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Abstract— Traditional security-constrained unit commitment 

(SCUC) considers only static security criteria, which may 

however not ensure the ability of the system to survive dynamic 

transition before reaching a viable operating equilibrium 

following a large disturbance, such as transient stability. This 

paper proposes attract able mathematical model for transient 

stability-constrained unit commitment (TSCUC) and a practical 

solution approach. The problem is modeled without explicit 

differential-algebraic equations, reducing the problem size to 

one very similar to a conventional SCUC. The whole problem is 

decomposed into a master problem for UC and a range of sub 

problems for steady-state security evaluation and transient 

stability assessment (TSA).Additional constraints including 

Benders cut and so-named stabilization cut are generated for 

eliminating the security/stability violations. The extended 

equal-area criterion (EEAC) is used for fast TSA and 

analytically deriving the stabilization cut, where in multiple 

contingencies having common instability mode can be 

simultaneously stabilized by one cut.  

 

Index Terms— security-constrained unit commitment (SCUC), 

transient stability-constrained unit commitment (TSCUC),  

transient stability assessment (TSA), extended equal-area 

criterion (EEAC). 

INTRODUCTION 

 

In the short-term, typically considered to run from 

twenty-four hours to one week, the solution of the unit 

commitment problem (UCP) is used to assist decisions 

regarding generating unit operation. In a regulated market, a 

power generating utility solves the UCP to obtain an optimal 

schedule of its units in order to have enough capacity to 

supply the electricity demanded by its customers. The optimal 

schedule is found by minimizing the production cost over the 

time interval while satisfying the demand and a set of 

operating constraints. The minimization of the production 

costs assures maximum profits because the power generating 

utility has no option but reliably supply the prevailing load. 

The price of electricity over this period is predetermined and 

unchanging; therefore, the decisions on the operation of the 

units have no effect on the firm’s revenues. As deregulation is 

being implemented in various regions of the United States, the 

traditional unit commitment problem continues to remain 

applicable for the commitment decisions made by the 

Independent System Operator (ISO). The ISO resembles very 

much the operation of a power generating utility under 

regulation. The ISO manages the transmission grid, controls 

the dispatch of generation, oversees the reliability of the 

system, and administers congestion protocols. The ISO is a 

non-profit organization. Its economic objective is to 

maximize social welfare, which is obtained by minimizing the 

costs of reliably supplying the aggregate load. Under 

deregulation, the UCP for an electric power producer will 

require a new formulation that includes the electricity market 

in the model. The main difficulty here is that the spot price of 

electricity is no longer predetermined but set by open 

competition. Thus far, the hourly spot prices of electricity 

have shown evidence of being highly volatile. The unit 

commitment decisions are now harder and the modeling of 

spot prices becomes very important in this new operating 

environment. Different approaches can be found in the 

literature in this regard.  

 Stochastic model for the UCP have introducing in 

the uncertainty of the load and prices of fuel and electricity 

are modeled using a set of possible scenarios. The challenge 

here is to generate representative scenarios and assign them 

appropriate probabilities. Allen and Ilic have proposed a 

stochastic model for the unit commitment of a single 

generator. They assume that the hourly prices at which 

electricity is sold are uncorrelated and normally distributed. 

In Tseng uses Into processes to model the prices of electricity 

and fuel in the unit commitment formulation. The purpose of 

this project is to present a new formulation to the UCP 

suitable for an electric power producer in a deregulated 

market and consider computationally efficient procedures to 

solve it. We express the UCP as a stochastic optimization 

problem in which the objective is to maximize expected 

profits and the decisions are required to meet operating 

constraints such as capacity limits and minimum up and down 

time requirements. We show that when the spot market of 

electricity is included, the optimal solution of a UCP with M 

units can be found by solving M uncoupled sub-problems. A 

sub-problem is obtained by replacing the values of the 

Lagrange multipliers by the spot market prices of electricity. 

