International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
Volume 3 Issue 1 -NOVEMBER 2013.

Developing a Reliability Prediction System Wsin
Multivariate Analysis Theory on Software Quality

Metrics

E. Umamaheswaft, Dr.D.K.Ghosh?

School of Computing Science and Engineering, \fivéfsity, Chennai, TN, India.
! umamaheswari.e@vit.ac.in
" Professor, VSB Engineering College, Karur, TN, éndi

Abstract- Software Reliability Prediction techniques are Abng
with the existing 30 software measures, nine momeasures are
identified which results in the best performance bthe software
application. Predicting the reliability of software systems, failure
data should be measured by different ways during th
development process and its execution phases. Thaper
proposes a structure of reliability prediction which will be used
to rank the software measures based on the structar with

multivariate analysis theory .This structure will be accurate with
the experimental data obtained, and it also checkshat the

software has met its reliability or not and if not, it will continue

the process again to achieve its reliability.

Index Terms- Software Reliability Prediction, Software
measures, multivariate analysis theory.

I. INTRODUCTION

RPS (Reliability Prediction System) is an outliner f
predicting the reliability of software by takingettmeasures of

software. Reliability Prediction can be achievedapplying
multivariate analysis theory (analysis of data Imrg more
than one variable). Ranking of existing softwaresveibone
before by taking the opinions of the 30 experts andhis
report it is possible by the help of the RPS framewio rank
the software methods. There are few measures iedladd
explained in this paper which helps more efficigntb
calculate the reliability of the software.

There are four types of models which have beenidered

as potential candidates for modeling the reliapiit software.

These include reliability growth models, input domenodels,
architectural
(1)Reliability growth model captures failure perfance
during testing and generalizes

observes the failure data to derive reliability dicdons.
(2)Input Domain model uses properties of the infeelt of
the software to derive correctness which approxésidtom
test cases that executed properly. (3)Architectunaldels
stress on the architecture of the software and/eledliability
estimates by combining estimates obtained for ftifferent
modules of the software. (4) Beginning predictiood®l uses

models and Beginning prediction mede

its performance ndur
procedure. Hence this category of models useséadlata and

characteristics of the software development prodesm
requirements to test and estimates this information
performance during operation.

A. Reliability

Reliability is probability of the non-occurrencekesror. It
states that an item will perform a defined methatheut
failure during certain period of time. The numeticalues of
the reliability is expressed as a probability fronto land it
has no units [1].Reliability is one of the validaticriteria for
measuring and ranking software among correlation,
consistency, tracking, predictability and discriatime power.
System reliability and accessibility are preciseagsart of the
non-functional requirements for the system. It isryw
important to choose an appropriate metric to spetife
overall software reliability. It gives measuremdnt input
software data and outputs a single numerical value.

B. Reliability Prediction System

Reliability prediction system describes the procekih is
used to estimate the constant failure rate duteguseful life
of software. This is one of the general forms dfakslity
analysis. Reliability prediction system predicts fhilure rate
of components and overall software reliability. Tée
prediction system are used to calculate approximatesign
feasibility, evaluate design alternatives, identippssible
failure areas, trade-off system design factors, &maks
reliability enhancement [2]. The impact of futureoposed
design of software changes on reliability is detesd by
comparing the reliability predictions of the exigfi and
Iproposed designs of the software. The capabilithefdesign
of software to maintain an acceptable reliabiliéydl can be
iaccessed through reliability predictions.

C. Multivariate Analysis Theory

Multivariate analysis theory consists of a set daftimds
that can be used when numerous measurements aee anad
each individual or object in one or more sample MJith
univariate analysis, there is only one dependenabie of
interest but by using multivariate analysis thetgre are
more than one variable involved in analysis of dBiausing

ISSN: 0976-1353

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
Volume 3 Issue 1 -NOVEMBER 2013.

this theory richer realistic design of the softwasdl be
obtained. It also helps to predict the reliabikiyd determine
structure of the software. l werfyinghe reability I l
The ranking of any software measure is predicted mioenen
On the following values:

Startta Deployment

Procood Software Tosting

1. The value of 1 is assign to best likely situatmd hence I
it represents the highest reliability of any measof the 1
software. Validate the Reliability
2. The value of 0 is assign to worst situation aad the | """t
lowest possible reliability of any measure of tbéware. l l
3. The ranking according multivariate analysis tiyegan | Apelvsofiare Reniabiiy Nzt Reloase
be done by predicting values lying between the firsd the T

last ranking criteria levels which take values w0 and 1.
Values to be selected depends on the relative
effectiveness of the ranking criteria level conséde
. D. Software Quality Metrics
Software metrics is a measure of property of aeiet

software or its specifications [3]. It is a quaatiite measure

of degree to which a system component or procese ha
given attribute (i.e. guess about a given attripuidere are
three main categories in which metrics are classiflhey are:

Process metrics:

This metrics deals with the activities which aréated to IIl. METHODS
production of software. It is mainly concerned taprove the
process efficiency of the SLC.

