
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 9 – JUNE 2017.

16

AN APPLICATION ORIENTED INTERFACING
OF KEYBOARD WITH MIPS SIMULATOR

Abstract- A MIPS is a version of RISC processor. A new
tool for MIPS-32 processor simulation has been designed
and developed. MIPS simulator is based on java language.
This tool is mainly intended for educational use to teach
computer architecture and test the working of MIPS
assembly language programs. . It supports syntax
highlighting process which makes it easier to deal with
multiple commands, variables and comments. Although
the MIPS IDE is clearly designed for programmers and
MIPS developers, it includes features such as command
description, spread sheet view of registers, which can help
the less experienced one.The integrated art of interfacing
of MIPS processor with its simulator is discussed in this
paper. The tools are designed in such a way that it is easy
to use. Bitmap display and keyboard and MMIO
simulator are the tools used for interfacing. As an
application of keyboard interfacing master snake game is
designed and simulated based on MIPS assembly language
using MIPS simulator.

Keywords:assembly language,MIPS

I. INTRODUCTION

The MIPS is a RISC architecture and corresponding assembly
language use a limited number of instruction formats. Typical
student programs may use register-to-register, load/store,
branch, jump, system call, and floating-point instructions.
Thirty-two general-purpose registers are available for integer
operations (some have dedicated uses), as are thirty-two
single-precision floating point registers. MIPS-32 is a clean
design with simple instructions. Since computer science and
computer engineering departments may not have adequate
access to MIPS equipment to support laboratory activities,
software-based MIPS simulators may be used. MIPS
simulator is designed as an alternative to SPIM specifically
for the needs of typical undergraduate students and their
instructors. It should be useful in courses such as computer

organization and architecture, assembly language
programming, and compiler writing.

A. MIPS Simulator Features

MIPS simulator is an Integrated Development Environment
(IDE) controlled by a modern GUI whose features include

• Thirty-two registers visible at the same time,
selectable via tabbed interfaces,

• “Spreadsheet” modification of values in registers and
memory,

• Selection of data value display in decimal or
hexadecimal,

• Resizable windows,
• “Surfing” through memory using buttons to change

display to next/previous, stack location, global
partition, and the start of the memory segment,

• Toolbar icons for every menu item
• An integrated editor and assembler as part of its IDE.

The MIPS simulator implements the educationally important
portions of the MIPS instruction set utilized by Computer
Organization and Design Third Edition (COD3)[7].

II.RELATED WORK

A. Simulator – Based on VHDL Language

S. P. Ritpurkar et al (2014), Synthesis and Simulation of a
32Bit MIPS RISC Processor using VHDL[8]. In this paper,
they have analyzed Instructionfetch module, Decoder module,
Execution module. In terms of performance data, the total
clock cycles are provided. Instruction set ina single clock
cycle. All the modules in the design are coded inVHDL,with
the parallelism of digitalhardware. Finally, Synthesis and
Simulation of the design is donein XILINX 13.1i ISE
simulator performance is verified using cadence tool both
analog and digital view and result are verified.

P.Kopperundevi
ME- Applied Electronics

Department of ECE
Sri Venkateswara College of Engineering,India

S.Muthukumar
Professor

Department of ECE
Sri Venkateswara College of Engineering,India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 9 – JUNE 2017.

17

Figure 1: MIPS Simulator Editor Window is Active

B. Simulator – Based on Instruction Set Architecture

WinMIPS 64, EduMIPS 64, and Simple MIPS [9] Pipeline are
simulators for pipeline processors. They focus on modeling
functional aspects of pipeline stages instead of RT level logic
components inside processors. EduMIPS64 is actually a re-
design and re-implementation of WinMIPS 64 in Java.
MiniMIPS has the similar goal as this work. However, it
models control units at a higher level instead of treating them
as the composition of RT level components, such as shifters,
Arithmetic Logic Unit (ALU) controls, and multiplexors.
These lower level logic components are important for
understanding processor implementations. Also, their
attributes, such as delay, are needed to model processor
performances. From the limited resources that are obtained
from the authors, it seems that MiniMIPS does not provide
animation, only provides cycle count as performance data, and
is implemented in C and requires Unix machines.

