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Abstract— Mixing a mathematical strategy and fast matrix 

restoration criteria, Cloud Diag can effectively determine fine-

grained causes of the efficiency issues, which does not require 

any domain-specific knowledge to the focus on system. 

CloudDiag has been used in a realistic manufacturing reasoning 

handling systems to identify efficiency issues. We illustrate the 

potency of CloudDiag in three real-world situation research. 

Building on end-to-end request-flow searching within and across 

elements, methods are described for determining and position 

changes in the flow and/or moment of demand handling. The 

execution of these methods in a device called Spectroscope is 

analyzed. Six situation researches are provided of using 

Spectroscope to identify efficiency changes in a allocated storage 

space service due to rule changes, configuration modifications, 

and element degradations, indicating the value and efficiency of 

evaluating demand flows. Initial encounters of using 

Spectroscope to identify efficiency changes within choose Google 

services are also performed. 

 

 

 

I. INTRODUCTION 

 

CloudDiag regularly gathers the end-to-end searching 

information (In particular, performance time of method 

invocations) from each physical node in the reasoning. It then 

utilizes personalized Map-Reduce criteria to proactively 

evaluate the searching information. Specifically, it puts 

together the searching information of each user demand, and 

categorizes the searching information into different groups 

according to call plants of the requests. When the reasoning 

program is struggling efficiency deterioration (e.g., frequent 

reaction time of customer demands is bigger than a threshold), 

a reasoning owner can accessibility CloudDiag with its web 

connections to execute a efficiency analysis. With the demand 

searching information, CloudDiag will execute fast 

personalized matrix restoration criteria to immediately 

recognize the method invocations (together with the 

replications. they locate) which play a role the most to the 

efficiency abnormality. The whole process needs no domain-

specific information to the focus on service. CloudDiag has 

been efficiently released in identifying efficiency issues for 

the growth reasoning techniques in Alibaba Cloud Processing. 

We review three case researches in our real-world efficiency 

analysis encounters to show the potency of CloudDiag in 

assisting the providers localize the main causes of efficiency 

issues. This document produces a new strategy for the suite: 

evaluating demand flows between two accomplishments to 

recognize why efficiency has modified between them. Such 

evaluation allows one performance to provide as a design of 

appropriate performance; featuring key variations from this 

design and knowing their efficiency expenses allows for 

simpler analysis than when only a single performance is used. 

Though acquiring an performance of appropriate efficiency 

may not be possible in all cases— e.g., when a designer wants 

to understand why efficiency has always been poor—there are 

many situations for which request-flow evaluation is useful. 

For example, it can help identify efficiency changes as a result 

of modifications made during software growth (e.g., during 
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frequent regression testing) or from improvements to elements 

of a implemented program. 

 

 

II.   DIAGNOSING ANOMALIES WITHOUT DOMAIN 

KNOWLEDGE 

 

 

In this section, CloudDiag first employs a statistical 

technique to detect anomalous category that contain latency-

anomalous requirements. Then, from anomalous categories, a 

fast matrix recovery algorithm, namely, RPCA is adopted to 

identify the inconsistent methods and instances. Details are as 

follows: 

 

Identifying Anomalous Categories: 

 

We cannot rely only on the response latency of a request to 

confirm whether a request is inconsistent. Long response 

latency does not indicate a failure. For example, the response 

latency of one request reading a file from hard disk is several 

times longer than that of another reading a file from cache. 

Ordinary and anomalous replicas exist simultaneously when 

concert problems happen. For a component, the same service 

requests may pass through normal instances as well as 

abnormal instances. The response latency of a request will be 

influenced by anomalous instances that it passes all the way 

through. Normal and anomalous requests may share the 

identical call tree and be grouped into one category; thus, the 

latency distribution of requests within the same category could 

be utilized to detect whether it contains latency-anomalous 

requirements or not. Requests within one category have the 

same call tree; hence, the response latencies should be close to 

each other. A kind is considered to be normal if the latencies 

of requests within the category are clustered in a specific 

range; on the contrary, a category is considered to be 

anomalous if the latencies are over dispersed. In this regards, 

we choose the coefficient of variation (CV) [15] to measure 

the distribution of a set of data. Let  be the threshold. 