Project metrics:

This metrics deals with more relevant to projectmefor
developing software. It can be used to measureffi@ency
of a project team or any other tools being usedtdgm
measures. It requires hardware, people and knowledg
measure its attribute.

Product metrics:

This metrics deals with the explicit results of taafre
development activities. This requires deliverables,
documentation of products used in the approach hef t
software product being developed.

Select the suitatile
Software Reliakility Models

Fig 1: Reliability Prediction Framework

There are already 30 measures based on the |IER&asth
according to which reliability prediction can berfoemed
through which the high quality of the software cae
achieved. These measures are listed below: [5]

1.) Bugs per line of code

2.) Cause and effect graphing
3.) Code defect density

4.) Cohesion

5.) Completeness

6.) Cumulative failure profile
7.) Cycloramic complexity

8.) Data flow complexity

9.) Design defect density

10.) Error distribution

II. BACKGROUND 11.) Failure rate

To Determine Reliability Objective Step 1 To Cayut 12.) Fault density
: . . 13.) Fault-days number
Software Testing Step 2 Failure Data CollectionpS3eTo . .
L . 14.) Feature point analysis
Apply Software Reliability Tools Step 4 Selectionf o : : i
X A 15.) Function point analysis
Appropriate Software Reliability Models Step 5 Usé :
T N~ 16.) Functional test coverage
Software Reliability Models to Calculate CurrentliRlility . : : _
. o 17.) Graph-theoretic static architecture complexity
Step 6 Start to Deploy Step 7 To Validate Religpiih the 18.) Man hours per major defect detected
Field Step 8 Feedback to Next Release Step 9 Iy ’ P :

Objective met? Yes No Continue with the Testing %gg m%?rtrlwglr?ﬁlit&ézltll(ereetermination

21.) Modular test coverage

22.) Mutation testing (error sending)

23.) Number of faults remaining (error sending)
24.) Requirements compliance

25.) Requirements specification change requests
26.) Requirement traceability

27.) Reviews, inspections and walkthroughs

28.) Software capability maturity model

ISSN: 0976-1353

International Journal of Emerging Technology

Volume 3 Issue 1 —

29.) System design complexity
30.) Test coverage

in Conputer Science & Electronics (IJETCSE)
NOVEMBER 2013.

This software measure measures the size of thevaeft
from the number of methods in a program.

There are some software measures excluding abovelt indicates poor design of the system if the B&w are
measures which can be added for the high religbilihandled by the class itself.

performance which are listed and explained below:

CLASS COUPLING:

This software measure refers to the degree
interdependence parts of design of the softwares Mieasure
basically couples between object classes i.e, dnscthe
design of classes that how one class relates &r otasses. It
is defined as the total summation of the all thassbs to
which a class is coupled. Where ever there is digray on
any one functionality on other functionality of tkeftware,
then by using this measure we can rank the reiiakaf the
software.

APPLICATION LEVEL CLASSHIERARCHY NESTING:

The number of methods accessible to the classtaffhe
size of the class. Implementation of the methods @tass can
loé done as follows:

All the methods will be identified inside the classile
measurement.

Number of the methods will be counted on methods

retrieved in step 1.

This number is now the value of the measure ofbermof
class methods in a class.

KEY CLASSES APPLICATION:

This software measure estimates the number of lkesges
in a system. The value of this measure is a pointeich

This software measure assesses how many classessaffequired developing the system. Key classes cathdenid
application level class. Inheritance concept isdubere to points of reprocess on future projects, since tireyexpected
know the depth of the tree structure which is hélpd know to be needed in other domains in the productiom fitmber
the performance of the software. Large number usedee of key classes is a sign of the volume of work egkeid order

means if nesting in the program is more it leadthédesign
problem of the software. So by this measure rditsnf the
design of the software can be checked.