WebMIPS[2] only models a pipeline processor. It models all
the components inside the processor, and users can view each
component's input and output data at a certain time by clicking
on the component. However, the simulator does not show how
the signals are sent and received among components during
instruction execution. In terms of performance data, the total
clock cycles are provided. Thus WEBMIPS has limited
number of users. It can manage applications based on the

online not on offline view. Its simple to use and being graded.
Memory reference visualize tool is used. It does not have
pipeline concept

ProcessorSim can be configured to model several data path
configurations for the MIPS-32 single-cycle processor
implementation and provides an animation that shows how
instructions are executed inside processors. It provides good
visualization but has some shortcomings. In ProcessorSim,
only one component can send out messages at a time.
However, components inside a real processor always work
concurrently. ProcessorSim only shows effective execution
paths for an instruction execution. That makes it easier for
students to understand the processor implementations but
hides some important details. ProcessorSim does not model
component delays and thus can only support limited
performance data. ProcessorSim is not based on any modeling
and simulation theory and therefore lacks a rigorous basis for
defining the structures and behaviors of the MIPS components
and their compositions. Thus, extending ProcessorSim to
support other processor designs (e.g. MIPS 64) is difficult.

III. MIPS TOOLS

Keyboard and MMIO simulator and bitmap display
used to interface keyboard .A tool “observes” MIPS memory
locations and reacts appropriately in response to data changes

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 9 – JUNE 2017.

18

in the memory-mapped IO locations defined for this tool. The
source code of a tool is separate from the source code of MIPS
simulator. Using a dynamic class-loading technique from
game programming, any externally-compiled class which
implements a certain Java interface and resides in the tools
folder will be detected and loaded at MIPS simulator launch
and added to its Tools menu (see Figure 1). User selection of
that Tools menu item will invoke a particular interface
method, which will typically establish itself as an observer of
MIPS memory locations. A MIPS program will read and write
memory locations and the tool will respond accordingly.

A. Keyboard and MMIO simulator

The keyboard and MMIO simulator is used to simulate
Memory-Mapped I/O (MMIO) for a keyboard input device
and character display output device. It may be run either from
MARS' Tools menu or as a stand-alone application. While the
tool is connected to MIPS, each keystroke in the text area
causes the corresponding ASCII code to be placed in the
Receiver Data register (low-order byte of memory word
0xffff0004), and the Ready bit to be set to 1 in the Receiver
Control register (low-order bit of 0xffff0000). The Ready bit
is automatically reset to 0 when the MIPS program reads the
Receiver Data using an 'lw' instruction.A program may write
to the display area by detecting the Ready bit set (1) in the
Transmitter Control register (low-order bit of memory word
0xffff0008), then storing the ASCII code of the character to be
displayed in the Transmitter Data register (low-order byte of
0xffff000c) using a 'sw' instruction. This triggers the
simulated display to clear the Ready bit to 0, delay awhile to
simulate processing the data, then set the Ready bit back to 1.
The delay is based on a count of executed MIPS instructions.

In a polled approach to I/O, a MIPS program idles in a loop,
testing the device's Ready bit on each iteration until it is set to
1 before proceeding. This tool also supports an interrupt-
driven approach which requires the program to provide an
interrupt handler but allows it to perform useful processing
instead of idly looping. When the device is ready, it signals
an interrupt and the MIPS simulator will transfer control to the
interrupt handler.Interrupt-driven I/O is enabled when the
MIPS program sets the Interrupt-Enable bit in the device's
control register.

Figure 2: Keyboard and MMIO Simulator

Upon setting the Receiver Controller's Ready bit to 1, its
Interrupt-Enable bit (bit position 1) is tested. If 1, then an
External Interrupt will be generated. Before executing the
next MIPS instruction, the runtime simulator will detect the
interrupt, place the interrupt code (0) into bits 2-6 of
Coprocessor 0's Cause register ($13), set bit 8 to 1 to identify
the source as keyboard, place the program counter value
(address of the NEXT instruction to be executed) into its EPC
register ($14), and check to see if an interrupt/trap handler is
present (looks for instruction code at address 0x80000180). If
so, the program counter is set to that address. If not, program
execution is terminated with a message to the Run I/O tab.
The Interrupt-Enable bit is 0 by default and has to be set by
the MIPS program if interrupt-driven input is desired.
Interrupt-driven input permits the program to perform useful
tasks instead of idling in a loop polling the Receiver Ready
bit! Very event-oriented. The Ready bit is supposed to be
read-only but in MIPS it is not.

