
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

237

A DATA FLOW TEST SUITE MINIMIZATION

AND PRIORITIZATION IN REGRESSION MODE
M.Vanathi

1
J.Jayanthi

2

Sona college of Technology Sona college of Technology

Sathya.vanathi11@gmail.com computer Science and Engineering

Abstract: The objective of regression testing is to

verify the new changes (addition /deletion) incorporated are

implemented correctly. In next step, optimizing the number of

test cases by making it effective and efficient. Here dataflow

testing in regression mode is considered for verification and

validation. Huge number of test cases must be minimized and

prioritized based on the proposed algorithm. The program to

be tested must be represented using control flow graph. The du

and dc path must be identified. The recurrent definition and

usage must be identified and test cases will be prioritized in

proposed system using junit tool.

Keywords

 Test Minimization, Test Prioritization, Control Flow

Graph,Data Flow Techniques.

I. INTRODUCTION

 Software testing is essential phase in software

engineering which is used to detect errors as early as

possible to ensure that changes to existing software do not

break the software and also used to determine the quality of

software product. The main myth is good programmers

write code without bugs.

 Phases in a tester`s mental life can be categorised

into 5 phases. They are

 Phase 0(Debugging Oriented)

 Phase1(Demonstration Oriented)

 Phase2(Destruction Oriented)

 Phase3(Evaluation Oriented)

 Phase4(Prevention Oriented)

Test Case is step by step description of the action

that we do during the testing. Test Suite is the collection of

test cases and it is way in which we are grouped the test case

based on the module wise structure and rule module wise

structure along with future.

Test prioritization is basic idea to group test cases

based on some criteria and we can prioritize based on

another set of criteria such as impact of failure ,cost to fix

etc. We can prioritize the test cases by using methods like

Cosine methodology, Greedy algorithm, prioritization

metrics and measuring efficient etc. The Goals of

prioritization are,

 To increase the rate of fault detection.

 To increase the coverage of code.

 To increase their confident in the reliability of the

system.

TestCase minimization technique is used to find and

remove the redundant test case from the test suite. Test cases

became redundant because their input/output relation is no

longer meaningful due to change in program and their

structure is no longer in conformity with software coverage.

It is yet another method for selecting tests for regression

testing.

Regression testing is used to verify that changes work

correctly and meet specified requirement. It is executed after

defect fixes in software or its environment. Whenever the

defects are done a set of test cases that are need to be rerun/

retesting to verify defect fixes are affected or not. Rerunning

or retesting of all test cases in test suite may require an

unacceptable amount of time. Minimizing the test case will

overcome these difficult.

Data flow testing is based on selecting the path through

the programs control flow in order to explore sequence of

events related to status of data or variable or object. It flows

on the points at which variable receives value and points at

which values are used. It denotes each link with symbolslike

d,k,u,c,p or sequence of symbols like dd,du,ddd,.etc that

denotes sequence of operation. The data object state and

usage are, Defined(d), Killed(k) and Usage(u).

The JUnit framework encourages developers to write

test cases and hen to rerun all of these test cases whenever

they modify their code. Whenever size of the code grows,

rerun-all regression testing strategies can be excessively

expensive.

II. RELATED WORK

 This section consists of survey of test case

prioritization and test case minimization techniques.

2.1 Minimize Test Case generation using Control

Structure Method

 Swathi.J.N and Sangeetha.S proposed an idea that

software testing is the critical activity in any industrial

strength software development process. As the software

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

238

grows in size, its complexity increases and testing becomes

more difficult. Hence generating test cases manually makes

more error so they propose an automatic generating of test

cases using control structure method this tool aims to

achieve coverage of a given structural code by including

statement coverage, decision coverage , path coverage and

branch coverage analysis and it also helps developer and

tester to measure the effectiveness of test case generated

using metric called “Test Effective Ratio”.

 To ensure that all statements have been executed at

least once the Cyclomatic complexity is provided with

number of tests. Complexity can be computed in ant one of

the three ways,

 The number of regions of the flow graph(G)

corresponds to the cyclomatic complexity V(G).

 V(G)=E-N+2,where E is the number of flow graph

edges and N is the number of flow graph nodes.

 V(G)=P+1,Where P is the number of predicate

nodes.

