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Abstract—Feature selection involves identifying a
subset of the most useful features that produces
compatible results as the original entire set of
features. A feature selection algorithm may be
evaluated from both the efficiency and effectivenas
points of view. While the efficiency concerns theire
required to find a subset of features, the effecteness
is related to the quality of the subset of features
Based on these criteria, a fast clustering-baseddture
selection algorithm, FAST, is proposed and
experimentally evaluated in this paper. The FAST
algorithm works in two steps. In the first step,
features are divided into clusters by using graph-
theoretic clustering methods. In the second stephe
most representative feature that is strongly relatd to
target classes is selected from each cluster to fora
subset of features. Features in different clusterare
relatively independent, the clustering-based stratgy
of FAST has a high probability of producing a subset
of useful and independent features. To ensure the
efficiency of FAST, we adopt the efficient minimum-
spanning tree clustering method. The efficiency and
effectiveness of the FAST algorithm are evaluated
through an empirical study. Extensive experiments
are carried out to compare FAST and several
representative feature selection algorithms, namely
FCBF, Relief-F, CFS, Consist, and FOCUS-SF, with
respect to four types of well-known classifiers,
namely, the probability-based Naive Bayes, the tree
based C4.5, the instance-based IB1, and the rule-
based RIPPER before and after feature selection. The
results, on 35 publicly available real-world high
dimensional image, microarray, and text data,
demonstrate that FAST not only produces smaller
subsets of features but also improves the
performances of the four types of classifiers.

Index Terms—Feature subset selection, filter method,
feature clustering, graph-based clustering

1 INTRODUCTION

With the aim of choosing a subset of good
features with respect to the target concepts,
feature subset selection is an effective way for
reducing dimensionality, removing irrelevant
data, increasing learning accuracy, and
improving result comprehensibility. Many
feature subset selection methods have been
proposed and studied for machine learning
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applications. They can be divided into four
broad categories: the Embedded, Wrapper,
Filter, and Hybrid approaches. The embedded
methods incorporate feature selection as a part
of the training process and are usually specific
to given learning algorithms, and therefore
may be more efficient than the other three
categories. Traditional machine learning
algorithms like decision trees or artificial
neural networks are examples of embedded
approaches. The wrapper methods use the
predictive accuracy of a predetermined
learning algorithm to determine the goodness
of the selected subsets, the accuracy of the
learning algorithms is usually high. However,
the generality of the selected features is
limited and the computational complexity is
large. The filter methods are independent of
learning algorithms, with good generality.
Their computational complexity is low, but the
accuracy of the learning algorithms is not
guaranteed. The hybrid methods are a
combination of filter and wrapper methods by
using a filter method to reduce searchspace
that will be considered by the subsequent
wrapper. They mainly focus on combining
filter and wrapper methods to achieve the best
possible performance with a particular
learning algorithm  with  similar  time
complexity of the filter methods. The wrapper
methods are computationally expensive and
tend to over fit on small training sets. The
filter methods, in addition to their generality,
are usually a good choice when the number of
features is very large. Thus, we will focus on
the filter method in this paper. With respect to
the filter feature selection methods, the
application of cluster analysis has been
demonstrated to be more effective than
traditional feature selection algorithms. Pereira
et al., Baker et al., and Dhillon et al. employed
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the distributional clustering of words to reduce

the dimensionality of text data. In cluster

analysis, graph-theoretic methods have been
well studied and used in many applications.

Their results have, sometimes, the best
agreement with human performance. The
general graph-theoretic clustering is simple:

Compute a neighbourhood graph of instances,
then delete any edge in the graph that is much
longer/shorter (according to some criterion)

than its neighbours. The result is a forest and
each tree in the forest represents a cluster. In
our study, we apply graphtheoreticclustering

methods to features. In particular, we adopt the
minimum  spanning tree (MST) based

clustering algorithms, because they do not
assume that data points are grouped around
centres or separated by a regular geometric
curve and have been widely used in practice.