B. Bitmap Display

Use this program to simulate a basic bitmap display where
each memory word ina specified address space corresponds to
one display pixel in a row-major order starting at the upper
corner of the display. The tool may be run either from the
MIPS simulator tools menu or as a standalone application.
Each rectangular unit on the display represents one memory
word in a contiguous address space starting with the specified
base address .the value stored in that word will be interpreted
as a 24-bit RGB color value with a red component in a bits
16-23,thegreen component in bits 8-15,and blue component in
bits 0-7.each time a memory word within the display address
space is written by the MIPS program, its position in the
display will be rendered in the color that its value represents

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 9 – JUNE 2017.

19

Figure 3: Bitmap Display

IV.MASTER SNAKE GAME

Algorithm to implement master snake game :

Data segment
Step1:Initialize screen colors, score variable and snake
information.
Step2: Stores how many points are received for eating a fruit
and increases as program gets harder
Step3: Speed the snake as it moves, increases as game
progresses
Step4:Array to store the scores in which difficulty should
increase
Step5: Display end message "You have died.... Your score
was: "and replay Message: "Would you like to replay?"

Text segment:
Step1:Initially moving up direction variable,
119 -Moving up – W,
115 - Moving down – S,
97 - Moving left – A,
100 - Moving right – D,
Numbers are selected due to ASCII characters.
Step2:The array stores the screen coordinates of a direction
change once the tail hits a position in this array, its direction is
changed this is used to have the tail follow the head correctly
Step3: Draw border, initial snake position, pellet and check
for direction change
Step4: Update snake head and tail position, check collision
and increase difficulty.
Step 5: If collision occurred display the end message if reply
is yes continue else exit.

How to simulate
1. Open the MIPS simulator.
2. Load the snake.asm file into MIPS simulator with File ->
Open.
3. Go to Run -> Assemble
4. Go to tools -> Bitmap Display

Figure 4: Output of Master Snake Game

5. The Bitmap Display settings should be as follows:

� Unit Width: 8
� Unit Height: 8
� Display Width: 512
� Display Height: 512
� Base Address: $gp

6. Go to tools -> Keyboard and Display MMIO Simulator
7. Press connect to MIPS on both of the displays
8. Go to Run -> Go
9. All controls should take place in the lower portion of the
Keyboard and Display Simulator
Controls

• W-up
• S-down
• A-left
• D-right

V.RESULTS AND CONCLUSION

Traditionally, students use a text editor to generate
lines of code for use in the SPIM simulator located on the
ECE machines or using other window based simulators. The
problem with this approach is there is no feedback given to
the student when writing the code. When loading the code into
the simulator, feedback on any errors is difficult to discern or
understand. This can create a problem for students who are
new to the language, and frustration when trying to determine
the cause of an error. The use of the MIPS simulator alleviates
this problem by use of a power interactive development
environment (IDE) that can help students understand the code
they are writing. MIPS simulator implements 98 MIPS

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 9 – JUNE 2017.

20

instructions, 32 native instructions, 36 pseudo-instructions,
and the 17 system calls. Interfacing of keyboard and master
snake game is designed and developed using MIPS simulator
and results are shown in figure 2 and figure 4.

VI. FUTURE WORK

Other plans include implementing the remaining
instruction set, improving debugging support through such
features as highlighting of memory/register contents modified
in step-by-step execution, the ability to undo execution steps
and interfacing.

REFERENCES

1. Brackeen, David, Barker, Bret, and Vanhelswue,
Laurence, "Developing Games in Java". New Riders
Publishing, 2015.

2. Branovic, I., Giorgi, R. and Martinelli, E., WebMIPS
: A New Web-Based MIPS Simulation
Environment for Computer Architecture Education,
Workshop on ComputerArchitecture Education, 31st
International Symposium on Computer Architecture,
Munich, Germany, 2016.