The volatility of the spot market price of electricity is 

accounted for by using a variation of the stochastic model 

proposed by Ryan and Maunder. The model, which is referred 

to as the probabilistic production-costing model, incorporates 

the stochastic features of load and generator availabilities. It 
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is often used to obtain approximate estimates of production 

costs. This model ignores the unit commitment constraints 

and assumes that a strict predetermined merit order of loading 

prevails. This implies that a generator will be dispatched only 

when the available unit immediately preceding it in the 

loading order is working at its full capacity. We believe that 

this model provides a good approximation to the operation of 

an electricity market such as the California market in which 

no centralized unit commitment decisions are taken. The 

model captures the fundamental stochastic characteristics of 

the system. At any moment, a power producer may not be 

fully aware of the exact characteristics of the units comprising 

the market at that particular time. But it is likely to posses’ 

information about the steady state statistical characteristics of 

the units participating in the market. Ryan and Mazumdar's 

probabilistic production costing model can be used to provide 

a steady- state picture of the market. 

The hourly spot market price of electricity is 

determined by the market-clearing prices. The 

market-clearing price can be shown to be the variable cost or 

bid of the last unit used to meet the aggregate load prevailing 

at a particular hour. This unit is called the marginal unit. We 

determine the probability distribution of the hourly 

market-clearing price based on the stochastic process 

governing the marginal unit, which depends on the aggregate 

load and the generating unit availabilities. We model the 

aggregate load as a Gauss-Markov stochastic process and use 

continuous-time Markov chains to model the generating unit 

availabilities. We assume that the information on mean time 

to repair, mean time to failure, capacity, and variable 

operating cost of each unit participating in the market 

required to characterize these processes is available. We use 

probabilistic dynamic programming to solve the stochastic 

optimization problem pertaining to unit commitment.  The 

results of the report  on the accuracy and computational 

efficiency of several analytical approximations as compared 

to Monte Carlo simulation in estimating probability 

distributions of the spot market price for electric power. The 

firefly algorithm (FA) is a met heuristic algorithm, inspired by 

the flashing behaviour of fireflies. The primary purpose for a 

firefly's flash is to act as a signal system to attract other 

fireflies. XinShe Yang formulated this firefly algorithm by 

assuming. 

I. INFERENCE ANALYSIS 

In the short-term, typically considered to run from 

twenty-four hours to one week, the solution of the unit 

commitment problem (UCP) is used to assist decisions 

regarding generating unit operations. In a regulated market, a 

power generating utility solves the UCP to obtain an optimal 

schedule of its units in order to have enough capacity to 

supply the electricity demanded by its customers. The optimal 

schedule is found by minimizing the production cost over the 

time interval while satisfying the demand and a set of 

operating constraints. The minimization of the production 

costs assures maximum profits because the power generating 

utility has no option but to reliably supply the prevailing load. 

The price of electricity over this period is predetermined and 

unchanging; therefore, the decisions on the operation of the 

units have no effect on the firm’s revenues. As deregulation is 

being implemented in various regions of the United States, the 

traditional unit commitment problem continues to remain 

applicable for the commitment decisions made by the 

Independent System Operator (ISO). The ISO resembles very 

much the operation of a power generating utility under 

regulation. The ISO manages the transmission grid, controls 

the dispatch of generation, oversees the reliability of the 

system, and administers congestion protocols. The ISO is a 

non-profit organization. Its economic objective is to 

maximize social welfare, which is obtained by minimizing the 

costs of reliably supplying the aggregate load. Under 

deregulation, the UCP for an electric power producer will 

require a new formulation that includes the electricity market 

in the model. The main difficulty here is that the spot price of 

electricity is no longer predetermined but set by open 

competition. Thus far, the hourly spot prices of electricity 

have shown evidence of being highly volatile. The unit 

commitment decisions are now harder and the modeling of 

spot prices becomes very important in this new operating 

environment. Different approaches can be found in the 

literature in this regard. Takriti . We have introduced a 

stochastic model for the UCP in which the uncertainty in the 

load and prices of fuel and electricity are modeled using a set 

of possible scenarios. The challenge here is to generate 

representative scenarios and assign them appropriate 

probabilities. Allen and Iliac have proposed a stochastic 

model for the unit commitment of a single generator. They 

assume that the hourly prices at which electricity is sold are 

uncorrelated and normally distributed. In Tseng uses Ito 

processes to model the prices of electricity and fuel in the unit 

commitment formulation. 