2 FEATURE SUBSET SELECTION
ALGORITHMS

2.1 Framework and definitions

Irrelevant features, along with redundant
features, severely affect the accuracy of the
learning machines. Thus, feature subset
selection should be able to identify and
remove as much of the irrelevant and
redundant information as possible. Moreover,
“good featuresubsets contain features highly
correlated with (predictive of)the class, yet
uncorrelated with (not predictive of) each
other” Fig. 1: Framework of the proposed
feature subset selection algorithm
Keepingthese in mind, we develop a novel
algorithm which can efficiently and effectively
deal with both irrelevant and redundant
features, and obtain a good feature subset. We
achieve this through a new feature selection
framework (shown in Fig.1) which composed
of the two connected componentsiroélevant
feature removal and redundant feature
elimination The former obtains features
relevant to the target concept by eliminating
irrelevant ones, and the latter removes
redundant features from relevant ones via
choosing representatives from different feature
clusters, and thus produces the final subset.
The irrelevant feature  removal is
straightforwvard once the right relevance
measure is defined or selected, while the
redundant feature eliminatioris a bit of
sophisticated. In  our proposed FAST
algorithm, it involves (i) the construction of
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the minimum spanning tree (MST) from a
weighted complete graph; (ii) the partitioning
of the MST into a forest with each tree
representing a cluster; and (iii) the selection of
representative features from the clusters. In
order to more precisely introduce the
algorithm, and because our proposed feature
subset selection framework involves irrelevant
feature removal and redundant feature
elimination, we firstly present the traditional
definitions of relevant and redundant features,
then provide our definitions based on variable
correlation as follows. John et al. [33]
presented a definition of relevant features.
Suppose/to be the full set of featuregze#

be a features= /A~{ /2 and.S/cSi Let s'/be

a value assignment of all features Jjn/7a
value assignment of featur®, and ca value-
assignment of the target concept The
definition can be formalized as follows.
Definition 1: (Relevant feature)is relevant

to the target conceptif and only if there
exists somes’;;, f7and ¢ such that, for
probability (5= s'z, /= f2) >0,relevant to the
target concept; (i) whens'/&.57, from the
definition we may obtain thatc{sz, #7) =

A CIS). It seems thattis irrelevant to the
target concept. However, the definition shows
that feature/#is relevant when using 7U{ #7}

to describe the target concept. The reason
behind is that eithefzs interactive withs7 or

Fis redundant withs7 — 5. In this case, we
say /7s indirectly relevant to the target
concept. Most of the information contained in
redundant features is already present in other
features. As a result, redundant features do not
contribute to getting better interpreting ability
to the target concept. It is formally defined by
Yu and Liu based on Markov blanket [36].
The definitions of Markov blanket and
redundant feature are introduced as follows,
respectively.

Definition 2: (Markov blanket) Given a
feature A7/, let Mic A Fi/eMi), Mis said to

be a Markov blanket forif and only if (#
=M F, CIFLM) = A F—Mi—{ £, CIM)).
Definition 3: (Redundant featurd)etsbe a set

of features, a feature isis redundant if and
only if it has a Markov Blanket withins.
Relevant features have strong correlation with
target concept so are always necessary for a
best subset, while redundant features are not
because their values are completely correlated
with each other. Thus, notions of feature
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redundancy and feature relevance are normally
in terms of feature correlation and feature-
target concept correlation. Mutual information
measures how much the distribution of the
feature values and target classes differ from
statistical independence. Thesymmetric
uncertaintyis defined as follows

(X, V) =2 x Gain( X1Y)

HAX) + A7) . (1)

Where,

1) (b) is the entropy of a discrete random
variable . Suppose %) is the prior
probabilities for all

Values off] () is defined by

(Y =-Xxex

(1) log2 (). (2)

2) Gain (X)) is the amount by which the
entropy of/decreases. It reflects the additional
information aboutprovided by.fand is called
the information gain which is given by
Gain(X1¥) = LX) — AXIY)

= H(F) - A¥I). (3)

Where () is the conditional entropy which
NC=clS =54 Fi= 1) /= (€= clS = 5 )).
Otherwise, featureZis anirrelevant feature
Definition 1 indicates that there are two kinds
of relevant features due to differest. (i)
when.$s’~= SZ from the definition we can know
that Azds directly quantifies the remaining
entropy (i.e. uncertainty) of a random variable
Agiven that the value of another random
variable ¥is known. Supposey is the prior
probabilities for all values aftand @/y) is the
posterior probabilities offgiven the values of
Y, A(X/P) is defined by

(X79) = =% yeF W)X xeXp(xly) log2 A xly).