FACTORCOVERAGE:

This software measure measures the capability ef
software to automatically recover from the unwanfaitlire
during execution. Coverage is defined as the pitihathat
the software recover from breakdown.

Markov chain model is used in this measby
which software can predict coverage before itsufailand
make software reliable from everlasting, irregulamd
temporary errors.

LACK OF COHESION IN METHODS (LCOM):

This software measure is a comparative pointeobésion

to develop software. Therefore this measure hapdetelop
the software without the class and it is reliabdade this type
of software can be long term reusable.
MUTATION TEST SCORE:

th Mutation is a single-point; syntactically accurtai@nsform,
introduced in the program to be tested. This saftwaeasure
is designed for the purpose of providing a measir¢he
effectiveness of a testing data set. A high scodicate that
data set is very efficient for the program with pegt to
mutation fault coverage. The mutation score isr#ti® of the
non-equivalent mutants of Program (which are clizam
Program for at least one data point of the inpuhaio) which
are killed by a test data set.

Equivalent mutants are mutant prowrahat are

of a class. This is a comparison between the nunaberfunctionally equivalent to the original program attmérefore
correlated methods and the number of irrelevanhatkt from cannot be killed by any test case .A set of mutah®rogram
a design perspective to check whether there isimstance consists of a set of programs which differ from gfean in
variable is shared between them. The LCOM providescontaining one mutation from a given list of fawdfsthe most

measure of the relative dissimilar nature of moslula

likely faults introduced by programmers using tAeduage of

software. The small number of modules implies greatPrograms.

similarity of features and therefore it measures dftributes
of software.

NUMBER OF CHILDRENS (NOC):

This software measure counts the sub-modules of
software being measured and it measures the coitypleix
the software. The greater the number of sub modues
greater the possibility of inappropriate generaitmaof the all
the classes. If any software has a large numbenaxfules
embedded in it, it may be a case of exploitation thod
software. Therefore this measure checks the hieyao€ the

Therefore this measures the reliability ndiihg test

cases that kill all nonequivalent mutants.

WEIGHTED METHOD PER CLASS (WMC):
theThis software measure is the computation of weihte
methods in a class. Every method inside the clasgighted
by complexity metric and this weight is added upasoto
arrive at Weighted Method per Class. The implententeof
this metrics can be done in the following steps:

1. Check the method of the cleassd name the complexity
of all statement in this method according to theppiag of

modules and sub modules of the software for thdebetweights.

performance.
NUMBER
APPLICATION:

OF CLASS METHODS IN AN

2. The complexity of method is defined as the tofathe
results produced in step 1.

ISSN: 0976-1353

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
Volume 3 Issue 1 -NOVEMBER 2013.

IV. CONCLUSION

The aim of this paper was to propose a framework fo
Reliability Prediction system. The steps involved the
framework are illustrated and which operations madormed
when is also determined. There were 30 softwaresorea
which are good indicators of the software religpilivere
elicited by the expert opinions. This paper progo8emore
measures which will help now them to consider these
measures and produce more reliable system. Baseitheon
given framework a tool can be implemented which tzke
all inputs as experimental data and gives outpuuate
compare to the research done till now by takingeexp
opinions

This study is only the initial stage of a long-stany study
in predicting software reliability. Future reseaiobludes the
identification of the RPSs including all the feasiwhich this
paper has proposed. Achievable functions that allow
guantification of reliability from RPSs need to ibgestigated.

V. REFERENCES

[1] M. King, B. Zhu, and S. Tang, “Optimal path plarmih Mobile
Robots vol. 8, no. 2, pp. 520-531, March 2001.

[2] H. SimpsonPumb Robots3® ed., Springfield: UOS Press, 2004, pp.6-
9.

[3] M. King and B. Zhu, “Gaming strategies,” in Patlafing to the West,
vol. I, S. Tang and M. King, Eds. Xian: Jiaoda $%€1998, pp. 158-
176.

[4] B. Simpson, et al, “Title of paper goes here ifwng unpublished.

[5] J.-G. Lu, “Title of paper with only the first worhpitalized,”J. Name
Stand. Abbreyin press.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Elext spectroscopy
studies on magneto-optical media and plastic safiesinterface,1EEE
Translated J. Magn. Japawol. 2, pp. 740-741, August 198Difjest
9™ Annual Conf. Magnetics Japap. 301, 1982].

[71 M. Young, The Technical Writer's HandbopkMill Valley, CA:
University Science, 1989.

ISSN: 0976-1353