Test Effectiveness Ratio (TER) is classified by,

dividing the Number of statements exercised by the test case

by Total number of statements in the source code.

2.2 Generating Minimal Test Cases for Regression

Testing

Sapna PG, and ArunkumarBalakrishnan proposed

an idea that they generate the test cases from the

specification of UML diagram and set of terminals are given

as input to stenier tree algorithm and the minimal test case to

check functionality. In stenier minimal tree problem,

vertices are divided into two parts: Terminal and non-

Terminal parts. The changed nodes are defined as terminal

nodes to ensure inclusion in the test set. A lot of work is

available for generating regression test cases both white box

and black box strategies. A minimal set of test cases is

generates as an indicator to the effectiveness of the change.

Initial result shows that the method is applicable for quick

testing to ensure that basic functionality works correctly.

UML activity diagram is developed using two

types of nodes. They are action and control nodes. The

action nodes consist of Activity, Call Behaviour Action,

Send Signal and AcceptEvent. The control nodes consist of

Initial, Final node, Flow-Final, Decision, Merge ,Fork and

Join. This diagram is used to generate test cases.

The activity diagram is converted into Control flow

graph. The weight for each edge is calculated by using

measure where the calculation is measured based on the

incoming and outgoing dependencies as given below,

Weight(e)=(ni)in X (nj)out

 Where(ni)inis the number of incoming dependency

of node ni and (nj)out is the number of outgoing dependency

of node nj.

2.3 Minimizing Test Cases By Generating Requirement

Using Mathematical Equation

Mamta Santosh and Rajvir sing propose idea of list

of testing requirement for test suite and find the set of test

case satisfy the testing requirement by requirement matrix,

prioritization process of control flow graph, fault exposing

potential value and test case requirement matrix formations.

Test suite minimization techniques are used to remove

redundant and obsolete test cases from test suite. Test case

minimization approach can be considered as an optimization

problem. Genetic algorithm can be used for minimization as

it robust and provide optimized result. For applying genetic

algorithm test case requirements relationships need to be

transformed in mathematical model expressed in form of

functions and parameters that optimize the model. At result

the minimized test cases.

Here “Heuristic based approach selects test cases

based up on the strategies of essential redundant and 1to 1

redundant strategies”

The fitness function is calculated by summing up

the test case requirement matrices. Execution time has been

applied for optimization.This approach reduced the test suite

size and covered all requirements.

2.4 Test Suite Minimization by Greedy Algorithm

SriramanTallam and Neelam Gupta proposed an

idea of test suit once developed is reused and update

frequently as software will provide redundant is test case.

Due to the resource and time constraints for re-executing

large test suites, it is important to develop techniques to

minimize available test suites by removing redundant test

cases. Test suite minimization is NP complete. Here

regularly measure the extent of test suite reduction obtained

by algorithms and prior heuristics for test suite

minimization. The same size or smaller size test suite

selected than that selected by prior heuristics and had

comparable time performance.

The concept analysis and test suite minimization

consist of Object Implication, Attribute Implication and

Owner Reduction. These all always preserve the optimality

of solution for the context table. Then it uses greedy

heuristic would be applied if the context table is not empty.

2.5 FIVE TECHNIQUES OF REGRESSION TESTING

GhinwaBaradhi and Nashat Mansour proposed an

idea of comparing the 5 techniques of Regression testing –

slicing., incremental, firewall, generic & simulated

annealing algorithm. Comparison of these techniques is

based on qualitative & quantitative- execution time, number

of selected retests, type of testing, type of approach ,level of

testing, precision, inclusiveness, user parameter. This

comparison says that all algorithms are suitable for different

requirements of regression techniques. The assessment is

based on the following consideration, medium size modules

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

239

are important for assessment, since they are more realistic

and execution time assessment is based on comparing the

algorithms with each other.

This tends to indicate that the incremental

algorithm has more favourable properties than the other four

algorithms. The assessment is based on the following

consideration,

 Medium size modules are more important for

assessment,since they are more realistic.

 Since the test cases were manually developed, it

was not possible to run experiments that were

statistically highly-sound, especially for execution

time.

 Execution time assessment is based on comparing

the algorithms with each other.

To choose minimum number of test case and to perform fast

regression testing these selections should be done

genetically.