(4)

Information gain is a symmetrical measure.
That is the amount of information gained
abouttafter observingtis equal to the amount
of information gained aboukafter observing
X. This ensures that the order of two variables
(e.g.,tf; ») or (F,.0) will not affect the value

of the measure. Symmetric uncertainty treats a
pair of variables symmetrically, it compensates
for information gain’s bias toward variables
with more values and normalizes its value to
the range [0,1]. A value 1 off{ /) indicates
that knowledge of the value of either one
completely predicts the value of the other and
the value 0 reveals thattand Jrare
independent. Although the entropy based
measure handles nominal or discrete variables,
they can deal with continuous features as well,
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if the values are discretized properly in
advance. GivenSIX, F) the symmetric
uncertainty of variablegand ¥, the relevance
T Relevancdetween a feature and the target
concept ¢, the correlation FCorrelation
between a pair of features, the feature
redundance F-Redundancy and the
representative featurB-Featureof a feature
cluster can be defined as follows.

Definition 4: (T-Relevance)The relevance
between the feature/7e/and the target
conceptcis referred to as tAeRelevanceof
F7and ¢, and denoted byAy, ©). If (47, O) is
greater than a predetermined threshgldve
say that/#is a strongdl-Relevancéeature.

2.2 Algorithm and analysis

The proposed FAST algorithm logically
consists of three steps: (i) removing irrelevant
features, (ii) constructing a MST from relative
ones, and (iii) partitioning the MST and
selecting representative features. For a data set
Dwith 7features/={ /1, /2, ... /nz} and class

¢, we compute th& Relevance( /47 ¢) value

for each feature”{1 < /< ) in the first step.
The features whose#§;, ¢) values are greater
than a predefined thresholdcomprise the
target-relevant feature subs&t={/1, /2,

o 7} (£ < 72). In the second step, we first
calculate thd=-Correlation(#" Z /" /) value for
each pair of featureg8” aand #* f /" 7, /7 jJEF
AZ/= j). Then, viewing featureg’ zand #* jas
vertices andS/A #" 7, /7 )) (£/= /) as the weight

of the edge between verticed /and /7 /; a
weighted complete graphé= (V£) is
constructed wheré= {# /7 [eF” Ni€dl, A}
andZ={(# 7 F ) KF i F JEF Ai, jE1, A
AL/~ 2. As symmetric uncertainty is
symmetric further th& Correlation(/#" 7, /' )

is symmetric as well, thugls an undirected
graph. The complete graplzteflects the
correlations among all the target-relevant
features. Unfortunately, grapthas svertices
and ¢—1)/2 edges. For high dimensional data,
it is heavily dense and the edges with different
weights are strongly interweaved. Moreover,
the decomposition of complete graph is NP-
hard [26]. Thus for grapls;, we build a MST,
which connects all vertices such that the sum
of the weights of the edges is the minimum,
using the well-known Prim algorithm [54].
The weight of edgeA’ 7, /7 /) is F Correlation

(# 4, # )). Atter building the MST, in the third
step, we first remove the edgés {(# 7 # )

K7 4 F jer /i je[l, /4 A7/~ ;b whose
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weights are smaller than both of the
Relevancd 4’ 7 ¢) and SUA/# /, ¢), from the
MST. Each deletion results in two
disconnected tree8l and’2.Assuming the set
of vertices in any one of the finaltrees to be
7)), we have the property that for each pair
of vertices ¢ 7, 7 Je 7)), (£ 4, 7)) > SAF

5, C) VSUKF 1, F ) = SUAF J, €) always
holds. From Definition 6 we know that this
property guarantees the features/ity) are
redundant. This can be illustrated by an
example. Suppose the MST shown in Fig.2 is
generated from a complete graghin order to
cluster the features, we first traverse all the six
edges, and then decide to remove the ed@e (
/1) because its weight/), 44) = Q3 is
smaller than bottsZA 40, ¢) = 0.5 andSZA A4,

¢) = 0.7. This makes the MST is clustered into
two clusters denoted a&§71) and/{72). Each
cluster is a MST as well. Tak&(71) as an
example. From Fig.2 we know th&f1 /0, /1)
>SUFL C), SFL, F2) >SUKFL ) ASUFL,

£2) >SULF2, C), SNFL, F3) >SULFL, ©)
NSAFL, F3) >SUL3, ). We also observed
that there is no edge exists betwe@®nand/2,

A0 and /3, and /2 and /3. Considering that
71is a MST, so theA), #2) is greater than

