk to 1.
The delay is based on a count of executed MIP &uictidns.

In a polled approach to 1/0O, a MIPS program idiesiloop,
testing the device's Ready bit on each iteratidil itns set to
1 before proceeding. This tool also supports aarinpt-
driven approach which requires the program to pl®van
interrupt handler but allows it to perform usefubgessing
instead of idly looping. When the device is reaitlysignals
an interrupt and the MIPS simulator will transfentrol to the
interrupt handler.Interrupt-driven 1/O is enablechem the
MIPS program sets the Interrupt-Enable bit in tlevide's
control register.

18

n Conputer Science & Electronics (IJETCSE)
24 Issue 9 — JUNE 2017.

& Keyboard and Display MMIO Simulstor, Version 1.4

Keyboard and Display MMIO Simulator
DISPLAY: Store to Tran

smitter Data OXfTfi000C, cursor 0, area 95 x 10

"‘ Delay length: 5 instruction executions

‘ Font |DAD Fixed transmitter delay, select using slider

KEYBOARD: Characters typed here are stored to Receiver Data Oxfff0004

Tool Control

Figure 2: Keyboard and MMIO Simulator

Close

Upon setting the Receiver Controller's Ready bitlfoits

Interrupt-Enable bit (bit position 1) is tested. If then an
External Interrupt will be generated. Before exami the

next MIPS instruction, the runtime simulator wilktdct the
interrupt, place the interrupt code (0) into bits6 20of

Coprocessor 0's Cause register ($13), set biti8ttoidentify

the source as keyboard, place the program courdkrev
(address of the NEXT instruction to be executett) its EPC

register ($14), and check to see if an interruggt/thandler is
present (looks for instruction code at address 088180). If

so, the program counter is set to that addresaot|fprogram
execution is terminated with a message to the ROntab.

The Interrupt-Enable bit is 0 by default and hadv¢oset by
the MIPS program if interrupt-driven input is desir

Interrupt-driven input permits the program to pemfouseful

tasks instead of idling in a loop polling the Reeei Ready
bit! Very event-oriented. The Ready bit is supgbso be
read-only but in MIPS it is not.

B. Bitmap Display

Use this program to simulate a basic bitmap displénere
each memory word ina specified address space pomds to
one display pixel in a row-major order startingtla¢ upper
corner of the display. The tool may be run eithemf the
MIPS simulator tools menu or as a standalone agidic.
Each rectangular unit on the display representsmeamory
word in a contiguous address space starting wétstrecified
base address .the value stored in that word wilhtexpreted
as a 24-bit RGB color value with a red componena ihits
16-23,thegreen component in bits 8-15,and blue omept in
bits 0-7.each time a memory word within the dispdalgress
space is written by the MIPS program, its positianthe
display will be rendered in the color that its v@hepresents

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 9 — JUNE 2017.

[map Dsly Vesion 10 B How to simulate
Bitmap Display 1. Open the MIPS simulator.
Unt Wit i icls - 2. Load the snake.asm file into MIPS simulator vitle ->
Unit Height in Pixels 1| Open

3. Go to Run -> Assemble
4. Go to tools -> Bitmap Display

Display Width in Pixels 512 |w
Display Height in Pixels 25 |

Base address for display |0x10010000 (static data) |+ B s g

Eitmap Dispiay.

Tool Control

Connect to MIPS Reset Help Close

—re———

Figure 3: Bitmap Display

Figure 4: Output of Master Snake Game
IV.MASTER SNAKE GAME

5. The Bitmap Display settings should be as follows

Algorithm to implement master snake game : > Unit Width: 8

» Unit Height: 8
Data segment . » Display Width: 512
Stepl:Initialize screen colors, score variable smmake > Display Height: 512
information > Base Address: $gp

Step2: Stores how many points are received fongaifruit g &g to tools -> Keyboard and Display MMIO Simolat

and increases as program gets harder _ 7. Press connect to MIPS on both of the displays
Step3: Speed the snake as it moves, increases ra®@ 98 g to Run -> Go

Progresses . o 9. All controls should take place in the lower jmtof the
StepdArray to store the scores in which difficulty ShOU"keyboard and Display Simulator
increase ## Controls
Step5: Display end message "You have died.... Ysoare e W-up
was: "and replay Message: "Would you like to replay e S-down
o A-left
Text segment: * D-right

Step1l:Initially moving up direction variable,
119 -Moving up — W,

115 - Moving down — S, V.RESULTS AND CONCLUSION

97 - Moving left — A,

100 - Moving right — D, Traditionally, students use a text editor to geteera
Numbers are selected due to ASCII characters. lines of code for use in the SPIM simulator located the

Step2:The array stores the screen coordinates difeation ECE machines or using other window based simulaffine
change once the tail hits a position in this arisydirection is problem with this approach is there is no feedbgislen to
changed this is used to have the tail follow thecheorrectly the student when writing the code. When loadingcthe into
Step3: Draw border, initial snake position, pebeid check the simulator, feedback on any errors is diffi¢alidiscern or

for direction change understand. This can create a problem for studehts are
Step4: Update snake head and tail position, chetlision new to the language, and frustration when tryingetermine
and increase difficulty. the cause of an error. The use of the MIPS simulgteviates
Step 5: If collision occurred display the end mgssd reply this problem by use of a power interactive develepm
is yes continue else exit. environment (IDE) that can help students understhactode

they are writing. MIPS simulator implements 98 MIPS

19

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 9 — JUNE 2017.

instructions, 32 native instructions, 36 pseuddarirtdions,
and the 17 system calls. Interfacing of keyboard amaster
shake game is designed and developed using MIP@atiom
and results are shown in figure 2 and figure 4.