 

Identifying Anomalous Methods: 

 

In an anomalous category of requests, our aim now is to 

isolate the anomalous method invocations that are responsive 

for the presentation anomaly of the requests. For such a 

category of requests, we can create a  matrix M, 

where n is the number of the invoked methods in the 

corresponding call tree and m is the number of the requests 

that bear the same call tree. denotes the full matrix M as: 

, where L is a low-rank matrix with 

noncorrupted columns and E is a sparse matrix with a few 

nonzero corrupted columns. The matrix M is the input of 

RPCA. Therefore, the problem of identifying anomalous 

methods in a category is transferred into the process of 

recovering a matrix with unknown corrupted latency columns. 

After obtaining the noncorrupted matrix L and error matrix E, 

we can identify the corrupted columns (i.e., the anomalous 

methods) from E. The anomalous methods refer to those 

columns that are utmost from the true column space. For the 

ith column in original matrix M and 

noncorrupted matrix L, the conservatory of deviation can 

be measured as: 

 
Where represents the angle between column  and 

column . The larger the angle is, the more divergence the 

Column  is away from the true space. A method is 

defined to be anomalous if  is smaller than a given threshold. 

For each anomalous method (i.e., the corrupted column), 

anomalous replicas are located by checking the entries of the 

ruined column in Matrix E. With the row and column indices 

of the corrupted entries, we can get the physical addresses of 

anomalous replicas from physical paths. Since the same 

method (running on the same component replica) may be 

identified to be anomalous in different categories, we 

calculate the times that it is identified to be anomalous. The 

larger the number of times is, the more suspicious the method 

is. CloudDiag can then rank the methods in descending order 

of the number of times that they are identified to be 

anomalous, which can direct the operators to localize the 

primary cause of performance anomaly. 

 

 

III. PROPOSED MODEL SPECTROSCOPE 

 

To illustrate the utility of comparing request flows, this 

technique was implemented in a tool called Spectroscope and 

worn to detect performance problems seen in Ursa Minor and 

in certain Google services. This section provides an overview 

of Spectroscope, and the next describes its algorithms. 
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Figure 1-Example request-flow graph. 

 

 The graph shows a striped READ in the Ursa Minor 

distributed storage system. Nodes represent trace points and 

edges are labeled with the time between successive events. 

Parallel substructures show concurrent threads of activity. 

Node labels are constructed by concatenating the machine 

name (e.g., e10), component name (e.g., NFS3), trace-point 

name (e.g., READ CALL TYPE), and an optional semantic 

label (e.g., NFSCACHE READ MISS). Due to space 

constraints, trace points executed on other components as a 

result of the NFS server’s RPC calls are not shown. 

 

Categorizing request flows: 

Even small distributed systems can service hundreds to 

thousands of requests per second, so comparing all of them 

individually is not feasible. Instead, exploiting a general 

expectation that requests that take the same path should incur 

similar costs, Spectroscope groups identically-structured 

requests into unique categories and uses them as the basic unit 

for comparing request flows. For example, requests whose 

structures are identical because they hit in a NFS server’s data 

and metadata cache will be grouped into the same category, 

whereas requests that miss in both will be grouped in a 

dissimilar one. Two requests are deemed structurally identical 

if their string representations, as determined by a depth first 

traversal, are identical. For requests with parallel substructures, 

Spectroscope computes all possible string representations 

when formative the category in which to bin them. The 

exponential cost is mitigated by imposing an order on parallel 

substructures (i.e., by always traversing them in alphabetical 

order, as determined by their root node names) and by the fact 

that parallelism is limited in most request flows we have 

observed. For each category, Spectroscope identifies 

aggregate statistics, including request count, standard response 

time, and variance. To identify where time is spent, it also 

computes average edge latencies and corresponding variances. 

Spectroscope displays categories in either a graph view, with 

statistical information overlaid, or within train-schedule 

visualizations (also known as swim lanes), which more 

directly show the constituent requests’ pattern of activity. 

Spectroscope uses selection criteria to limit the number of 

categories developers must examine. For example, when 

comparing request flows, statistical tests and a ranking scheme 

are used. The number of categories could be further reduced 

by using unsupervised clustering algorithms, such as those 

used in Magpie, to bin similar but not necessarily identical 

requests into the same category. Initial versions of 

Spectroscope used off-the-shelf clustering algorithms, but we 

found the groups they created too coarse-grained and 

unpredictable. Often, they would group mutations and 

precursors within the same category, masking their existence. 

For clustering algorithms to be useful, improvements such as 

distance metrics that better align with developers’ notions of 

request similarity are needed. Without them, use of clustering 

algorithms will result in categories composed of seemingly 

dissimilar requests. 