(A0, A) and SUFL, F2), SO, £A3) is
greater thansZ{ A0, /1) and SAA /1, £#3), and
SU 2, F3) is greater thans/A /41, /2) and
SUF2, F3). Thus, SUFO, £2) >SUF, ()
NSO, F2) >SUF2, C), S, F3)
>SN, ) NSO, F3) >SUF3, ¢), and
SUNF2, F3) >SUF2, () ASUF2, F3)
>SUNF3, ¢) also hold. As the mutual
information between any paiv{, #/)(Z /= 0,

1, 2,3 /7= )) of A0, A1, A2, and/3 is greater
than the mutual information between class
cand Fror £y, features/0, A1, /2, and /3 are
redundant. After removing all the unnecessary
edges, a foredForestis obtained. Each tree
77€ Forestrepresents a cluster that is denoted
as (7)), which is the vertex set dfy as well.

As illustrated above, the features in each
cluster are redundant, so for each clugfgt))

we choose a representative featdpgivhose
T-Relevance(#/#, () is the greatest. All
F7R(/= 1...[Forest) comprise the final feature
subsetUu/A/4.
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Fig. 1: Example of the clustering step

Time complexity analysis The major amount
of work for Algorithm 1 involves the
computation ofsZAalues forT-Relevancend
F-Correlation, which has linear complexity in
terms of the number of instances in a given
data set. The first part of the algorithm has a
linear time complexity #2) in terms of the
number of featuresz. Assuming (1< £ < )
features are selected as relevant ones in the
first part, when4= 1, only one feature is
selected. Thus, there is no need to continue the
rest parts of the algorithm, and the complexity
is (772). When 1< £ < 77, the second part of the
algorithm firstly constructs a complete graph
from relevant features and the complexity is
A#2), and then generates a MST from the
graph using Prim algorithm whose time
complexity is A4£2). The third part partitions
the MST and chooses the representative
features with the complexity o). Thus when

1 <# < i, the complexity of the algorithm is
(772+42). This means whef < V72, FAST has
linear complexity £2), while obtains the worst
complexity A72) when 4= . However, 4is
heuristically set to be NmAgmfn the
implementation of FAST. So the complexity is
(7249277), which is typically less thaa77:2)
since /g2m<m. This can be explained as
follows. Let (72) = 72 — |g272, so the derivative
/() = 1 - 2 lgelm, which is greater than
zero when 7>1. So ¢z) is a increasing
function and it is greater tharf{1) which is
equal to 1, i.e.#7z>lg272, when 7>1. This
means the bigger thesds, the farther the time
complexity of FAST deviates from7£2).
Thus, on high dimensional data, the time
complexity of FAST is far more less than
(722). This makes FAST has a better runtime
performance with high dimensional data.



International Journal of Emerging Technology in Conputer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 —JULY 24.

3 EXPERIMENTALSTUDY
3.1 Data source
For the purposes of evaluating the
performance and effectiveness of our proposed
FAST algorithm, verifying whether or not the
method is potentially useful in practice, and
allowing other researchers to confirm our
results, 35 publicly available data setsl were
used. The numbers of features of the 35 data
sets vary from 37 to 49152 with a mean of
7874. The dimensionality of the 54.3% data
sets exceeds 5000, of which 28.6% data sets
have more than 10000 features. The 35 data
sets cover a range of application domains such
as text, image and bio microarray data
classification. Table 12 shows the
corresponding statistical information. Note
that for the data sets with continuous-valued
features, the well-known off-the-shelf MDL
method was used to discretize the continuous
values.
3.2 Experiment setup
To evaluate the performance of our proposed
FAST algorithm and compare it with other
feature selection
1. The data sets can be downloaded at:
http://archive.ics.uci.edu/ml/,
http://tunedit.org/repo/Data/ Text-wc,
http://featureselection.asu.edu/datasets.ph
P,
http://www.lIsi.us.es/aguilar/datasets.html
2. F, I, and T denote the number of
features, the number of instances, and the
number of classes, respectively.
algorithms in a fair and reasonable way,
we set up our experimental study as
follows. 1) The proposed algorithm is
compared with five different types of
representative feature selection
algorithms. They are (i) FCBF [68], [71],
(i) ReliefF [57], (i) CFS [29], (iv)
Consist [14], and (v) FOCUSSF [2],
respectively. FCBF and ReliefF evaluate
features individually. For FCBF, in the
experiments, we set the relevance
threshold to be thesvalue of the
[mllogm ¢/ ranked feature for each data
set @zis the number of features in a given
data set) as suggested by Yu and Liu [68],
[71]. ReliefF searches for nearest
neighbors of instances of different classes
and weights features according to how
well they differentiate instances of
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different classes. The other three feature
selection algorithms are based on subset
evaluation. CFS exploits best-first search
based on the evaluation of a subset that
contains features highly correlated with
the target concept, yet uncorrelated with
each other. The Consist method searches
for the minimal subset that separates
classes as consistently as the full set can
under best-first search strategy. FOCUS-
SF is a variation of FOCUS [2]. FOCUS
has the same evaluation strategy as
Consist, but it examines all subsets of
features. Considering the time efficiency,
FOUCS-SF replaces exhaustive search in
FOCUS with sequential forward
selection. For our proposed FAST
algorithm, we heuristically sefto be the
Stvalue of the NmAgm/t/ranked
feature for each data set.