The purpose of this project is to present a new 

formulation to the UCP suitable for an electric power 

producer in a deregulated market and consider 

computationally efficient procedures to solve it. We express 

the UCP as a stochastic optimization problem in which the 

objective is to maximize expected profits and the decisions 

are required to meet operating constraints such as capacity 

limits and minimum up and down time requirements. We 

show that when the spot market of electricity is included, the 

optimal solution of a UCP with M units can be found by 

solving M uncoupled sub-problems. A sub-problem is 

obtained by replacing the values of the Lagrange multipliers 

by the spot market prices of electricity. The volatility of the 

spot market price of electricity is accounted for by using a 

variation of the stochastic model proposed by Ryan and 

Maunder. The model, which is referred to as the probabilistic 

production-costing model, incorporates the stochastic 

features of load and generator availabilities. It is often used to 

obtain approximate estimates of production costs. This model 

ignores the unit commitment constraints and assumes that a 

strict predetermined merit order of loading prevails. This 

implies that a generator will be dispatched only when the 

available unit immediately preceding it in the loading order is 

working at its full capacity. We believe that this model 

provides a good approximation to the operation of an 

electricity market such as the California market in which no 

centralized unit commitment decisions are taken. The model 

captures the fundamental stochastic characteristics of the 

system. At any moment, a power producer may not be fully 

aware of the exact characteristics of the units comprising the 

market at that particular time.  

But it is likely to posses’ information about the 

steady state statistical characteristics of the units participating 

in the market. Ryan and Mazumdar's probabilistic production 
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costing model can be used to provide a steady- state picture of 

the market. The hourly spot market price of electricity is 

determined by the market-clearing prices. The 

market-clearing price can be shown to be the variable cost or 

bid of the last unit used to meet the aggregate load prevailing 

at a particular hour. This unit is called the marginal unit. We 

determine the probability distribution of the hourly 

market-clearing price based on the stochastic process 

governing the marginal unit, which depends on the aggregate 

load and the generating unit availabilities. We model the 

aggregate load as a Gauss-Markov stochastic process and use 

continuous-time Markov chains to model the generating unit 

availabilities. We assume that the information on mean time 

to repair, mean time to failure, capacity, and variable 

operating cost of each unit participating in the market 

required to characterize these processes is available. We use 

probabilistic dynamic programming to solve the stochastic 

optimization problem pertaining to unit commitment. We 

also report results on the accuracy and computational 

efficiency of several analytical approximations as compared 

to Monte Carlo simulation in estimating probability 

distributions of the spot market price for electric power. 

A. Formulation 

We consider the situation in which an electric power 

producer owns a set of M generating units and needs to 

determine an optimal commitment schedule of its units such 

that the profit over a short period of length T is maximized. 

Revenues are obtained from fulfilling bilateral contracts and 

selling electric power, at spot market prices, to the power 

pool. It is assumed that the electric-power company is a price 

taker.  If at a particular hour the power supplier decides to 

switch on one of its generating units, it will be willing to take 

the price that will prevail at this hour. We also assume that the 

power supplier has no control over the market prices and the 

M generating units will remain available during the short time 

interval of interest. In determining an optimal commitment 

schedule, there are two decision variables which are denoted 

by Pk,t and vk,t. The first variable denotes the amount of power 

to be generated by unit k at time t, and the latter is a control 

variable, whose value is “1” if the generating unit k is 

committed at hour t and “0” otherwise. The cost of the power 

produced by the generating unit k depends on the amount of 

fuel consumed and is given by a known cost function  

                                                                  

Where p is the amount of power generated. The start-up cost, 

which for thermal units depends on the prevailing temperature 

of the boilers, is given by a known function Sk(xk,t). The value 

of xk,t specifies the consecutive time that the unit has been on 

(+) or off (-) at the end of the hour t. In addition, a generating 

unit must satisfy operating constraints. The power produced 

by a generating unit must be within certain limits. When the 

kth generating unit is running, it must produce an amount of 

power between Pk
min

and Pk
max

 (MW). If the generating unit is 

off, it must stay off for at least tk
dn

 hours, and if it is on, it must 

stay on for at least tk
up

 hours. The objective function is given 

by the sum over the hours in the interval [0,T] of the revenue 

minus the cost. The revenue is obtained from supplying the 

bilateral contracts and by selling to the power pool at a price 

of mt per MWH the surplus energy Et (if any) produced in 

each hour t.  The cost includes the cost of producing the 

energy, buying shortfalls (if needed) from the power pool, and 

the startup costs. Defining the supply amount stipulated under 

the bilateral contract by lt (MWH) and by R ($/MWH) the 

price, the objective function (maximum total profit) is given 

by: 

