
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

10

 Implementation of Cloud Diag by Combining

Statistical Techniques and Fast Matrix Recovery

Algorithm to Identify the Fine Grained Unsupervised

Performance Problems for Producing Efficiently in

Cloud Computing Systems

Muntha V Charishma
*1

, A.Ravi
#2

 and D. Venkata Subbaiah
3

*
Student, Priyadarshini College of Engineering and Technology, Nellore, India

#
Assistant Professor (CSE), Priyadarshini College of Engineering and Technology, Nellore, India

3
HOD (CSE), Priyadarshini College of Engineering and Technology, Nellore, India

1
charishma.583@gmail.com

2
510ravi@gmail.com

3
dvsmtech_2005@yahoo.com

Abstract— Mixing a mathematical strategy and fast matrix

restoration criteria, Cloud Diag can effectively determine fine-

grained causes of the efficiency issues, which does not require

any domain-specific knowledge to the focus on system.

CloudDiag has been used in a realistic manufacturing reasoning

handling systems to identify efficiency issues. We illustrate the

potency of CloudDiag in three real-world situation research.

Building on end-to-end request-flow searching within and across

elements, methods are described for determining and position

changes in the flow and/or moment of demand handling. The

execution of these methods in a device called Spectroscope is

analyzed. Six situation researches are provided of using

Spectroscope to identify efficiency changes in a allocated storage

space service due to rule changes, configuration modifications,

and element degradations, indicating the value and efficiency of

evaluating demand flows. Initial encounters of using

Spectroscope to identify efficiency changes within choose Google

services are also performed.

I. INTRODUCTION

CloudDiag regularly gathers the end-to-end searching

information (In particular, performance time of method

invocations) from each physical node in the reasoning. It then

utilizes personalized Map-Reduce criteria to proactively

evaluate the searching information. Specifically, it puts

together the searching information of each user demand, and

categorizes the searching information into different groups

according to call plants of the requests. When the reasoning

program is struggling efficiency deterioration (e.g., frequent

reaction time of customer demands is bigger than a threshold),

a reasoning owner can accessibility CloudDiag with its web

connections to execute a efficiency analysis. With the demand

searching information, CloudDiag will execute fast

personalized matrix restoration criteria to immediately

recognize the method invocations (together with the

replications. they locate) which play a role the most to the

efficiency abnormality. The whole process needs no domain-

specific information to the focus on service. CloudDiag has

been efficiently released in identifying efficiency issues for

the growth reasoning techniques in Alibaba Cloud Processing.

We review three case researches in our real-world efficiency

analysis encounters to show the potency of CloudDiag in

assisting the providers localize the main causes of efficiency

issues. This document produces a new strategy for the suite:

evaluating demand flows between two accomplishments to

recognize why efficiency has modified between them. Such

evaluation allows one performance to provide as a design of

appropriate performance; featuring key variations from this

design and knowing their efficiency expenses allows for

simpler analysis than when only a single performance is used.

Though acquiring an performance of appropriate efficiency

may not be possible in all cases— e.g., when a designer wants

to understand why efficiency has always been poor—there are

many situations for which request-flow evaluation is useful.

For example, it can help identify efficiency changes as a result

of modifications made during software growth (e.g., during

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

11

frequent regression testing) or from improvements to elements

of a implemented program.

II. DIAGNOSING ANOMALIES WITHOUT DOMAIN

KNOWLEDGE

In this section, CloudDiag first employs a statistical

technique to detect anomalous category that contain latency-

anomalous requirements. Then, from anomalous categories, a

fast matrix recovery algorithm, namely, RPCA is adopted to

identify the inconsistent methods and instances. Details are as

follows:

Identifying Anomalous Categories:

We cannot rely only on the response latency of a request to

confirm whether a request is inconsistent. Long response

latency does not indicate a failure. For example, the response

latency of one request reading a file from hard disk is several

times longer than that of another reading a file from cache.