III. PROPOSED SYSTEM

 Test suite minimization and prioritization is process

of avoiding redundant and unwanted test suite. Till now

minimization of test cases are done by applying several

techniques like genetic algorithm, stenier tree algorithm,

decision tree etc but in proposed system ,minimize test case

is done by data flow testing techniques which is concern of

regression mode.

Fig: 3.1 System architecture of proposed system

Fig 3.1 describes the system architecture of

proposed system. In this input is given as coding and output

is in format of dataflow test case generation. Here also the

processes of data flow testing techniques are used.

 Here first java code get parsing by splitting the

input into two things Split the input into tokens and then

find the hierarchical structure of the input.Then they are

converted into control flow graph(CFG). The test input data

generation is done by two path Executable and Infeasible

paths. Test case generation are generated with graph

traversal. Test cases are specially written in JAVA and

tested with JUnit test cases.

JUnit testing and prioritization

 JUnit test cases are java classes that contain one or

more test methods and are grouped into test suite.

Fig 3.2 JUnit test suite structure

 JUnit test classes that contain one or more test

methods can be run individually or a collection of JUnit test

cases can be run as unit. JUnit is designed tests to run as

sequences of tests invoked through test suites that invoked

test classes.

 JUnit framework allowed us to achieve the

following four objectives,

 Treat each Test Case Class as a single Test case

 Reorder the Test Case classes to produce a

prioritized order

 Treat individual test method within test cases for

prioritization

 Reorder the test methods to produce a prioritized

order.

All test cases are run and executed individually with the

JUnit test Runner in desired order. After the execution the

result can be viewed using CLOVER views.Clover views

consist of four views they are,

 Coverage explorer

 Test Run explorer

 Clover dashboard

 Test contribution

After all these reports of this also get by using

clover views. By using this, data flow testing techniques are

going to be tested.

IV. CONCLUSION

The proposed tool has been designed and

developed with java code. The outcome of this tool is to

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

240

assist the tester to test the code in efficient manner. The test

cases are tested and provide report about the test cases.

Using this tool the test cases are generated and tested with

its report. In this too all test are tested. JUnit tool help us to

see the report in graphical way which is help full in easy

understanding.

REFERENCE

[1] Adam Kurpisz,Samulileppanen, “On the sum of the squares

hierarchy with knapsack covering inequality” ,arxiv: 1407.

1746v1 [cs.DS], 2014.

[2] Amrita jyoti,Yogesh Kumar and D.pandy “Recent priority
algorithm in regression testing”,International journal of

information technology and knowledge management,volume-

2,no.2,pp.391-394,2010.

[3] Alex kineer and Hyunsook Do “Empirical studies of test case
prioritization in a JUnit testing environment”no.2,pp 1-12,2007.

[4] Bang ye wu: “A simple approximation algorithm for internal

steiner minimum tree”.CoRR, abs/1307,3822,2013.

[5] Baradhi.G and Mansour.N “A Comparative Study of Five

Regression Testing Algorithm”.Proceedings of IEEE
international symposium on software testing and

analysis,pp,143-152,1997.

[6] Jyoti and Kamna Solanki “A Comparative study of five

regression testing techniques:ASurvey”,IISN 2277-8616.IJSTR
issues 8 aug 2014.

[7] R.Beena and S.Sarala, “Code Coverage based Test

Caseselection and Prioritization”,International Journal of

software Enginneering& Application,vol.4,no.6,nov 2013.

[8] Sapna P.G and Hrushikes ha Mohanty “Prioritization of
scenarios based on UML activity diagrams”. IN 1st International

Conference on computational intelligence, pages 271-276.IEEE
computer society,2009.

[9] SwathiJ.N,Sangeetha.s “Minimal test case generation for

effective program test using control structure method and test

effective ratio”ijoca/0975-8887,48-53,2011.

[10] SriramanTallamand Neelam Gupta “A concept analysis inspired
Greedy Algorithm for test suite minimization”,ACM 1-59593-

239-9/05/009.

[11] T.Rotho , “Directed stenier tree and the Lasserre hierarchy”,

CoRR, abs/1111.54-73,2011.

[12] T.Rembiszewski andBluemke “Dataflow testing of java
programs with DFC”,2000.

