
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

10

 Data Warehousing Security Encapsulation with

Bitmap Indexing Mechanisms
1
 Uma Pavan Kumar Kethavarapu and

2
Dr.B.Lakshma Reddy

1 Research Scholar, Pondicherry Engineering College, Associate Professor, AIMS Institutions, Bangalore
2Director-Computer Science, Garden City College of Science and Management, Bangalore

Abstract— Data warehousing is an environment which will

allows the various categories of the source data in the formats of

ERP, XML, Relational model, Flat Files (.DOCS, Excel sheets,

.PPT...)which is in the area of Online Transaction

Processing(OLTP),later the data will be integrated into the

uniform format and stored into a data warehousing, Data Marts.

Finally the data will be processed to produce the results in the

form of Reports which is known as Online Analytical Processing

(OLAP).The ultimate goal of data warehousing is to produce

strategic decisions by making analysis in the huge amount of the

data. The research article deals with the preprocessing

considerations in the handling of Bitmap indexing creation,

which will help the processing of the data warehousing data in

effective and efficient manner. The data warehousing data is

huge in general to preserve data in secured manner we have to

follow up some security aspects without compromising the faster

processing of the data. We are proposing the Bitmap encryption

methodologies in the processing of the data warehousing data

with secured and faster rates. The default nature of bitmap

indexing is encryption and faster processing of the data. The

article covers various formats of the data indexing with Bitmaps

and integration of slowly changing dimensions (SCD) types to

capture only changed dimensions without getting the entire data.

Aggregation of data is also allows the users to get the summation

of data rather than processing the entire set of the data.

Keywords: Bitmap Indexing, SCD, Security, Aggregation, Data

warehousing

I. INTRODUCTION

The data warehousing environment mainly provides Online

Transaction processing and Online Analytical Processing

along with this ETL activity is playing a vital role. Usually

data warehousing environments are meant for handling bulk

data such as tera bytes and pico bytes, and at least 5 to 10

years of data are managed. In the data processing the fastest

querying is mandatory for various levels of users so as to

handle the enterprise data. The best mechanism of faster data

processing is Indexing mechanism, which is a way of handling
the data in range wise by creating the indexing on the data.

Out of existing Bitmap indexing is proven as best method of

faster data processing. The data is observed and kind of

encoding is chosen for establishing a bitmap and best bitmap

categories are simple, encoded, enhanced encoded,

compressed and tunable methods. The existing mechanisms of
bitmap can be integrated with data mining techniques, Usage

of Ice berg queries, implementation of soft set computing; will

give more efficiency for the query processing. Slowly

changing Dimensions (SCD) is a way of loading data into

dimension tables with irregular, random and variable schedule.

II. BITMAP INDEXING IMPORTANCE

QL> create bitmap index normal_empno_bmx on

test_normal (empno);

Index created.

Elapsed: 00:00:29.06

Statistics
29 recursive calls

 0 db block gets

 5 consistent gets

 0 physical reads

 0 redo size

 515 bytes sent via SQL*Net to client

 499 bytes received via SQL*Net from client

 2 SQL*Net round trips to/from client

 0 sorts (memory)

 0 sorts (disk)

 1 row processed

Consistent

Reads

Physical Reads EMPNO

5 0 1000

5 2 2398

5 2 8545

5 2 98008

5 2 85342

5 2 128444

5 2 858

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

11

SQL> create bitmap index random_empno_bmx on

test_random(empno);

Index created.

SQL> select * from test_random where empno=&empno;

Enter value for empno: 1000

old 1: select * from test_random where empno=&empno
new 1: select * from test_random where empno=1000

Elapsed: 00:00:00.01

Statistics

--

 0 recursive calls

 0 db block gets

 5 consistent gets

 0 physical reads

 0 redo size

 515 bytes sent via SQL*Net to client
 499 bytes received via SQL*Net from client

 2 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

rows processed

Consistent

Reads

Physical Reads EMPNO

331 0 1-2300

285 0 8-1980

346 19 1850-4250

427 31 28888-

31850

371 27 82900-

85478

2157 149 984888-

1000000

SQL> select * from test_random where empno between

&range1 and &range2;

Enter value for range1: 1

Enter value for range2: 2300

old 1: select * from test_random where empno between

&range1 and &range2

new 1: select * from test_random where empno between 1

and 2300

2300 rows selected.

