
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 3 Issue 1 –NOVEMBER 2013.

ISSN: 0976-1353

 Developing a Reliability Prediction System Using
Multivariate Analysis Theory on Software Quality

Metrics
E. Umamaheswari #1, Dr.D.K.Ghosh *2

School of Computing Science and Engineering, VIT University, Chennai, TN, India.
1 umamaheswari.e@vit.ac.in

* Professor, VSB Engineering College, Karur, TN, India.

Abstract- Software Reliability Prediction techniques are Along
with the existing 30 software measures, nine more measures are
identified which results in the best performance of the software
application. Predicting the reliability of software systems, failure
data should be measured by different ways during the
development process and its execution phases. This paper
proposes a structure of reliability prediction which will be used
to rank the software measures based on the structure with
multivariate analysis theory .This structure will be accurate with
the experimental data obtained, and it also checks that the
software has met its reliability or not and if not, it will continue
the process again to achieve its reliability.

Index Terms- Software Reliability Prediction, Software
measures, multivariate analysis theory.

I. INTRODUCTION

RPS (Reliability Prediction System) is an outline for
predicting the reliability of software by taking the measures of
software. Reliability Prediction can be achieved by applying
multivariate analysis theory (analysis of data involving more
than one variable). Ranking of existing software was done
before by taking the opinions of the 30 experts and in this
report it is possible by the help of the RPS framework to rank
the software methods. There are few measures included and
explained in this paper which helps more efficiently to
calculate the reliability of the software.

There are four types of models which have been considered
as potential candidates for modeling the reliability of software.
These include reliability growth models, input domain models,
architectural models and Beginning prediction models.
(1)Reliability growth model captures failure performance
during testing and generalizes its performance during
procedure. Hence this category of models uses failure data and
observes the failure data to derive reliability predictions.
(2)Input Domain model uses properties of the input field of
the software to derive correctness which approximates from
test cases that executed properly. (3)Architectural models
stress on the architecture of the software and derive reliability
estimates by combining estimates obtained for the different
modules of the software. (4) Beginning prediction model uses

characteristics of the software development process from
requirements to test and estimates this information to
performance during operation.

A. Reliability
Reliability is probability of the non-occurrences of error. It

states that an item will perform a defined method without
failure during certain period of time. The numerical values of
the reliability is expressed as a probability from 0 to 1and it
has no units [1].Reliability is one of the validation criteria for
measuring and ranking software among correlation,
consistency, tracking, predictability and discriminative power.
System reliability and accessibility are precise as a part of the
non-functional requirements for the system. It is very
important to choose an appropriate metric to specify the
overall software reliability. It gives measurement by input
software data and outputs a single numerical value.

B. Reliability Prediction System
Reliability prediction system describes the process which is

used to estimate the constant failure rate during the useful life
of software. This is one of the general forms of reliability
analysis. Reliability prediction system predicts the failure rate
of components and overall software reliability. These
prediction system are used to calculate approximately design
feasibility, evaluate design alternatives, identify possible
failure areas, trade-off system design factors, and tracks
reliability enhancement [2]. The impact of future proposed
design of software changes on reliability is determined by
comparing the reliability predictions of the existing and
proposed designs of the software. The capability of the design
of software to maintain an acceptable reliability level can be
accessed through reliability predictions.

C. Multivariate Analysis Theory
Multivariate analysis theory consists of a set of methods

that can be used when numerous measurements are made on
each individual or object in one or more sample [4]. With
univariate analysis, there is only one dependent variable of
interest but by using multivariate analysis theory there are
more than one variable involved in analysis of data. By using

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 3 Issue 1 –NOVEMBER 2013.

ISSN: 0976-1353

this theory richer realistic design of the software will be
obtained. It also helps to predict the reliability and determine
structure of the software.

The ranking of any software measure is predicted
On the following values:
1. The value of 1 is assign to best likely situation and hence

it represents the highest reliability of any measure of the
software.

2. The value of 0 is assign to worst situation and has the
lowest possible reliability of any measure of the software.

3. The ranking according multivariate analysis theory can
be done by predicting values lying between the first and the
last ranking criteria levels which take values between 0 and 1.