2) Four different types of classification
algorithms are employed to classify data
sets before and after feature selection.
They are (i) the probability-based Naive
Bayes (NB), (ii) the tree-based C4.5, (iii)
the instance-based lazy learning algorithm
IB1, and (iv) the rule-based RIPPER,
respectively. Naive Bayes utilizes a
probabilistic method for classification by
multiplying the individual probabilities of
every feature-value pair. This algorithm
assumes independence among the features
and even then provides excellent
classification results. Decision tree
learning algorithm C4.5 is an extension of
ID3 that accounts for unavailable values,
continuous attribute value ranges, pruning
of decision trees, rule derivation, and so
on. The tree comprises of nodes (features)
that are selected by information entropy.
Instance-based learner IB1 is a single
nearest neighbor algorithm, and it
classifies entities taking the class of the
closest associated vectors in the training
set via distance metrics. It is the simplest
among the algorithms used in our study.
Inductive rule learner RIPPER (Repeated
Incremental Pruning to Produce Error
Reduction) [12] is a propositional rule
learner that defines a rule based detection
model and seeks to improve it iteratively
by using different heuristic techniques.
The constructed rule set is then used to
classify new instances.



International Journal of Emerging Technology in Conputer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 —JULY 24.

3) When evaluating the performance of the
feature subset selection algorithms, four
metrics, (i) the proportion of selected
features (ii) the time to obtain the feature
subset, (iii) the classification accuracy, and
(iv) the Win/Draw/Loss record [65], are
used. The proportion of selected features is
the ratio of the number of features selected
by a feature selection algorithm to the
original number of features of a data set.
The Win/Draw/Loss record presents three
values on a given measure, i.e. the
numbers of data sets for which our
proposed algorithm FAST obtains better,
equal, and worse performance than other
five  feature  selection  algorithms,
respectively. The measure can be the
proportion of selected features, the runtime
to obtain a feature subset, and the
classification accuracy, respectively.
TABLE 1: Summary of the 35 benchmark
data sets

3.3 Experimental procedure

In order to make the best use of the data and
obtainstable results, a (M =>5N = 10)-cross
validation strategy is used. That is, for each
data set, each feature subset selection
algorithm and each classification algorithm,
the 10-fold cross-validation is repeated M = 5
times, with each time the order of the instances
of the data set being randomized. This is
because many of the algorithms exhibit order
effects, in that certain orderings dramatically
improve or degrade performance [21].
Randomizing the order of the inputs can help
diminish the order effectsin the experiment,
for each feature subset selection algorithm, we
obtain MxN feature subsetSubsetand the
corresponding runtiméime with each data
set. Average/Subsefand Timeg we obtain the

number of selected features further the
proportion of selected features and the
corresponding runtime for each feature

selection algorithm on each data set. For each
classification algorithm, we obtain MN
classification Accuracyor each feature
selection algorithm and each data set. Average
theseAccuracy we obtain mean accuracy of
each classification algorithm under each
feature selection algorithm and each data set.
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The procedur&xperimentalProcesshows the
details.

