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Abstract—Feature selection involves identifying a 
subset of the most useful features that produces 
compatible results as the original entire set of 
features. A feature selection algorithm may be 
evaluated from both the efficiency and effectiveness 
points of view. While the efficiency concerns the time 
required to find a subset of features, the effectiveness 
is related to the quality of the subset of features. 
Based on these criteria, a fast clustering-based feature 
selection algorithm, FAST, is proposed and 
experimentally evaluated in this paper. The FAST 
algorithm works in two steps. In the first step, 
features are divided into clusters by using graph-
theoretic clustering methods. In the second step, the 
most representative feature that is strongly related to 
target classes is selected from each cluster to form a 
subset of features. Features in different clusters are 
relatively independent, the clustering-based strategy 
of FAST has a high probability of producing a subset 
of useful and independent features. To ensure the 
efficiency of FAST, we adopt the efficient minimum-
spanning tree clustering method. The efficiency and 
effectiveness of the FAST algorithm are evaluated 
through an empirical study. Extensive experiments 
are carried out to compare FAST and several 
representative feature selection algorithms, namely, 
FCBF, Relief-F, CFS, Consist, and FOCUS-SF, with 
respect to four types of well-known classifiers, 
namely, the probability-based Naive Bayes, the tree-
based C4.5, the instance-based IB1, and the rule-
based RIPPER before and after feature selection. The 
results, on 35 publicly available real-world high 
dimensional image, microarray, and text data, 
demonstrate that FAST not only produces smaller 
subsets of features but also improves the 
performances of the four types of classifiers. 
 
Index Terms—Feature subset selection, filter method, 
feature clustering, graph-based clustering 
 
1 INTRODUCTION 
With the aim of choosing a subset of good 
features with respect to the target concepts, 
feature subset selection is an effective way for 
reducing dimensionality, removing irrelevant 
data, increasing learning accuracy, and 
improving result comprehensibility. Many 
feature subset selection methods have been 
proposed and studied for machine learning 

applications. They can be divided into four 
broad categories: the Embedded, Wrapper, 
Filter, and Hybrid approaches. The embedded 
methods incorporate feature selection as a part 
of the training process and are usually specific 
to given learning algorithms, and therefore 
may be more efficient than the other three 
categories. Traditional machine learning 
algorithms like decision trees or artificial 
neural networks are examples of embedded 
approaches. The wrapper methods use the 
predictive accuracy of a predetermined 
learning algorithm to determine the goodness 
of the selected subsets, the accuracy of the 
learning algorithms is usually high. However, 
the generality of the selected features is 
limited and the computational complexity is 
large. The filter methods are independent of 
learning algorithms, with good generality. 
Their computational complexity is low, but the 
accuracy of the learning algorithms is not 
guaranteed. The hybrid methods are a 
combination of filter and wrapper methods by 
using a filter method to reduce searchspace 
that will be considered by the subsequent 
wrapper. They mainly focus on combining 
filter and wrapper methods to achieve the best 
possible performance with a particular 
learning algorithm with similar time 
complexity of the filter methods. The wrapper 
methods are computationally expensive and 
tend to over fit on small training sets. The 
filter methods, in addition to their generality, 
are usually a good choice when the number of 
features is very large. Thus, we will focus on 
the filter method in this paper. With respect to 
the filter feature selection methods, the 
application of cluster analysis has been 
demonstrated to be more effective than 
traditional feature selection algorithms. Pereira 
et al., Baker et al., and Dhillon et al. employed 
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the distributional clustering of words to reduce 
the dimensionality of text data. In cluster 
analysis, graph-theoretic methods have been 
well studied and used in many applications. 
Their results have, sometimes, the best 
agreement with human performance. The 
general graph-theoretic clustering is simple: 
Compute a neighbourhood graph of instances, 
then delete any edge in the graph that is much 
longer/shorter (according to some criterion) 
than its neighbours. The result is a forest and 
each tree in the forest represents a cluster. In 
our study, we apply graphtheoreticclustering 
methods to features. In particular, we adopt the 
minimum spanning tree (MST) based 
clustering algorithms, because they do not 
assume that data points are grouped around 
centres or separated by a regular geometric 
curve and have been widely used in practice. 
 