 

A positive value of Et indicates that Et megawatts hour 

are bought from the power pool and a negative value indicates 

that -Et megawatts hour are sold to the pool. Since the quantity 

ltR is a constant, the optimization problem reduces to: 

 

                                    

subject to the following constraints (fort=1,…,T and  k=1,…,M) 

Load:                              (3.4) 

Capacity limits:                                                               

Minimum down 

time:                                   

Minimum up time:                                                    

where I( )x
x

x





0    if     is   fa lse

1     if      is  tru e 
 

 and Et unrestricted in sign 

                                         

After substituting in the objective function the value of 

, obtained from Equation 4, we 

re-write Equation 3 as follows: 

 
                                                                                                                            

which after removing constant terms is equivalent to: 

           

                                                                                                            

         Subject to the operating constraints. Because the 

constraints refer to individual units only, the advantage of 

Equation 9 is that the objective function is now separable by 

individual units. The optimal solution can be found by solving 

M de-coupled sub-problems. Thus, the sub-problem Dk for the 

k
th

 unit (k=1,..,M) is: 

     

                                                                                                               

Subject to operating constraints of the kth unit. Equation is 

similar to the sub-problem obtained in the standard version of 

the UCP excepting that the value of the Lagrange multipliers 

are now replaced by the spot market price of electricity.   

B. Stochastic Formulation of the sub-problem  

We next consider the value of the spot market price 

of electricity, mt, which is determined by the market-clearing 

price, as a random variable. When the optimization 

sub-problem is being solved for a particular unit, we assume 

that the market, which includes the M-1 units owned by the 
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power producer solving the problem, consists of N generating 

units (N>>M). The generating unit for which the sub-problem 

is solved is excluded from the market. We assume that the unit 

commitment decisions for any one unit have a negligible 

effect on the determination of the marginal unit of the market 

for a given hour. To model the market-clearing price, we 

assume that the generators participating in the market are 

brought into operation in an economic merit order of loading. 

The i
th

 unit in the loading order has a capacity ci (MW), 

variable energy cost di ($/MWH), and a forced outage rate qi. 

Under the assumption of economic merit order of loading, the 

market-clearing price at a specific hour t, is equal to the 

operating cost ($/MWH) of the last unit used to meet the load 

prevailing at this hour. The last unit in the loading order is 

called the marginal unit and is denoted by J(t). The 

market-clearing price, mt, is thus equal to dJ(t). The values of 

J(t) and dJ(t) depend on the prevailing aggregate load and the 

operating states of the generating units in the loading order.  

We write the objective function of the sub-problem for one of 

the M generating units as follows: 

 
                                                                                 

subject to the operating constraints: capacity limits, minimum 

up time, and minimum down time. 

C. PROBABILISTIC DYNAMIC PROGRAMMING SOLUTION 

The maximum profit over the period T (Equation 11) 

is a random variable because the hourly market-clearing price 

is a random variable. We assume that at the time of the 

decision, hour zero, the marginal unit and the load for all the 

hours before hour zero are known. We denote the marginal 

unit at time zero by j0, and solve the sub-problem by 

maximizing the conditional expected profit over the period T. 

We express the objective function as: 

 
                                                                                                                      

This equation is subject to the same operating constraints 

described earlier. We use probabilistic dynamic programming 

to solve this optimization problem. We define the function 

gt(vt,j) by the following equation: 

         

                                                    

This function denotes the maximum profit at hour t given that 

at this hour the jth unit is determining the market-clearing 

price and the generator to be scheduled is in the operating 

state vt. We also define the recursive function Ft(xt) to be the 

optimum expected profit from hour t  to hour T of operating 

the generator that is in state xt at time t. Thus, the expression 

for hour zero is: 

                                                                       

and for hour t (0<t<T) the expression is given by the following 

recursive relation:     

Setting the expected incoming profit at time T+1 to be zero 

(FT+1(xT+1)=0), we obtain the boundary condition for the last 

stage t = T to be: 

    

The initial conditions are given by the initial state of the 

generator x0 and v0, and the marginal unit at hour zero j0. 

Consequently, the optimal schedule is given by the solution of 

F0(x0). To solve the problem, the following conditional 

probabilities need to be computed.  