VI. FUTURE WORK

Other plans include implementing the remaining

instruction set, improving debugging support thitouguch
features as highlighting of memory/register corgenbdified
in step-by-step execution, the ability to undo exen steps
and interfacing.

REFERENCES

1.

Brackeen, David, Barker, Bret, and Vanhelswue,
Laurence, "Developing Games in Java". New Riders
Publishing, 2015.

Branovic, I., Giorgi, R. and Martinelli, E., WebM&

A New Web-Based MIPS Simulation
Environment for Computer Architecture Education,
Workshop on ComputerArchitecture Education, 31st
International Symposium on Computer Architecture,
Munich, Germany, 2016.

Brorsson, M., MIPS - A Simulation and
Development Environment Using Animation for
Computer Architecture Education, Workshop on
Computer Architecture Education, 29th International
Symposium on Computer Architecture, Anchorage
AK, 2014.

Downcast Systems, MIPS
http://www.downcastsystems.com/MIPS
retrieved 21 November 2005

J.Garton. ProcessorSim - A visual MIPS R2000
processor simulator. http://jamesgart.com/pratsi
2005

Larus, J., SPIM: An MIPS32
http://www.cs.wisc.edu/~larus/spim.html,
21 November 2005.

N. Mohit Topiwala, N. Saraswathi : Implementation
of a 32-bit MIPS-Based RISC Processor using
CadencelEEE International Conference on Advanced
Communication Control and Computing
Technologies (ICACCCT) ISBN No. 978-1-4799-
3914-5/14/$31.00 ©2014

S. P.ritpurkar prof., M. N. thakare. prof. G.kdrde
:Synthesis and simulation of a 32bit MIPS RISC
processor using VHDL on International conference
on advances in engineering & technology research
(icaetr - 2014), august 01-02, 2014.
Sun Microsystems, Java look
GraphicsRepository,
http://java.sun.com/developer/techDocs/hi/repogitor
/, retrieved 21 November 2005.

2.0,
ter/,

simulator,
retrieved

and feel

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Vollmar, K., and Sanssderson, P., A MIPS Assembly
Language simulator Designed For Educatiom Th
Journal ofComputing Sciences in Colleges, Vol. 21,
No. 1, 2005.

Wolffe,G.,Yurcik, W.,Obsborn,h. and Holiday,
M.,teaching computer architechture/organization
with limited resources,AC SIGCSE Bulliten
34,(1),176-180,2016

Mrs. Rupali S. Balpande, Mrs.Rashmi S. Keote,
Design of FPGA based Instruction Fetch & Decode
Module of 32-bit RISC (MIPS) Processor, 2011
International Conference on Communication Systems
and Network Technologies, 978-0-7695-4437-3/11,
2011 IEEE.

Mamun Bin Ibne Reaz, MEEE, Md. Shabiul Islam,
MEEE, Mohd. S. Sulaiman, MEEE, A Single Clock
Cycle MIPS RISC Processor Design using VHDL,
ICSE2002 Proc. 2002, Penang, Malaysia, 0-7803-
7578- S/02/S, 2002 IEEE.

Kui YI, Yue-Hua DING, 32-bit RISC CPU Based on
MIPS Instruction Fetch Module Design, 2009
International Joint Conference on Atrtificial
Intelligence, 978-0-7695-3615-6/09, 2009 IEEE.
Rohit Sharma, Vivek Kumar Sehgal, Nitin Nitinl,
Pranav Bhasker, Ishita Verma, Design and
Implementation of a 64-bit RISC Processor using
VHDL, UKSim 2009: 11th International Conference
on Computer Modelling and Simulation, 978-0-7695-
3593-7/09, 2009 IEEE.

Pravin S. Mane, Indra Gupta, M. K. Vasantha,
Implementation of RISC Processor on FPGA, 1-
4244-0726-5/06, 2006 IEEE.

Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred
Weber. AMD Opteron Shared Memory MP Systems.
In Proceedings of the 14th HotChips Symposium
August 2002.

Homayoon Akhiani, Damien Doligez, Paul Harter,
Leslie Lamport, Joshua Scheid, Mark Tuttle, and
Yuan Yu. Cache Coherence Verification with TLA+.
In FM'99—Formal Methods, Volume ,llvolume
1709 of Lecture Notes in Computer Sciengege
1871. Springer Verlag, 1999.

Alaa R. Alameldeen, Milo M. K. Martin, Carl J.
Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Simulating a $2M
Commercial Server on a $2K PGEEE Computer
36(2):50-57, February 2003.

Todd Austin, Eric Larson, and Dan Ernst.
SimpleScalar: An Infrastructure for Computer
System Modeling.I[EEE Computer 35(2):59-67,
February 2002.