2 FEATURE SUBSET SELECTION 
ALGORITHMS 
2.1 Framework and definitions 
Irrelevant features, along with redundant 
features, severely affect the accuracy of the 
learning machines. Thus, feature subset 
selection should be able to identify and 
remove as much of the irrelevant and 
redundant information as possible. Moreover, 
“good featuresubsets contain features highly 
correlated with (predictive of)the class, yet 
uncorrelated with (not predictive of) each 
other.” Fig. 1: Framework of the proposed 
feature subset selection algorithm 
Keepingthese in mind, we develop a novel 
algorithm which can efficiently and effectively 
deal with both irrelevant and redundant 
features, and obtain a good feature subset. We 
achieve this through a new feature selection 
framework (shown in Fig.1) which composed 
of the two connected components of irrelevant 
feature removal and redundant feature 
elimination. The former obtains features 
relevant to the target concept by eliminating 
irrelevant ones, and the latter removes 
redundant features from relevant ones via 
choosing representatives from different feature 
clusters, and thus produces the final subset. 
The irrelevant feature removal is 
straightforward once the right relevance 
measure is defined or selected, while the 
redundant feature elimination is a bit of 
sophisticated. In our proposed FAST 
algorithm, it involves (i) the construction of 

the minimum spanning tree (MST) from a 
weighted complete graph; (ii) the partitioning 
of the MST into a forest with each tree 
representing a cluster; and (iii) the selection of 
representative features from the clusters. In 
order to more precisely introduce the 
algorithm, and because our proposed feature 
subset selection framework involves irrelevant 
feature removal and redundant feature 
elimination, we firstly present the traditional 
definitions of relevant and redundant features, 
then provide our definitions based on variable 
correlation as follows. John et al. [33] 
presented a definition of relevant features. 
Suppose �to be the full set of features, ��∈� 
be a feature, ��= �−{��} and �′�⊆��. Let �′�be 
a value assignment of all features in �′,��a 
value assignment of feature ��, and �a value-
assignment of the target concept 	. The 
definition can be formalized as follows. 
Definition 1: (Relevant feature) ��is relevant 
to the target concept 	if and only if there 
exists some �′�, ��and �, such that, for 
probability (�′�= �′�, ��= ��) >0,relevant to the 
target concept; (ii) when �′�⊊��, from the 
definition we may obtain that (	∣��, ��) = 
�(	∣��). It seems that ��is irrelevant to the 
target concept. However, the definition shows 
that feature ��is relevant when using �′�∪{��} 
to describe the target concept. The reason 
behind is that either ��is interactive with �′� or 
��is redundant with �� − �′. In this case, we 
say ��is indirectly relevant to the target 
concept. Most of the information contained in 
redundant features is already present in other 
features. As a result, redundant features do not 
contribute to getting better interpreting ability 
to the target concept. It is formally defined by 
Yu and Liu based on Markov blanket [36]. 
The definitions of Markov blanket and 
redundant feature are introduced as follows, 
respectively.  
Definition 2: (Markov blanket) Given a 
feature ��∈�, let ��⊂�(�� ⁄∈��), ��is said to 
be a Markov blanket for ��if and only if (� 
−��−{��}, 	∣��,��) = �(� −�� −{��}, 	∣��). 
Definition 3: (Redundant feature) Let�be a set 
of features, a feature in �is redundant if and 
only if it has a Markov Blanket within �. 
Relevant features have strong correlation with 
target concept so are always necessary for a 
best subset, while redundant features are not 
because their values are completely correlated 
with each other. Thus, notions of feature 
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redundancy and feature relevance are normally 
in terms of feature correlation and feature-
target concept correlation. Mutual information 
measures how much the distribution of the 
feature values and target classes differ from 
statistical independence. The symmetric 
uncertainty is defined as follows 
(�, �) =2 × ����(�∣�) 
�(�) + �(�) . (1) 
Where, 
1) (�) is the entropy of a discrete random 
variable �. Suppose (�) is the prior 
probabilities for all 
Values of �, (�) is defined by 
(�) = −Σ �∈� 
(�) log2 (�). (2) 
2) Gain (�∣) is the amount by which the 
entropy of �decreases. It reflects the additional 
information about �provided by �and is called 
the information gain which is given by 
����(�∣�) = �(�) − �(�∣�) 
= �(�) − �(�∣�). (3) 
Where (�∣) is the conditional entropy which 
�(	= �∣�′ �= �′ �, ��= ��) ⁄= �(	= �∣�′ �= �′ �). 
Otherwise, feature ��is an irrelevant feature. 
Definition 1 indicates that there are two kinds 
of relevant features due to different �′: (i) 
when �′�= ��, from the definition we can know 
that ��is directly quantifies the remaining 
entropy (i.e. uncertainty) of a random variable 
�given that the value of another random 
variable �is known. Suppose (�) is the prior 
probabilities for all values of �and (�∣�) is the 
posterior probabilities of �given the values of 
�, �(�∣�) is defined by 
(�∣�) = −Σ �∈�(�)Σ �∈��(�∣�) log2 �(�∣�). 
(4) 
Information gain is a symmetrical measure. 
That is the amount of information gained 
about �after observing �is equal to the amount 
of information gained about �after observing 
�. This ensures that the order of two variables 
(e.g.,(�, �) or (�,�)) will not affect the value 
of the measure. Symmetric uncertainty treats a 
pair of variables symmetrically, it compensates 
for information gain’s bias toward variables 
with more values and normalizes its value to 
the range [0,1]. A value 1 of (�, �) indicates 
that knowledge of the value of either one 
completely predicts the value of the other and 
the value 0 reveals that �and �are 
independent. Although the entropy based 
measure handles nominal or discrete variables, 
they can deal with continuous features as well, 