Elapsed: 00:00:03.04

Execution Plan

--

 0 SELECT STATEMENT Optimizer=CHOOSE

(Cost=613 Card=2299 Bytes=78166)

 1 0 TABLE ACCESS (FULL) OF 'TEST_RANDOM'

(Cost=613 Card=2299 Bytes=78166)

Statistics

--

 0 recursive calls
 0 db block gets

 6415 consistent gets

 4910 physical reads

 0 redo size

 111416 bytes sent via SQL*Net to client

 2182 bytes received via SQL*Net from client

 155 SQL*Net roundtrips to/from client

 0 sorts (memory)

 0 sorts (disk)

 2300 rows processed

The optimizer opted for a full table scan rather than using
the index because of the clustering factor:

Consistent

Reads

Physical

Reads

EMPNO

2463 1200 1-2300

2114 31 8-1980

2572 1135 1850-4250

3173 1620 28888-31850

2762 1358 82900-85478

7254 3329 984888-1000000

For the last range (984888-1000000) only, the optimizer

opted for a full table scan for the bitmap index, whereas for all

ranges, it opted for a full table scan for the B-tree index. This

disparity is due to the clustering factor: The optimizer does

not consider the value of the clustering factor when generating

execution plans using a bitmap index, whereas for a B-tree
index, it does. In this scenario, the bitmap index performs

more efficiently than the B-tree index.

III. ICE-BERG REQUIREMENT IN INDEXING

Iceberg query is a special class of aggregation query, which

computes aggregate values above a given threshold. Because

of the small result set, iceberg queries can potentially be

answered quickly even over a very large data set. The existing

query optimization techniques for processing ice berg queries

are tuplescanbased approach, which requires at least one table

scan to read data. Ferro designed iceberg queries with a two-

level bitmap index which is suffering from the massive
empty-bitwise AND results problem. Proposes an index-

pruning-based approach to compute iceberg queries using

bitmap indices.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

12

Parameters a)Iceberg threshold b)Number Of Distinct

Groups c)Number Of Distinct Values d)Attribute Length

e)Number Of Aggregate Attributes f)Number Of

Attributes

Observations: The Algorithm is not sensitive to the number

of distinct values, Number of attributes, Length of Attributes,

Performance is better when the query is more iceberg-like,

Number of Aggregation attribute is relatively small. Bitmap
indices have an advantage of leveraging the anti-monotone

property of iceberg queries to enable aggressive index pruning

strategies. Iceberg queries anti-monotone property: If the

count of a group is below T, the count of any super group of it

must be below T.To overcome the challenge of empty bitwise-

AND vector alignment algorithm with dynamic pruning can

be used.

Slowly Changing Dimensions (SCD) Usage

Slowly Changing Dimension (Kimball, 2008) is the name

of a data management process that loads data into dimension

tables which contains data. To adopt SCD, the data has to
change slowly on an irregular, random and variable schedule.

There are 6 current types of SCD methodologies, namely

Type 0, Type 1, Type 2, Type 3, Type 4, and Type 6. The

most commonly practiced SCD types are 1, 2 and 3. Below

we present the descriptions of the different Types of SCD.

Type 0 - Type 0 SCD does not update the changes in the data.

Original values of the record remain in the dimension that was

initially created. Type 1 - Type 1 SCD overwrites old records

with new records. Type 1 SCD is easy to maintain. However,

no historical observations are kept in the data warehouse.

Type 2 – Type 2 SCD updates the record by inserting new
observation while preserving the historical observations.

Unlimited historical observations can be preserving with this

type. Type 3 – Type 3 SCD updates the record by creating

new dimensions to the table structure. It preserves limited

history - only the previous record could be preserve. Type 4 –

Type 4 SCD updates the record in the current data table and

preserves all or some historical observations in an archive

table. Type 6 – Type 6 SCD is a hybrid of the methodologies

of Type 1, 2 and 3. It incorporates Type 3 SCD by creating

additional dimensions to the table structure while preserving

historical observation. It incorporated Type 2 SCD by creating

new dimensions to include the different version number. Type
1 SCD is incorporated by updating the latest record in the

observation.