Ordinary and anomalous replicas exist simultaneously when

concert problems happen. For a component, the same service

requests may pass through normal instances as well as

abnormal instances. The response latency of a request will be

influenced by anomalous instances that it passes all the way

through. Normal and anomalous requests may share the

identical call tree and be grouped into one category; thus, the

latency distribution of requests within the same category could

be utilized to detect whether it contains latency-anomalous

requirements or not. Requests within one category have the

same call tree; hence, the response latencies should be close to

each other. A kind is considered to be normal if the latencies

of requests within the category are clustered in a specific

range; on the contrary, a category is considered to be

anomalous if the latencies are over dispersed. In this regards,

we choose the coefficient of variation (CV) [15] to measure

the distribution of a set of data. Let be the threshold.

Identifying Anomalous Methods:

In an anomalous category of requests, our aim now is to

isolate the anomalous method invocations that are responsive

for the presentation anomaly of the requests. For such a

category of requests, we can create a matrix M,

where n is the number of the invoked methods in the

corresponding call tree and m is the number of the requests

that bear the same call tree. denotes the full matrix M as:

, where L is a low-rank matrix with

noncorrupted columns and E is a sparse matrix with a few

nonzero corrupted columns. The matrix M is the input of

RPCA. Therefore, the problem of identifying anomalous

methods in a category is transferred into the process of

recovering a matrix with unknown corrupted latency columns.

After obtaining the noncorrupted matrix L and error matrix E,

we can identify the corrupted columns (i.e., the anomalous

methods) from E. The anomalous methods refer to those

columns that are utmost from the true column space. For the

ith column in original matrix M and

noncorrupted matrix L, the conservatory of deviation can

be measured as:

Where represents the angle between column and

column . The larger the angle is, the more divergence the

Column is away from the true space. A method is

defined to be anomalous if is smaller than a given threshold.

For each anomalous method (i.e., the corrupted column),

anomalous replicas are located by checking the entries of the

ruined column in Matrix E. With the row and column indices

of the corrupted entries, we can get the physical addresses of

anomalous replicas from physical paths. Since the same

method (running on the same component replica) may be

identified to be anomalous in different categories, we

calculate the times that it is identified to be anomalous. The

larger the number of times is, the more suspicious the method

is. CloudDiag can then rank the methods in descending order

of the number of times that they are identified to be

anomalous, which can direct the operators to localize the

primary cause of performance anomaly.

III. PROPOSED MODEL SPECTROSCOPE

To illustrate the utility of comparing request flows, this

technique was implemented in a tool called Spectroscope and

worn to detect performance problems seen in Ursa Minor and

in certain Google services. This section provides an overview

of Spectroscope, and the next describes its algorithms.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

12

Figure 1-Example request-flow graph.

 The graph shows a striped READ in the Ursa Minor

distributed storage system. Nodes represent trace points and

edges are labeled with the time between successive events.

Parallel substructures show concurrent threads of activity.

Node labels are constructed by concatenating the machine

name (e.g., e10), component name (e.g., NFS3), trace-point

name (e.g., READ CALL TYPE), and an optional semantic

label (e.g., NFSCACHE READ MISS). Due to space

constraints, trace points executed on other components as a

result of the NFS server’s RPC calls are not shown.

Categorizing request flows:

Even small distributed systems can service hundreds to

thousands of requests per second, so comparing all of them

individually is not feasible. Instead, exploiting a general

expectation that requests that take the same path should incur

similar costs, Spectroscope groups identically-structured

requests into unique categories and uses them as the basic unit

for comparing request flows. For example, requests whose

structures are identical because they hit in a NFS server’s data

and metadata cache will be grouped into the same category,

whereas requests that miss in both will be grouped in a

dissimilar one. Two requests are deemed structurally identical

if their string representations, as determined by a depth first

traversal, are identical. For requests with parallel substructures,

Spectroscope computes all possible string representations

when formative the category in which to bin them. The

exponential cost is mitigated by imposing an order on parallel

substructures (i.e., by always traversing them in alphabetical

order, as determined by their root node names) and by the fact

that parallelism is limited in most request flows we have

observed. For each category, Spectroscope identifies

aggregate statistics, including request count, standard response

time, and variance. To identify where time is spent, it also

computes average edge latencies and corresponding variances.

Spectroscope displays categories in either a graph view, with

statistical information overlaid, or within train-schedule

visualizations (also known as swim lanes), which more

directly show the constituent requests’ pattern of activity.