Comparing request flows: 

Performance changes can result from a variety of factors, 

such as internal changes to the system that result in 

performance regressions, unintended side effects of changes to 

configuration files or environmental issues. Spectroscope 

helps diagnose these problems by comparing request flows 

and identifying the key resulting mutations. When comparing 

request flows, Spectroscope takes as input request-flow graphs 

from two periods of activity, which we refer to as a non-

problem period and a problem period. It creates categories 

composed of requests from both periods and uses statistical 

tests and heuristics to identify which contain structural 

mutations, response time mutations, or precursors. Categories 

containing mutations are presented to the developer in a list 

ranked by expected contribution to the performance change. 

Note that the periods do not need to be aligned exactly with 

the performance change (e.g., at Google we often chose day-

long periods based on historic average latencies). 

Visualizations of categories that contain mutations are similar 

to those described previously, except per period statistical 

information is shown. The root cause of response-time 

mutations is localized by showing the edges responsible for 

the mutation in red. The root cause of structural mutations is 

localized by providing a ranked list of the candidate 

precursors, so that the developer can determine how they 

differ. 
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Figure 2-Spectroscope’s workflow for comparing request flows.  

 

First, Spectroscope groups requests from both periods into 

categories. Second, it identifies which categories contain 

mutations or precursors. Third, it ranks mutation categories 

according to their expected contribution to the performance 

change. Developers are presented this ranked list. 

Visualizations of mutations and their precursors can be shown. 

Also, low-level differences can be identified for them. 
 
 
 
 
 

IV. URSA MINOR 

Ursa Minor separates metadata services from data services, 

such that clients can access data on storage nodes without 

moving it all through metadata servers. An Ursa Minor 

instance (called a ―constellation‖) consists of potentially many 

NFS servers (for unmodified clients), storage nodes (SNs), 

metadata servers (MDSs), and end-to-end-trace servers. To 

access data, clients must first send a request to a metadata 

server asking for the appropriate permissions and locations of 

the data on the storage nodes. consumers can then access the 

storage nodes directly. Ursa Minor has been in active advance 

since 2004 and comprises about 230,000 lines of code. More 

than 20 graduate students and staff have contributed to it over 

its lifetime. More details about its implementation can be 

found in Abd-El-Malek et al. The components of Ursa Minor 

are usually run on separate machines within a datacenter. 

Though Ursa Minor supports a subjective number of 

components, the experiments and case studies detailed in this 

paper use a simple five-machine configuration: one NFS 

server, one metadata server, one trace server, and two storage 

nodes. One storage node stores data, while the other stores 

metadata. Not coincidentally, this is the configuration used in 

the nightly regression tests that uncovered many of the 

problems described in the case studies. 

 
Figure 3-Ursa Minor Architecture:  

 

Ursa Minor can be deployed in many configurations, with 

an arbitrary number of NFS servers, metadata servers, storage 

nodes (SNs), and trace servers. Here, a simple five-component 

configuration is shown. 

 

 

V. DAPPER & GOOGLE SERVICES 

 

The Google services for which Spectroscope was applied 

were instrumented using Dapper, which automatically embeds 

trace points in Google’s RPC structure. Like Stardust, Dapper 

employs request sampling, but uses a sampling rate of less 

than 0.1%. Spectroscope was implemented as an extension to 

Dapper’s aggregation pipeline, which groups individual 

requests into categories and was originally written to support 

Dapper’s pre-existing analysis tools. Categories created by the 

aggregation pipeline only show compressed call graphs with 

identical children and siblings merged together. 

 

VI. MDS CONFIGURATION CHANGE 

 
After a particular large code check-in, performance of 

postmark-large decayed significantly, from 46tps to 

28tps. To diagnose this problem, we used Spectroscope to 

compare request flows between two runs of postmark-

large, one from before the check-in and one from after. The 

results showed many categories that contained structural 

mutations. Comparing them to their most-likely precursor 

categories revealed that the storage node utilized by the 

metadata server had misused Before the check-in, the 

metadata server wrote metadata only to its dedicated storage 

node. After the check-in, it issued most writes to the data 

storage node instead. We also used Spectroscope to identify 

the low-level parameter differences between a few structural-

mutation categories and their corresponding precursor 

categories. The regression tree found differences in elements 

of the data distribution scheme (e.g., type of fault tolerance 

used). 
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Figure 4- CDF of  for large categories induced by three benchmarks run 

on Ursa Minor.  