3.4 Results and analysis

In this section we present the experimental
results in terms of the proportion of selected
features, the time to obtain the feature subset,
the classification accuracy, and the
Win/Draw/Loss record. For the purpose of
exploring the statistical significance of the
results, we performed a nonparametric
Friedman test followed by Nemenyi post-hoc
test, as advised by Demsar and Garcia and
Herrerato to statistically compare algorithms
on multiple data sets. Thus the Friedman and
the Nemenyi test results are reported as
well.3.4.1 Proportion of selected features
Table 2 records the proportion of selected
features of the six feature selection algorithms
for each data set. From it we observe that 1)
generally all the six algorithms achieve
significant reduction of dimensionality by
selecting only a small portion of the original
features. FAST on average obtains the best
proportion of selected features of 1.82%. The
Win/Draw/Loss records show FAST wins
other algorithms as well. 2) For image data,
the proportion of selected features of each
algorithm has an increment compared with the
corresponding average proportion of selected
features on the given data sets except Consist
has an improvement. This reveals that the five
algorithms are not very suitable to choose
features for image data compared with for
microarray and text data. FAST ranks 3 with
the proportion of selected features of 3.59%
that has a tiny margin of 0.11% to the first and
second best proportion of selected features
3.48% of Consist and FOCUS-SF, and a
margin of 76.59% to the worst proportion of
selected features 79.85% of ReliefF. 3) For
microarray data, the proportion of selected
features has been improved by each of the six
algorithms compared with that on the given
data sets. This indicates that the six algorithms
work well with microarray data. FAST ranks 1
again with the proportion of selected features
of 0.71%. Of the six algorithms, only CFS
cannot choose features for two data sets whose
dimensionalities are 19994 and 49152,
respectively. 4) For text data, FAST ranks 1
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again with a margin of 0.48% to the second
best algorithm FOCUS-SF.

TABLE 2: Proportion of selected features of
the six feature selection algorithms

Proportion of selected fatues (%) of

Data st A 5 ie: omsist

chess 122 2Lez 1081 é216 s1.08 1802
mfeat-fourier 1948 4035 ed 0370 15.58 1558
coil2000 340 814 1lea 50,00 a7z 11a
Elephart (.36 388 5,60 a3 (.86 (.86
archythmia 230 464 020 5000 803 803
fqs-nowe 031 214 563 2656 469 4.69
colon 0.0 075 135 3013 0.0 030
fhis.we 0.80 145 230 045 175 175
ARIOP 0.z 104 11z e280 [ 020
FIEIOP 107 198 25 9100 0.25 025
chll.we 0.38 .88 110 0.38 182 182
ohl0we 0.34 0.80 .56 040 1el 16l
Bcelll 0.52 Lal L7 3049 010 010
Becell2 les 613 385 Uef7 015 015
Becell3 206 7.05 420 24 012 012
base-hock 0.58 17 (.52 012 119 119
TOX-171 0.28 141 206 pde0 019 019
trlZwe 0.1a 0.28 0.26 059 0.28 .28
tr23we 015 0.27 0.19 146 0.1 021
trlLwe 0.1a 0.25 040 037 0.31 031
embryonaktumours (114 0.03 003 139 003 0.03
leukemial 0.7 0.0z 003 4135 0.03 003
leukemia2 0.01 041 052 &063 0.08 .08
tr2lwe 010 0.22 0.37 .04 0x 0.20
wapwe 0 .53 (.65 110 04 041
PR{10P 015 3.04 235 10000 0.03 0.03
ORL10P .30 26l 176 4097 .04 .04
CLL-5UB-111 0.04 078 l2s 5435 0.08 .08
ohscalwe 0.34 044 018 003 NA NA
laZs.we 015 0.33 0.54 009 037 NA
lalswe 017 0.35 0.51 0.06 0.34 NA
GCM 013 042 el 7041 (.05 (.06
SME-CAN-187 013 0.25 NA 1423 (.08 .06
Tew3swe 010 015 NA 003 NA NA
GLA-BRA-180 0.03 .35 NA  Eads 0.02 .02
Average(lmage) 35 004 B.60 7985 345 348
Average(Microarry) (.71 23 250 592 0.91 0.91
Average|Text) 205 3.25 264 1087 1146 253
Average 182 17 ] 54 206
Win/ Draw / Loss - a3/0/2 31/0/4 29/1/5 20/2/13 1972714

3.4.1 Sensitivity analysis

Like many other feature selection algorithms,
our proposed FAST also requires a parameter
&hat is the threshold of feature relevance.
Different &values might end with different
classification results. In order to explore which
parameter value results in the best
classification accuracy for a specific
classification problem with a given classifier, a
10 fold cross-validation strategy was
employed to reveal how the classification
accuracy is changing with value of the

paramete.
Fig. 2 shows the results where the 35
subfigures represent the 35 data sets,

respectively. In each subfigure, the four curves
denotes the classification accuracies of the
four classifiers with the differenfvalues. The
cross points of the vertical line with the
horizontal axis represent the default values of
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the parametegtecommended by FAST, and
the cross points of the vertical line with

the four curves are the classification accuracies
of the corresponding classifiers with the
Gvalues. From it we observe that:
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Fig. 2: Accuracies of the four classification
algorithms with differentdalues.