Spectroscope uses selection criteria to limit the number of

categories developers must examine. For example, when

comparing request flows, statistical tests and a ranking scheme

are used. The number of categories could be further reduced

by using unsupervised clustering algorithms, such as those

used in Magpie, to bin similar but not necessarily identical

requests into the same category. Initial versions of

Spectroscope used off-the-shelf clustering algorithms, but we

found the groups they created too coarse-grained and

unpredictable. Often, they would group mutations and

precursors within the same category, masking their existence.

For clustering algorithms to be useful, improvements such as

distance metrics that better align with developers’ notions of

request similarity are needed. Without them, use of clustering

algorithms will result in categories composed of seemingly

dissimilar requests.

Comparing request flows:

Performance changes can result from a variety of factors,

such as internal changes to the system that result in

performance regressions, unintended side effects of changes to

configuration files or environmental issues. Spectroscope

helps diagnose these problems by comparing request flows

and identifying the key resulting mutations. When comparing

request flows, Spectroscope takes as input request-flow graphs

from two periods of activity, which we refer to as a non-

problem period and a problem period. It creates categories

composed of requests from both periods and uses statistical

tests and heuristics to identify which contain structural

mutations, response time mutations, or precursors. Categories

containing mutations are presented to the developer in a list

ranked by expected contribution to the performance change.

Note that the periods do not need to be aligned exactly with

the performance change (e.g., at Google we often chose day-

long periods based on historic average latencies).

Visualizations of categories that contain mutations are similar

to those described previously, except per period statistical

information is shown. The root cause of response-time

mutations is localized by showing the edges responsible for

the mutation in red. The root cause of structural mutations is

localized by providing a ranked list of the candidate

precursors, so that the developer can determine how they

differ.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

13

Figure 2-Spectroscope’s workflow for comparing request flows.

First, Spectroscope groups requests from both periods into

categories. Second, it identifies which categories contain

mutations or precursors. Third, it ranks mutation categories

according to their expected contribution to the performance

change. Developers are presented this ranked list.

Visualizations of mutations and their precursors can be shown.

Also, low-level differences can be identified for them.

IV. URSA MINOR

Ursa Minor separates metadata services from data services,

such that clients can access data on storage nodes without

moving it all through metadata servers. An Ursa Minor

instance (called a ―constellation‖) consists of potentially many

NFS servers (for unmodified clients), storage nodes (SNs),

metadata servers (MDSs), and end-to-end-trace servers. To

access data, clients must first send a request to a metadata

server asking for the appropriate permissions and locations of

the data on the storage nodes. consumers can then access the

storage nodes directly. Ursa Minor has been in active advance

since 2004 and comprises about 230,000 lines of code. More

than 20 graduate students and staff have contributed to it over

its lifetime. More details about its implementation can be

found in Abd-El-Malek et al. The components of Ursa Minor

are usually run on separate machines within a datacenter.

Though Ursa Minor supports a subjective number of

components, the experiments and case studies detailed in this

paper use a simple five-machine configuration: one NFS

server, one metadata server, one trace server, and two storage

nodes. One storage node stores data, while the other stores

metadata. Not coincidentally, this is the configuration used in

the nightly regression tests that uncovered many of the

problems described in the case studies.

Figure 3-Ursa Minor Architecture:

Ursa Minor can be deployed in many configurations, with

an arbitrary number of NFS servers, metadata servers, storage

nodes (SNs), and trace servers. Here, a simple five-component

configuration is shown.

V. DAPPER & GOOGLE SERVICES

The Google services for which Spectroscope was applied

were instrumented using Dapper, which automatically embeds

trace points in Google’s RPC structure. Like Stardust, Dapper

employs request sampling, but uses a sampling rate of less

than 0.1%. Spectroscope was implemented as an extension to

Dapper’s aggregation pipeline, which groups individual

requests into categories and was originally written to support

Dapper’s pre-existing analysis tools. Categories created by the

aggregation pipeline only show compressed call graphs with

identical children and siblings merged together.

VI. MDS CONFIGURATION CHANGE

After a particular large code check-in, performance of

postmark-large decayed significantly, from 46tps to

28tps. To diagnose this problem, we used Spectroscope to

compare request flows between two runs of postmark-

large, one from before the check-in and one from after. The

results showed many categories that contained structural

mutations. Comparing them to their most-likely precursor

categories revealed that the storage node utilized by the

metadata server had misused Before the check-in, the

metadata server wrote metadata only to its dedicated storage

node. After the check-in, it issued most writes to the data

storage node instead. We also used Spectroscope to identify

the low-level parameter differences between a few structural-

mutation categories and their corresponding precursor

categories. The regression tree found differences in elements

of the data distribution scheme (e.g., type of fault tolerance

used).