if the values are discretized properly in 
advance. Given ��(�, �) the symmetric 
uncertainty of variables �and �, the relevance 
T Relevance between a feature and the target 
concept 	, the correlation FCorrelation 
between a pair of features, the feature 
redundance F-Redundancy and the 
representative feature R-Feature of a feature 
cluster can be defined as follows. 
Definition 4: (T-Relevance) The relevance 
between the feature ��∈�and the target 
concept 	is referred to as theT-Relevance of 
��and 	, and denoted by (��, 	). If (��, 	) is 
greater than a predetermined threshold �, we 
say that ��is a strong T-Relevance feature. 
2.2 Algorithm and analysis 
The proposed FAST algorithm logically 
consists of three steps: (i) removing irrelevant 
features,  (ii) constructing a MST from relative 
ones, and (iii) partitioning the MST and 
selecting representative features. For a data set 
�with �features �= {�1, �2, ...,��} and class 
	, we compute the T Relevance �(��, 	) value 
for each feature ��(1 ≤ � ≤ �) in the first step. 
The features whose (��, 	) values are greater 
than a predefined threshold �comprise the 
target-relevant feature subset �′ = {�′1 , �′2 , 
..., �′�} (� ≤ �). In the second step, we first 
calculate the F-Correlation(�′ �, �′ �) value for 
each pair of features �′ �and �′ �(�′ �, �′ �∈�′ 
∧� ⁄= �). Then, viewing features �′ �and �′ �as 
vertices and ��(�′ �, �′ �) (� ⁄= �) as the weight 
of the edge between vertices �′ �and �′ �, a 
weighted complete graph �= (�, ) is 
constructed where �= {�′ �∣�′ �∈�′ ∧�∈[1, �]} 
and  = {(�′ �, �′ �) ∣(�′ �, �′ �∈�′ ∧�, �∈[1, �] 
∧� ⁄= �}. As symmetric uncertainty is 
symmetric further the F Correlation (�′ �, �′ �) 
is symmetric as well, thus �is an undirected 
graph. The complete graph �reflects the 
correlations among all the target-relevant 
features. Unfortunately, graph �has �vertices 
and (�−1)/2 edges. For high dimensional data, 
it is heavily dense and the edges with different 
weights are strongly interweaved. Moreover, 
the decomposition of complete graph is NP-
hard [26]. Thus for graph �, we build a MST, 
which connects all vertices such that the sum 
of the weights of the edges is the minimum, 
using the well-known Prim algorithm [54]. 
The weight of edge (�′ �, �′ �) is F Correlation 
(�′ �, �′ �). After building the MST, in the third 
step, we first remove the edges  = {(�′ �, �′ �) 
∣(�′ �, �′ �∈�′ ∧�, �∈[1, �] ∧� ⁄= �}, whose 
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weights are smaller than both of the T 
Relevance (�′ �, 	) and ��(�′ �, 	), from the 
MST. Each deletion results in two 
disconnected trees !1 and!2.Assuming the set 
of vertices in any one of the finaltrees to be 
�(!), we have the property that for each pair 
of vertices (�′ �, �′ �∈�(!)), (�′ �, �′ �) ≥ ��(�′ 
�, 	) ∨��(�′ �, �′ �) ≥ ��(�′ �, 	) always 
holds. From Definition 6 we know that this 
property guarantees the features in �(!) are 
redundant. This can be illustrated by an 
example. Suppose the MST shown in Fig.2 is 
generated from a complete graph �. In order to 
cluster the features, we first traverse all the six 
edges, and then decide to remove the edge (�0, 
�4) because its weight (�0, �4) = 0.3 is 
smaller than both ��(�0, 	) = 0.5 and ��(�4, 
	) = 0.7. This makes the MST is clustered into 
two clusters denoted as �(!1) and �(!2). Each 
cluster is a MST as well. Take �(!1) as an 
example. From Fig.2 we know that ��(�0, �1) 
>��(�1, 	), ��(�1, �2) >��(�1, 	) ∧��(�1, 
�2) >��(�2, 	), ��(�1, �3) >��(�1, 	) 
∧��(�1, �3) >��(�3, 	). We also observed 
that there is no edge exists between �0 and �2, 
�0 and �3, and �2 and �3. Considering that 
!1 is a MST, so the (�0, �2) is greater than 
(�0, �1) and ��(�1, �2), ��(�0, �3) is 
greater than ��(�0, �1) and ��(�1, �3), and 
��(�2, �3) is greater than ��(�1, �2) and 
��(�2, �3). Thus, ��(�0, �2) >��(�0, 	) 
∧��(�0, �2) >��(�2, 	), ��(�0, �3) 
>��(�0, 	) ∧��(�0, �3) >��(�3, 	), and 
��(�2, �3) >��(�2, 	) ∧��(�2, �3) 
>��(�3, 	) also hold. As the mutual 
information between any pair (��, ��)(�, �= 0, 
1, 2, 3 ∧� ⁄= �) of �0, �1, �2, and �3 is greater 
than the mutual information between class 
	and ��or ��, features �0, �1, �2, and �3 are 
redundant. After removing all the unnecessary 
edges, a forest Forest is obtained. Each tree 
!�∈ Forest represents a cluster that is denoted 
as �(!�), which is the vertex set of !� as well. 
As illustrated above, the features in each 
cluster are redundant, so for each cluster �(!�) 
we choose a representative feature ��#whose 
T-Relevance (��#, 	) is the greatest. All 
��#(�= 1...∣Forest∣) comprise the final feature 
subset ∪��#. 