     

                                                            

Thus, the joint probability distribution of J (0) and J(t), and 

the marginal probability distribution of J(0) are needed. 

D. STOCHASTIC MODEL FOR THE MARKET-CLEARING 

PRICE 

The stochastic model of the market-clearing price uses 

the production- costing model proposed by Ryan and 

Mazumdar . This model has been used in estimating the mean 

and variance of production cost and marginal cost of a power 

generating system. 

i. Stochastic model of the market 

For a market with N generating units, the model 

uses the following assumptions:  

1. The generators are dispatched at each hour in a 

fixed, pre-assigned loading order, which 

depends only on the load and the availability of 

the generating units. Operating constraints such 

as minimum up time, minimum down time, 

spinning reserve, and scheduled maintenance are 

not considered.  

2. The ith unit in the loading order has a capacity ci 

(MW), variable energy cost di ($/MWH), mean 

time to failure i
-1

, mean time to repair i
-1

, and a 

forced outage rate, qi,  i=1,2,...,N. 

3. After adjusting for the variations in the ambient 

temperature and periodicity, the load at time t, 

u(t), is assumed to follow a Gauss-Markov 

process [16,17] with E[u(t)]=ut and Cov [u(r), 

u(t)]=r,t, where ut and r,t are assumed to be 

known. (Data analysis given in [13] validates 

this assumption.) 

4. The operating state of each generating unit i 

follows a two-state continuous-time Markov 

chain, Yi(t) = {0,1}, with failure rate i and repair 

rate i. The forced outage rate qi is related to 

these quantities by the equation qi =i /(i +i).  

5. For ij, Yi(r) and Yj(t) are statistically 

independent for all values of r and t. Each Yi(t) is 

independent of u(t) for all values of t.  
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ii. Probability distribution of the marginal 
unit. 

     To derive an analytical expression for the 

probability mass function of the marginal unit at time 

t, we first note that 

 and that the events J t j( )   and 

  are equivalent. 

Thus, the following equality holds: 

     

                                                      

Therefore, to obtain the probability mass 

function of J(t), the probability that                   

u t c Y t
i i

i

j

( ) ( )




1

 is greater than zero for all values 

of j needs to be computed.  

iii. Bivariate Probability distribution of the 
marginal unit 

An analytical approximation for the bivariate 

probability mass function of J(r) and J(t), needed for 

evaluating Equation, requires the following 

development. Writing  

       

 

 

 
                                                                                                                                   

And observing that the 

events

and { ntJmrJ  )( & )( } are equivalent, we 

obtain the following equality 

 
                                                

Therefore, to compute the bivariate probability mass 

function of J(r) and J(t) the probability that 

needs to be evaluated for all values of m and n. 

The computational effort in evaluating 

equations depends on the many values that the 

expression 


j

i

ii
tYc

1

)(  can take, which in the worst 

case is 2
N
 (when j=N). Thus, the computational time 

increases exponentially as N increases and it would 

make an exact computational procedure prohibitive 

for large N.  In our numerical examples, we have 

used three approximation methods: the normal, Edge 

worth and Monte Carlo approximations. The Edge 

worth approximation is known in the power system 

literature as the method of cumulates. We also 

attempted the use of the large deviation or 

equivalently, the saddle point approximation method 

but it turned out to be prohibitively time-consuming 

for very large systems. 

E. Solution of the probabilistic unit commitment 
problem: a numerical example 

For our purpose, we assume that a complete description 

of the electricity market is given by the data concerning the N 

power generators that comprise the market, historical data of 

the aggregate load, and the hourly temperature forecast for the 

day of trading. The description of the power generators 

includes the order in which they will be loaded by the ISO, 

their capacities, energy costs, mean times to failure, and mean 

times to repair. The data for the aggregate load gives the 

historically forecast ambient temperature and the 

corresponding load for each hour in the region served by the 

marketplace. In this example, a data set that gave the actual 

ambient temperature and the corresponding load for each 

hour in a region covering the Northeastern United States 

during the calendar years 1995 and 1996 was used.  

• UCP had been handled with Binary neighborhood 

field optimization (BNFO) algorithm multiple 

constraints 

• Power Balance Constraint 

• Spinning Reserve Constraint 

• Capacity Limit 

• Unit Minimum ON/OFF Durations 

• Unit Ramp Constraints 

The time consumption of the algorithm is around 0.9s. 