 

At least 88% of the categories induced by each benchmark 

exhibit low variance ( <1). The results for linux-build and 

SFS are more heavy-tailed than postmark-large, partly due to 

extra lock contention in the metadata server. 

 

 

 

Figure 5: CDF of for large categories induced by Big table instances in 
three Google datacenters.  

 

Dapper’s instrumentation of big table is sparse; so many paths 

cannot be disambiguated and have been merged together in 

the observed categories, resulting in a higher  than 

otherwise expected. Even so, 47–69% of categories exhibit 

low variance. 

 
Slowdown due to code changes 

This synthetic problem was injected into Ursa Minor to 

show how request-flow comparison can be used to diagnose 

slowdowns due to feature additions or regressions and to 

assess Spectroscope’s feeling to changes in response time. 

Spectroscope was used to compare request flows between two 

runs of SFS97. Problem period runs included a spin loop 

injected into the storage nodes’ WRITE code path. Any 

WRITE request that accessed a storage node incurred this 

extra delay, which manifested in edges of the form ⋆ → 

STORAGE NODE RPC REPLY. Normally, these edges 

exhibit a latency of 100µs. For the latter two cases, 

Spectroscope was able to identify the resulting response-time 

mutations and localize them to the affected edges. Of the 

categories identified, only 6–7% is false positives and 100% 

of the 10 highest-ranked ones are relevant. The coverage is 

92% and 93%. Variance in response times and the edge 

latencies in which the delay manifests prevent Spectroscope 

from properly identifying the affected categories for the 100µs 

case. It identifies 11 categories that contain requests that 

traverse the affected edges multiple times as containing 

response-time mutations, but is unable to assign those edges 

as the ones responsible for the slowdown. 

 

 
Figure 6: Visualization of create behaviour.  

 
Two train schedule visualizations are shown, the first one a 

fast early create during postmark-large and the other a slower 

create issued later in the benchmark. Messages are exchanged 

between the NFS Server (A), Metadata Server (B), Metadata 

Storage Node (C), and Data Storage Node (D). The first phase 

of the create procedure is metadata insertion, which is shown 

to be responsible for the majority of the delay. 

 

VII. EXPERIENCES AT GOOGLE 

 

This section describes preliminary experiences using request-

flow comparison, as implemented in Spectroscope, to 

diagnose performance problems within select Google services. 

 

 
Figure 7: Timeline of inter-arrival times of requests at the NFS Server.  

A 5s sample of requests, where each rectangle represents 

the process time of a request, reveals long periods of inactivity 

due to not have requests from the client during spiked copy 

times (B) compared to periods of normal activity (A). 
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VIII. CONCLUSION 

 
Evaluating demand flows, as taken by end-to-end records, 

is a highly effective new technique for identifying 

performance changes between two time times or system 

editions. Spectroscope’s methods for this comparison allow it 

to perfectly recognize and position strains and recognize their 

precursors, concentrating attention on the most important 

variations. Encounters with Spectroscope confirm its 

effectiveness and effectiveness. 

 

IX. REFERENCES 

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based storage. 

Conference on File and Storage Technologies. USENIX Association, 

2005. 2, 6 
[2] M. K. Aguilera, et al. Performance debugging for distributed systems 

of black boxes. ACM Symposium on Operating System Principles. 

ACM, 2003. Software Engineers,December 2010. 
[3]  P. Barham, et al. Using Magpie for request extraction and workload 

modelling. Symposium on Operating Systems Design and 

Implementation. USENIX Association, 2004. 1, 2, 3, 13 
[4] C. M. Bishop. Pattern recognition and machine learning, first edition. 

Springer Science + Business Media, LLC, 2006. 

[5] B. M. Cantrill, et al. Dynamic instrumentation of production systems. 
USENIX Annual Technical Conference. USENIX Association, 2004. 

[6] A. Chanda, et al. Whodunit: Transactional profiling for multi-tier 

applications. EuroSys. ACM, 2007. 1, 2 
[7]  Chang, et al. Bigtable: a distributed storage system for structured data. 

Symposium on Operating Systems Design and Implementation. 

USENIX Association, 2006. 
[8] M. Y. Chen, et al. Path-based failure and evolution management. 

Symposium on Networked Systems Design and Implementation. 

USENIX Association, 2004. 1, 2, 13 
[9] R. Fonseca, et al. Experiences with tracing causality in networked 

services. Internet Network Management Conference on Research on 

Enterprise Networking. USENIX Association, 2010. 2, 13 
[10] R. Fonseca, et al. X-Trace: a pervasive network tracing framework. 