 
                  Fig. 1: Example of the clustering step 
 

Time complexity analysis. The major amount 
of work for Algorithm 1 involves the 
computation of ��values for T-Relevance and 
F-Correlation, which has linear complexity in 
terms of the number of instances in a given 
data set. The first part of the algorithm has a 
linear time complexity (�) in terms of the 
number of features �. Assuming (1 ≤ � ≤ �) 
features are selected as relevant ones in the 
first part, when �= 1, only one feature is 
selected. Thus, there is no need to continue the 
rest parts of the algorithm, and the complexity 
is (�). When 1 <� ≤ �, the second part of the 
algorithm firstly constructs a complete graph 
from relevant features and the complexity is 
$(�2), and then generates a MST from the 
graph using Prim algorithm whose time 
complexity is $(�2). The third part partitions 
the MST and chooses the representative 
features with the complexity of (�). Thus when 
1 <� ≤ �, the complexity of the algorithm is 
(�+�2). This means when � ≤ √�, FAST has 
linear complexity (�), while obtains the worst 
complexity $(�2) when �= �. However, �is 
heuristically set to be ⌊√�∗lg�⌋in the 
implementation of FAST. So the complexity is 
(�∗lg2�), which is typically less than $(�2) 
since ()2�<�. This can be explained as 
follows. Let (�) = � − lg2�, so the derivative 
�′(�) = 1 − 2 lg*/�, which is greater than 
zero when �>1. So (�) is a increasing 
function and it is greater than �(1) which is 
equal to 1, i.e., �> lg2�, when �>1. This 
means the bigger the �is, the farther the time 
complexity of FAST deviates from (�2). 
Thus, on high dimensional data, the time 
complexity of FAST is far more less than 
(�2). This makes FAST has a better runtime 
performance with high dimensional data. 
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3 EXPERIMENTALSTUDY 
3.1 Data source 
For the purposes of evaluating the 
performance and effectiveness of our proposed 
FAST algorithm, verifying whether or not the 
method is potentially useful in practice, and 
allowing other researchers to confirm our 
results, 35 publicly available data sets1 were 
used. The numbers of features of the 35 data 
sets vary from 37 to 49152 with a mean of 
7874. The dimensionality of the 54.3% data 
sets exceeds 5000, of which 28.6% data sets 
have more than 10000 features. The 35 data 
sets cover a range of application domains such 
as text, image and bio microarray data 
classification. Table 12 shows the 
corresponding statistical information. Note 
that for the data sets with continuous-valued 
features, the well-known off-the-shelf MDL 
method was used to discretize the continuous 
values. 
3.2 Experiment setup 
To evaluate the performance of our proposed 
FAST algorithm and compare it with other 
feature selection 
1. The data sets can be downloaded at: 