Transient stability is calculated in multiple discrete periods. 

Load angle has not been considered for UCP decision and 

economical load dispatch has not been performed before UCP 

decision are the problems in the existing inferences. 

II. OPERATIONAL ANALYSIS 

 

The existing system works towards the identification of 

load angle and hence the frequency of the generator based on 

which UCP is performed. 

 

 
 

BNN simply takes the objective functions as mentioned in the 
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previous slides and based on the a minimization or 

maximization at  a particular load conditions. A weight values 

are constructed based in if loops. When the set of rules 

increases , the decision will be correct. 

A. Frequency Variations 

System frequency is one of the most important single 

variables indicating the viability of operating of a power 

system [Kni01]. Acceptable deviations of frequency set by 

utilities are different, for instance ± 75mHz in UCPTE, and ± 

100mHz for the Great Britain and Nordel. The North 

American standards require that frequency deviations should 

be corrected within 30 seconds. Many utilities use automatic 

generator control (AGC) to maintain frequency at the 

specified value. AGC is an example of a multi-level control 

system, which includes primary, secondary and tertiary 

frequency control. Primary control is decentralized because it 

is installed in power plants situated at different geographical 

locations. The purpose of primary control is to halt the 

frequency drop or increase due to the active power imbalance, 

eliminate frequency variations and bring frequency to a 

constant value. Secondary control is a centralized function, 

which changes the electrical outputs of the generators 

involved in secondary control in order to bring frequency 

back to the value it had before the imbalance. Finally, tertiary 

control is driven by economic dispatch. It is centralized but 

does not require a response as fast as secondary control. Two 

very important points are the minimum frequency value (Fig. 

3.1b point 3) and the maximum generator output (Fig 3.1c, 

point 4). The former can be used to determine activation of 

under frequency load shedding, while the latter indicates the 

maximum spinning reserve required to stop the frequency 

drop. 

B. Frequency collapse 

Fig showed that the power output of turbine is 

frequency dependent. This might cause a significant 

frequency drop when the frequency is much lower than the 

nominal frequency. Sometimes, it might lead a power system 

to a frequency collapse. The generator characteristics shown 

in Fig. are assumed to be straight lines. In reality the 

mechanical driving power delivered by turbines depends on 

the frequency deviation and the lines shown in Fig. are not 

straight. The system generator characteristics are likely to 

have the shape shown in Fig. However, for small frequency 

deviations the linear assumption is valid. On the other hand, 

for large frequency deviations this assumption is not valid 

because the deterioration in the performances of the boiler 

feed pumps caused by these variations can reduce the 

mechanical power. The deterioration effect is shown in Fig 

.Special attention should be devoted to the lower part of 

characteristic PT +, which shows how an equivalent generator 

characteristic can be affected by the deterioration of the 

performances of the boiler feed pumps. Thus, the 

intersections of the load characteristic PL with the generator 

characteristic PT + are points s and u (see Fig.). The former is 

stable, while the latter is an unstable point. Point s is locally 

stable, as for any disturbance within the vicinity of this point 

the system returns to point s. The region in which this 

condition holds is referred to as the area of attraction. The 

lower point u is locally unstable, as any disturbance within the 

vicinity of this point will result in the system moving away 

from the equilibrium point. As in Fig. , if a loss of generation 

occurs the operating point moves from 1 to 2. The significant 

difference between the generation and load produces an initial 

rapid drop in frequency. As the difference between load and 

generation reduces, the frequency drop slows down and the 

turbine power trajectory f( PT ) approaches the equilibrium 

point s. However, the trajectory f(  

 

 

 

 

 

PT ) might enter the area of repulsion of point u. In 

that case it will be forced away and the system will suffer a 

frequency collapse. 
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Implemented Block Diagram 

 

 

 

 

 

UCP Output                                                                                               

 

Optimizing time taken for each bus 

X axis bus no 

Y axis time in sec 
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Total cost for each interval 

 
Power Transferred 

III. SIMULATION RESULTS 

In order to perform rotor angle based UCP, the first step is to 

measure the rotor angle. The simulation model is shown 

below. 

 

 
 

 
 

Rotor angle of a three phase system 
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