Values to be selected depends on the relative
effectiveness of the ranking criteria level considered.
. D. Software Quality Metrics
Software metrics is a measure of property of a piece of

software or its specifications [3]. It is a quantitative measure
of degree to which a system component or process have a
given attribute (i.e. guess about a given attribute). There are
three main categories in which metrics are classified. They are:

Process metrics:
This metrics deals with the activities which are related to

production of software. It is mainly concerned to improve the
process efficiency of the SLC.

Project metrics:
This metrics deals with more relevant to project team for

developing software. It can be used to measure the efficiency
of a project team or any other tools being used by team
measures. It requires hardware, people and knowledge to
measure its attribute.

 Product metrics:
This metrics deals with the explicit results of software

development activities. This requires deliverables,
documentation of products used in the approach of the
software product being developed.

II. BACKGROUND

To Determine Reliability Objective Step 1 To Carry Out
Software Testing Step 2 Failure Data Collection Step 3 To
Apply Software Reliability Tools Step 4 Selection of
Appropriate Software Reliability Models Step 5 Use of
Software Reliability Models to Calculate Current Reliability
Step 6 Start to Deploy Step 7 To Validate Reliability in the
Field Step 8 Feedback to Next Release Step 9 Is Reliability
Objective met? Yes No Continue with the Testing

Fig 1: Reliability Prediction Framework

III. METHODS

There are already 30 measures based on the IEEE standard
according to which reliability prediction can be performed
through which the high quality of the software can be
achieved. These measures are listed below: [5]

1.) Bugs per line of code
2.) Cause and effect graphing
3.) Code defect density
4.) Cohesion
5.) Completeness
6.) Cumulative failure profile
7.) Cycloramic complexity
8.) Data flow complexity
9.) Design defect density
10.) Error distribution
11.) Failure rate
12.) Fault density
13.) Fault-days number
14.) Feature point analysis
15.) Function point analysis
16.) Functional test coverage
17.) Graph-theoretic static architecture complexity
18.) Man hours per major defect detected
19.) Mean time to failure
20.) Minimal unit test determination
21.) Modular test coverage
22.) Mutation testing (error sending)
23.) Number of faults remaining (error sending)
24.) Requirements compliance
25.) Requirements specification change requests
26.) Requirement traceability
27.) Reviews, inspections and walkthroughs
28.) Software capability maturity model

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 3 Issue 1 –NOVEMBER 2013.

ISSN: 0976-1353

29.) System design complexity
30.) Test coverage
There are some software measures excluding above

measures which can be added for the high reliability
performance which are listed and explained below:

 CLASS COUPLING:
 This software measure refers to the degree of

interdependence parts of design of the software. This measure
basically couples between object classes i.e, it scans the
design of classes that how one class relates to other classes. It
is defined as the total summation of the all the classes to
which a class is coupled. Where ever there is dependency on
any one functionality on other functionality of the software,
then by using this measure we can rank the reliability of the
software.

APPLICATION LEVEL CLASS HIERARCHY NESTING :
This software measure assesses how many classes affects

application level class. Inheritance concept is used here to
know the depth of the tree structure which is helpful to know
the performance of the software. Large number used in tree
means if nesting in the program is more it leads to the design
problem of the software. So by this measure reliability of the
design of the software can be checked.

FACTOR COVERAGE:
This software measure measures the capability of the

software to automatically recover from the unwanted failure
during execution. Coverage is defined as the probability that
the software recover from breakdown.

 Markov chain model is used in this measure by
which software can predict coverage before its failure and
make software reliable from everlasting, irregular, and
temporary errors.

LACK OF COHESION IN METHODS (LCOM):
This software measure is a comparative pointer of cohesion

of a class. This is a comparison between the number of
correlated methods and the number of irrelevant methods from
a design perspective to check whether there is any instance
variable is shared between them. The LCOM provides a
measure of the relative dissimilar nature of modules in
software. The small number of modules implies greater
similarity of features and therefore it measures the attributes
of software.