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

14

Figure 4- CDF of for large categories induced by three benchmarks run

on Ursa Minor.

At least 88% of the categories induced by each benchmark

exhibit low variance (<1). The results for linux-build and

SFS are more heavy-tailed than postmark-large, partly due to

extra lock contention in the metadata server.

Figure 5: CDF of for large categories induced by Big table instances in
three Google datacenters.

Dapper’s instrumentation of big table is sparse; so many paths

cannot be disambiguated and have been merged together in

the observed categories, resulting in a higher than

otherwise expected. Even so, 47–69% of categories exhibit

low variance.

Slowdown due to code changes

This synthetic problem was injected into Ursa Minor to

show how request-flow comparison can be used to diagnose

slowdowns due to feature additions or regressions and to

assess Spectroscope’s feeling to changes in response time.

Spectroscope was used to compare request flows between two

runs of SFS97. Problem period runs included a spin loop

injected into the storage nodes’ WRITE code path. Any

WRITE request that accessed a storage node incurred this

extra delay, which manifested in edges of the form ⋆ →

STORAGE NODE RPC REPLY. Normally, these edges

exhibit a latency of 100µs. For the latter two cases,

Spectroscope was able to identify the resulting response-time

mutations and localize them to the affected edges. Of the

categories identified, only 6–7% is false positives and 100%

of the 10 highest-ranked ones are relevant. The coverage is

92% and 93%. Variance in response times and the edge

latencies in which the delay manifests prevent Spectroscope

from properly identifying the affected categories for the 100µs

case. It identifies 11 categories that contain requests that

traverse the affected edges multiple times as containing

response-time mutations, but is unable to assign those edges

as the ones responsible for the slowdown.

Figure 6: Visualization of create behaviour.

Two train schedule visualizations are shown, the first one a

fast early create during postmark-large and the other a slower

create issued later in the benchmark. Messages are exchanged

between the NFS Server (A), Metadata Server (B), Metadata

Storage Node (C), and Data Storage Node (D). The first phase

of the create procedure is metadata insertion, which is shown

to be responsible for the majority of the delay.

VII. EXPERIENCES AT GOOGLE

This section describes preliminary experiences using request-

flow comparison, as implemented in Spectroscope, to

diagnose performance problems within select Google services.

Figure 7: Timeline of inter-arrival times of requests at the NFS Server.

A 5s sample of requests, where each rectangle represents

the process time of a request, reveals long periods of inactivity

due to not have requests from the client during spiked copy

times (B) compared to periods of normal activity (A).

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

15

VIII. CONCLUSION

Evaluating demand flows, as taken by end-to-end records,

is a highly effective new technique for identifying

performance changes between two time times or system

editions. Spectroscope’s methods for this comparison allow it

to perfectly recognize and position strains and recognize their

precursors, concentrating attention on the most important

variations. Encounters with Spectroscope confirm its

effectiveness and effectiveness.

IX. REFERENCES

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based storage.

Conference on File and Storage Technologies. USENIX Association,

2005. 2, 6
[2] M. K. Aguilera, et al. Performance debugging for distributed systems

of black boxes. ACM Symposium on Operating System Principles.

ACM, 2003. Software Engineers,December 2010.
[3] P. Barham, et al. Using Magpie for request extraction and workload

modelling. Symposium on Operating Systems Design and

Implementation. USENIX Association, 2004. 1, 2, 3, 13
[4] C. M. Bishop. Pattern recognition and machine learning, first edition.

Springer Science + Business Media, LLC, 2006.

[5] B. M. Cantrill, et al. Dynamic instrumentation of production systems.
USENIX Annual Technical Conference. USENIX Association, 2004.

[6] A. Chanda, et al. Whodunit: Transactional profiling for multi-tier

applications. EuroSys. ACM, 2007. 1, 2
[7] Chang, et al. Bigtable: a distributed storage system for structured data.

Symposium on Operating Systems Design and Implementation.

USENIX Association, 2006.
[8] M. Y. Chen, et al. Path-based failure and evolution management.