C___ _ • _ ýfltworked Systems Design and Implementation. USENIX 

Association, 2007. 1, 2 
[11] http://www.gnu.org/software/gdb/. 1 

[12] S. Ghemawat, et al. The Google file system. ACM Symposium on 

Operating System Principles. ACM, 2003. 
[13] S. L. Graham, et al. gprof: a call graph execution profiler. ACM 

SIGPLAN Symposium on Compiler Construction. Published as 

SIGPLAN Notices, 17(6):120–126, June 1982. 
[14] Graphviz. http://www.graphviz.org. 6 

[15] J. Heer, et al. Prefuse: a toolkit for interactive information visualization. 

Conference on Human Factors in Computing Systems. ACM, 2005.6 
[16] J. Hendricks, et al. Improving small file performance in objectbased 

storage. Technical report CMU-PDL-06-104. Parallel Data Laboratory, 

Carnegie Mellon University, Pittsburgh, PA, May 2006. 10 
[17] M. P. Kasick, et al. Black-box problem diagnosis in parallel file 

systems. Conference on File and Storage Technologies. USENIX 

Association, 2010. 13 
[18] J. Katcher. PostMark: a new file system benchmark. Technical report 

TR3022. Network Appliance, October 1997. 7 

[19] F. J. Massey, Jr. The Kolmogorov-Smirnov test for goodness offit. 
Journal of the American Statistical Association, 46(253):66–78, 1951. 

4 
[20] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems. 

EuroSys. ACM, 2006. 

[21] T. Moseley, et al. OptiScope: performance accountability for 
optimizing compilers. International Symposium on Code Generation 

and Optimization. IEEE/ACM, 2009. 13 

[22] W. Norcott and D. Capps. IoZone filesystem benchmark program, 

2002.http://www.iozone.org. 7 

[23] X. Pan, et al. Ganesha: black-box fault diagnosis for MapReduce 
systems. Hot Metrics. ACM, 2009. 13 

[24] J. R. Quinlan. Bagging, boosting and C4.5. 13th National Conference 

on Artificial Intelligence. AAAI Press, 1996. 6 
[25] P. Reynolds, et al. Pip: Detecting the unexpected in distributed systems. 

Symposium on Networked Systems Design and Implementation. 

USENIX Association, 2006. 1, 13 
[26] P. Reynolds, et al. WAP5: Black-box Performance Debugging for 

Wide-Area Systems. International World Wide Web Conference. ACM 

Press, 2006. 13 
[27] R. R. Sambasivan, et al. Diagnosing performance problems by 

visualizing and comparing system behaviours. Technical report 10–103. 

Carnegie Mellon University, February 2010. 2 
[28] R. R. Sambasivan, et al. Categorizing and differencing system 

behavioursb _¨qx@fl_ Ã __ _ s_ýfl•_ ýfl autonomic computing 

(HotAC). USENIX Association, 2007. 3, 13 
[29] SPEC SFS97 (2.0). http://www.spec.org/sfs97. 2, 7 

[30] B. H. Sigelman, et al. Dapper, a large-scale distributed systems tracing 

infrastructure. Technical report dapper 2010-1. Google, April 2010. 1, 
2, 13 

[31] E. Thereska, et al. Informed data distribution selection in a 

selfpredicting storage system. International conference on autonomic 
computing. IEEE, 2006. 13 

[32] E. Thereska and G. R. Ganger. IRONModel: robust performance 

models in the wild. ACM SIGMETRICS Conference on Measurement 
and Modeling of Computer Systems. ACM, 2008.1,13 

[33] E. Thereska, et al. Stardust: Tracking activity in a distributed storage 

system. ACM SIGMETRICS Conference on Measurement and 
Modeling of Computer Systems. ACM, 2006. 1, 2, 13 

[34] A. Traeger, et al. DARC: Dynamic analysis of root causes of latency 

distributions. ACM SIGMETRICS Conference on Measurement and 
Modeling of Computer Systems. ACM, 2008. 13 

[35] J. Tucek, et al. Triage: diagnosing production run failures at the user’s 
site. ACM Symposium on Operating System Principles, 2007. 13 

[36] E. R. Tufte. The visual display of quantitative information. Graphics 

Press_ øn€b@ ire, Connecticut, 1983. 3 
 

 

 