NUMBER OF CHILDRENS (NOC):
This software measure counts the sub-modules of the

software being measured and it measures the complexity of
the software. The greater the number of sub modules, the
greater the possibility of inappropriate generalization of the all
the classes. If any software has a large number of modules
embedded in it, it may be a case of exploitation of the
software. Therefore this measure checks the hierarchy of the
modules and sub modules of the software for the better
performance.

NUMBER OF CLASS METHODS IN AN
APPLICATION:

This software measure measures the size of the software
from the number of methods in a program.

 It indicates poor design of the system if the services are
handled by the class itself.

The number of methods accessible to the class affects the
size of the class. Implementation of the methods in a class can
be done as follows:

All the methods will be identified inside the class while
measurement.

 Number of the methods will be counted on methods
retrieved in step 1.

 This number is now the value of the measure of number of
class methods in a class.

KEY CLASSES APPLICATION:
This software measure estimates the number of key classes

in a system. The value of this measure is a pointer which
required developing the system. Key classes can be the mid
points of reprocess on future projects, since they are expected
to be needed in other domains in the production. The number
of key classes is a sign of the volume of work needed in order
to develop software. Therefore this measure helps to develop
the software without the class and it is reliable hence this type
of software can be long term reusable.

MUTATION TEST SCORE:
Mutation is a single-point; syntactically accurate transform,

introduced in the program to be tested. This software measure
is designed for the purpose of providing a measure of the
effectiveness of a testing data set. A high score indicate that
data set is very efficient for the program with respect to
mutation fault coverage. The mutation score is the ratio of the
non-equivalent mutants of Program (which are clear from
Program for at least one data point of the input domain) which
are killed by a test data set.

 Equivalent mutants are mutant programs that are
functionally equivalent to the original program and therefore
cannot be killed by any test case .A set of mutants of Program
consists of a set of programs which differ from Program in
containing one mutation from a given list of faults of the most
likely faults introduced by programmers using the language of
Programs.

 Therefore this measures the reliability by finding test
cases that kill all nonequivalent mutants.

WEIGHTED METHOD PER CLASS (WMC):
This software measure is the computation of weighted

methods in a class. Every method inside the class is weighted
by complexity metric and this weight is added up so as to
arrive at Weighted Method per Class. The implementation of
this metrics can be done in the following steps:

1. Check the method of the class and name the complexity
of all statement in this method according to the mapping of
weights.

2. The complexity of method is defined as the total of the
results produced in step 1.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 3 Issue 1 –NOVEMBER 2013.

ISSN: 0976-1353

IV. CONCLUSION

The aim of this paper was to propose a framework for
Reliability Prediction system. The steps involved in the
framework are illustrated and which operations are performed
when is also determined. There were 30 software measures
which are good indicators of the software reliability were
elicited by the expert opinions. This paper proposes 9 more
measures which will help now them to consider these
measures and produce more reliable system. Based on the
given framework a tool can be implemented which can take
all inputs as experimental data and gives output accurate
compare to the research done till now by taking expert
opinions

This study is only the initial stage of a long-standing study
in predicting software reliability. Future research includes the
identification of the RPSs including all the features which this
paper has proposed. Achievable functions that allow
quantification of reliability from RPSs need to be investigated.

V. REFERENCES
[1] M. King, B. Zhu, and S. Tang, “Optimal path planning,” Mobile

Robots, vol. 8, no. 2, pp. 520-531, March 2001.
[2] H. Simpson, Dumb Robots, 3rd ed., Springfield: UOS Press, 2004, pp.6-

9.
[3] M. King and B. Zhu, “Gaming strategies,” in Path Planning to the West,

vol. II, S. Tang and M. King, Eds. Xian: Jiaoda Press, 1998, pp. 158-
176.

[4] B. Simpson, et al, “Title of paper goes here if known,” unpublished.
[5] J.-G. Lu, “Title of paper with only the first word capitalized,” J. Name

Stand. Abbrev., in press.
[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE
Translated J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digest
9th Annual Conf. Magnetics Japan, p. 301, 1982].

[7] M. Young, The Technical Writer’s Handbook, Mill Valley, CA:
University Science, 1989.