Symposium on Networked Systems Design and Implementation.

USENIX Association, 2004. 1, 2, 13
[9] R. Fonseca, et al. Experiences with tracing causality in networked

services. Internet Network Management Conference on Research on

Enterprise Networking. USENIX Association, 2010. 2, 13
[10] R. Fonseca, et al. X-Trace: a pervasive network tracing framework.

C___ _ • _ ýfltworked Systems Design and Implementation. USENIX

Association, 2007. 1, 2
[11] http://www.gnu.org/software/gdb/. 1

[12] S. Ghemawat, et al. The Google file system. ACM Symposium on

Operating System Principles. ACM, 2003.
[13] S. L. Graham, et al. gprof: a call graph execution profiler. ACM

SIGPLAN Symposium on Compiler Construction. Published as

SIGPLAN Notices, 17(6):120–126, June 1982.
[14] Graphviz. http://www.graphviz.org. 6

[15] J. Heer, et al. Prefuse: a toolkit for interactive information visualization.

Conference on Human Factors in Computing Systems. ACM, 2005.6
[16] J. Hendricks, et al. Improving small file performance in objectbased

storage. Technical report CMU-PDL-06-104. Parallel Data Laboratory,

Carnegie Mellon University, Pittsburgh, PA, May 2006. 10
[17] M. P. Kasick, et al. Black-box problem diagnosis in parallel file

systems. Conference on File and Storage Technologies. USENIX

Association, 2010. 13
[18] J. Katcher. PostMark: a new file system benchmark. Technical report

TR3022. Network Appliance, October 1997. 7

[19] F. J. Massey, Jr. The Kolmogorov-Smirnov test for goodness offit.
Journal of the American Statistical Association, 46(253):66–78, 1951.

4
[20] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems.

EuroSys. ACM, 2006.

[21] T. Moseley, et al. OptiScope: performance accountability for
optimizing compilers. International Symposium on Code Generation

and Optimization. IEEE/ACM, 2009. 13

[22] W. Norcott and D. Capps. IoZone filesystem benchmark program,

2002.http://www.iozone.org. 7

[23] X. Pan, et al. Ganesha: black-box fault diagnosis for MapReduce
systems. Hot Metrics. ACM, 2009. 13

[24] J. R. Quinlan. Bagging, boosting and C4.5. 13th National Conference

on Artificial Intelligence. AAAI Press, 1996. 6
[25] P. Reynolds, et al. Pip: Detecting the unexpected in distributed systems.

Symposium on Networked Systems Design and Implementation.

USENIX Association, 2006. 1, 13
[26] P. Reynolds, et al. WAP5: Black-box Performance Debugging for

Wide-Area Systems. International World Wide Web Conference. ACM

Press, 2006. 13
[27] R. R. Sambasivan, et al. Diagnosing performance problems by

visualizing and comparing system behaviours. Technical report 10–103.

Carnegie Mellon University, February 2010. 2
[28] R. R. Sambasivan, et al. Categorizing and differencing system

behavioursb _¨qx@fl_ Ã __ _ s_ýfl•_ ýfl autonomic computing

(HotAC). USENIX Association, 2007. 3, 13
[29] SPEC SFS97 (2.0). http://www.spec.org/sfs97. 2, 7

[30] B. H. Sigelman, et al. Dapper, a large-scale distributed systems tracing

infrastructure. Technical report dapper 2010-1. Google, April 2010. 1,
2, 13

[31] E. Thereska, et al. Informed data distribution selection in a

selfpredicting storage system. International conference on autonomic
computing. IEEE, 2006. 13

[32] E. Thereska and G. R. Ganger. IRONModel: robust performance

models in the wild. ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems. ACM, 2008.1,13

[33] E. Thereska, et al. Stardust: Tracking activity in a distributed storage

system. ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. ACM, 2006. 1, 2, 13

[34] A. Traeger, et al. DARC: Dynamic analysis of root causes of latency

distributions. ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. ACM, 2008. 13

[35] J. Tucek, et al. Triage: diagnosing production run failures at the user’s
site. ACM Symposium on Operating System Principles, 2007. 13

[36] E. R. Tufte. The visual display of quantitative information. Graphics

Press_ øn€b@ ire, Connecticut, 1983. 3