3. Brorsson, M., MIPS - A Simulation and
Development Environment Using Animation for
Computer Architecture Education, Workshop on
Computer Architecture Education, 29th International
Symposium on Computer Architecture, Anchorage
AK, 2014.

4. Downcast Systems, MIPS 2.0,
http://www.downcastsystems.com/MIPS ter/,
retrieved 21 November 2005

5. J.Garton. ProcessorSim - A visual MIPS R2000
processor simulator. http://jamesgart.com/procsim/,
2005

6. Larus, J., SPIM: An MIPS32 simulator,
http://www.cs.wisc.edu/~larus/spim.html, retrieved
21 November 2005.

7. N. Mohit Topiwala, N. Saraswathi : Implementation
of a 32-bit MIPS-Based RISC Processor using
CadenceIEEE International Conference on Advanced
Communication Control and Computing
Technologies (ICACCCT) ISBN No. 978-1-4799-
3914-5/14/$31.00 ©2014

8. S. P. ritpurkar prof., M. N. thakare. prof. G. D. korde
:Synthesis and simulation of a 32bit MIPS RISC
processor using VHDL on International conference
on advances in engineering & technology research
(icaetr - 2014), august 01-02, 2014.

9. Sun Microsystems, Java look and feel
GraphicsRepository,
http://java.sun.com/developer/techDocs/hi/repository
/, retrieved 21 November 2005.

10. Vollmar, K., and Sanssderson, P., A MIPS Assembly
Language simulator Designed For Education. The
Journal ofComputing Sciences in Colleges, Vol. 21,
No. 1, 2005.

11. Wolffe,G.,Yurcik, W.,Obsborn,h. and Holiday,
M.,teaching computer architechture/organization
with limited resources,AC SIGCSE Bulliten
34,(1),176-180,2016

12. Mrs. Rupali S. Balpande, Mrs.Rashmi S. Keote,
Design of FPGA based Instruction Fetch & Decode
Module of 32-bit RISC (MIPS) Processor, 2011
International Conference on Communication Systems
and Network Technologies, 978-0-7695-4437-3/11,
2011 IEEE.

13. Mamun Bin Ibne Reaz, MEEE, Md. Shabiul Islam,
MEEE, Mohd. S. Sulaiman, MEEE, A Single Clock
Cycle MIPS RISC Processor Design using VHDL,
ICSE2002 Proc. 2002, Penang, Malaysia, 0-7803-
7578- S/02/S, 2002 IEEE.

14. Kui YI, Yue-Hua DING, 32-bit RISC CPU Based on
MIPS Instruction Fetch Module Design, 2009
International Joint Conference on Artificial
Intelligence, 978-0-7695-3615-6/09, 2009 IEEE.

15. Rohit Sharma, Vivek Kumar Sehgal, Nitin Nitin1,
Pranav Bhasker, Ishita Verma, Design and
Implementation of a 64-bit RISC Processor using
VHDL, UKSim 2009: 11th International Conference
on Computer Modelling and Simulation, 978-0-7695-
3593-7/09, 2009 IEEE.

16. Pravin S. Mane, Indra Gupta, M. K. Vasantha,
Implementation of RISC Processor on FPGA, 1-
4244-0726-5/06, 2006 IEEE.

17. Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred
Weber. AMD Opteron Shared Memory MP Systems.
In Proceedings of the 14th HotChips Symposium,
August 2002.

18. Homayoon Akhiani, Damien Doligez, Paul Harter,
Leslie Lamport, Joshua Scheid, Mark Tuttle, and
Yuan Yu. Cache Coherence Verification with TLA+.
In FM’99—Formal Methods, Volume II, volume
1709 of Lecture Notes in Computer Science, page
1871. Springer Verlag, 1999.

19. Alaa R. Alameldeen, Milo M. K. Martin, Carl J.
Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Simulating a $2M
Commercial Server on a $2K PC. IEEE Computer,
36(2):50–57, February 2003.

20. Todd Austin, Eric Larson, and Dan Ernst.
SimpleScalar: An Infrastructure for Computer
System Modeling. IEEE Computer, 35(2):59–67,
February 2002.