1) Generally, for each of the four classification
algorithms, (i) different &values result in
different classification accuracies; (ii) there is
a alue where the corresponding
classification accuracy is the best; and (iii) the
&values, in which the best classification
accuracies are obtained, are different for both
the different data sets and the different
classification algorithms. Therefore, an
appropriate value is desired for a specific
classification problem and a given
classification algorithm.

2) In most cases, the defaultvalues
recommended by FAST are not the optimal.
Especially, in a few cases (e. g., data sets
GCM, CLL-SUB-11, and TOX- 171),
corresponding classification accuracies are
very small.

3) For each of the four -classification
algorithms, although theAalues where the
best classification accuracies are obtained are
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different for different data sets, The value of
0.2 is commonly accepted because the
corresponding  classification accuraciesare
among the best or nearly the best ones. When
determining the value of 4 Dbesides
classification accuracy, the proportion of the
selected features should be taken into account
as well. This is because improper proportion of
the selected features results in a large number
of features are retained, and further affects the
classification efficiency.
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Fig. 3: Accuracy differences between FAST
and the comparing algorithms
Just like the defaultvalues used for FAST in
the experiments are often not the optimal in
terms of classification accuracy, the default
threshold values used for FCBF and ReliefF
(CFS, Consist, and FOCUS-SF do not require
any input parameter) could be so. In order to
explore whether or not FAST still outperforms
when optimal threshold values are used for the
comparing algorithms, 10-fold cross validation
methods were firstly used to determine the
optimal threshold values and then were
employed to conduct classification for each of
the four classification methods with the
different feature subset selection algorithms
upon the 35 data sets. The results reveal that
FAST still outperforms both FCBF and
ReliefF for all the four classification methods,
Fig. 3 shows the full details. At the same time,
Wilcox on signed ranks tests [75] witlr 0.05
were performed to confirm the results as
advised by Demsar. All they values are
smaller than 0.05, this indicates that the FAST
is significantly better than both FCBF and
ReliefF (please refer to Table 3 for details).
TABLE 3: p values of the Wilcoxon tests

(45 I8 REPPER

D3 SOBEDL B78ED
JAIEW 488E-D 7.20E-06

Allemative hypothesis — NB

FAST » FCBF SYEDT
FAST » Releff 437K
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Note that the optimakvalue can be obtained
via the cross-validation method.
Unfortunately, it is very time consuming.

5 CONCLUSION

In this paper, we have presented a novel
clustering-based feature subset selection
algorithm for high dimensional data. The
algorithm involves (i) removing irrelevant
features, (ii) constructing a minimum spanning
tree from relative ones, and (iii) partitioning
the MST and selecting representative features.
In the proposed algorithm, a cluster consists of
features. Each cluster is treated as a single
feature and thus dimensionality is drastically
reduced. We have compared the performance
of the proposed algorithm with those of the
five well-known feature selection algorithms
FCBF, ReliefF, CFS, Consist, and FOCUS-SF
on the 35 publicly available image,
microarray, and text data from the four
different aspects of the proportion of selected
features, runtime, classification accuracy of a
given classifier, and the Win/Draw/Loss
record. Generally, the proposed algorithm
obtained the best proportion of selected
features, the best runtime, and the best
classification accuracy for Naive Bayes, C4.5,

and RIPPER, and the second best
classification accuracy for IB1. The
Win/Draw/Loss records confirmed the

conclusions. We also found that FAST obtains
the rank of 1 for microarray data, the rank of 2
for text data, and the rank of 3 for image data
in terms of classification accuracy of the four
different types of classifiers, and CFS is a
good alternative. At the same time, FCBF is a
good alternative for image and text data.
Moreover, Consist and FOCUSS Fare
alternatives for text data. For the future work,
we plan to explore different types of
correlation measures, and study some formal
Properties of feature space.
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