IV. OUR CONTRIBUTION

The above mentioned aspects such as Bitmap indexing,

iceberg queries and slowly changing dimensions are
independent, we observed that the integration of all the above

independent aspects will give the better performance to

observe the kind of the data, categories of the data, amount of

the data, whether the base consists of slowly changing

dimensions through which we can identify subsets of the data

so as to get in the faster way rather than processing the entire

set of the data. The following are the observations and

implementation suggestions towards the better processing of

the bitmap indexing in huge amounts of the data bases. There

is a requirement of index advisory tool with all the above

mentioned concepts which will give the pre-processing of the

data items for better analysis of their kind (Flat files, xml,

ERP…) and amounts of data to be processed is there any
involvement of SCD etc. Analysis of generated data so as to

apply the suitable Bitmap indexing.

The analysis involves identification of slowly changing

dimensions, patterns of the data, uncertain data and size of the

data to be processed in memory, out memory processing.

In case of slowly changing dimensions usage of TYPE-0,

TYPE-I, TYPE-II and TYPE-III TYPE-IV and TYPE-VI

methods need to integrate with existing bitmap indexing.

In case of Pattern based data usage of clustering and

association mining methods in the generation of bitmaps.

A well-defined encoding representation of each distinct

value an indexed attribute is important to optimize other types
of queries performance.

Applicability of Data mining techniques such as

classification, clustering and association could be used to

group values attribute that are frequently queried together.

Processing of uncertain data through soft set computing in

the generation of bitmap indexing.

The data which is fit into in memory best strategy is

enhanced bitmap indexing.

The data which is not fit into in memory process the bitmap

indexing with No Sql and Big Data like Hadoop methods.

Estimation of statistics of read/unread data with prediction
models and processes them for new requirements.

V. CONCLUSION AND FUTURE WORK

The overall aim of this work is generation of the decision

algorithm which involves the pre-processing of data sets

through the Bitmap indexing strategy. The main benefit of

doing so is load balancing, identification frequent patterns of

the data sets, kind of data types available in the data bases,

slowly changing dimension scenarios handling and usage of

aggregation in the form of ice-berg querying. Future scope

involves implementation of ant monotone property of iceberg
querying through bitmap processing, handling of uncertain

data in the data sets which is a big issue in the processing of

huge amounts of the data. The inherent benefit of slowly

changing dimensions and Ice berg querying is security

considerations. Without getting the entire source data only

aggregated data will be processed. data only aggregated data

will be processed.

VI. REFERENCES

[1] Alex berson, “Data warehousing Concepts”.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

13

[2] Elizabeth O Neil, “Bitmap Index Design Choices and Their

Performance Implications”, LBNL-62756, 2013.

[3] Md.Al Mamun,”Performance Improvement Techniques for

Customized Data warehouse”, IOSR-JCE, Mar-Apr.2013.

[4] Firdous Kausar, “Comparative Analysis of Bitmap Indexing

Techniques in Data warehouse”, IJETAE-Vol 4, Issue 6, June 2014.

[5] P.Niranjan,”A Fast Retrieval of Software Reusable Components Using

Bitmap Index”, IJCST vol 3, issue 4, Oct-Dec 2012.

[6] Shivam Dwivedi, ”Evaluation of Bitmap Index Compression Using

Data Pump in Oracle Data base”, IOSR-JCE, Vol-16, Issue-3, Ver.III

(May-Jun 2014).

[7] Hyoung Geun,”A study on the selection of Bitmap Join Index Using

Data Mining Techniques”, 2013 IEEE

[8] Bin He, “Efficient Iceberg Query Evaluation Using Compressed

Bitmap Index”, IEEE Transactions on Knowledge and data engineering,

vol 24, No 9, Sept 2012.

[9] www.kimbal.com.

[10] http://www.oracle.com/technetwork/articles/sharma-indexes-

093638.html

[11] Ralph Kimball (2008, September 22). Slowly Changing Dimensions,

Part 2. Kimball Group. January 20 2013 from

http://www.kimballgroup.com/2008/09/22/slowly-changing-

dimensions-part-2/print/

[12] Margy Ross (2008, September 29). Practical Steps for Designing a

Dimensional Model. Kimball Group. January 20, 2013 from

http://www.kimballgroup.com/2008/09/29/practical-steps-for-

designing-adimensional-model/print/

[13] Shauna Trainor (2013, February 13). Market In Modesty To Prevent

Resentment. Covenant Group. February 13,2013 from

http://www.covenantgroup.com/blog/market-in-modesty-to-prevent-

resentment/

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