http://archive.ics.uci.edu/ml/, 
http://tunedit.org/repo/Data/ Text-wc, 
http://featureselection.asu.edu/datasets.ph
p, 
http://www.lsi.us.es/aguilar/datasets.html 
2. F, I, and T denote the number of 
features, the number of instances, and the 
number of classes, respectively. 
algorithms in a fair and reasonable way, 
we set up our experimental study as 
follows. 1) The proposed algorithm is 
compared with five different types of 
representative feature selection 
algorithms. They are (i) FCBF [68], [71], 
(ii) ReliefF [57], (iii) CFS [29], (iv) 
Consist [14], and (v) FOCUSSF [2], 
respectively. FCBF and ReliefF evaluate 
features individually. For FCBF, in the 
experiments, we set the relevance 
threshold to be the ��value of the 
⌊�/log�⌋+ℎ ranked feature for each data 
set (�is the number of features in a given 
data set) as suggested by Yu and Liu [68], 
[71]. ReliefF searches for nearest 
neighbors of instances of different classes 
and weights features according to how 
well they differentiate instances of 

different classes. The other three feature 
selection algorithms are based on subset 
evaluation. CFS exploits best-first search 
based on the evaluation of a subset that 
contains features highly correlated with 
the target concept, yet uncorrelated with 
each other. The Consist method searches 
for the minimal subset that separates 
classes as consistently as the full set can 
under best-first search strategy. FOCUS-
SF is a variation of FOCUS [2]. FOCUS 
has the same evaluation strategy as 
Consist, but it examines all subsets of 
features. Considering the time efficiency, 
FOUCS-SF replaces exhaustive search in 
FOCUS with sequential forward 
selection. For our proposed FAST 
algorithm, we heuristically set �to be the 
��value of the ⌊√�∗lg�⌋+ℎranked 
feature for each data set. 
2) Four different types of classification 
algorithms are employed to classify data 
sets before and        after feature selection. 
They are (i) the probability-based Naive 
Bayes  (NB), (ii) the tree-based C4.5, (iii) 
the instance-based lazy learning algorithm 
IB1, and (iv) the rule-based RIPPER, 
respectively. Naive Bayes utilizes a 
probabilistic method for classification by 
multiplying the individual probabilities of 
every feature-value pair. This algorithm 
assumes independence among the features 
and even then provides excellent 
classification results. Decision tree 
learning algorithm C4.5 is an extension of 
ID3 that accounts for unavailable values, 
continuous attribute value ranges, pruning 
of decision trees, rule derivation, and so 
on. The tree comprises of nodes (features) 
that are selected by information entropy. 
Instance-based learner IB1 is a single 
nearest neighbor algorithm, and it 
classifies entities taking the class of the 
closest associated vectors in the training 
set via distance metrics. It is the simplest 
among the algorithms used in our study. 
Inductive rule learner RIPPER (Repeated 
Incremental Pruning to Produce Error 
Reduction) [12] is a propositional rule 
learner that defines a rule based detection 
model and seeks to improve it iteratively 
by using different heuristic techniques. 
The constructed rule set is then used to 
classify new instances. 



International Journal of Emerging Technology in Computer Science & Electronics 
(IJETCSE) ISSN: 0976-1353 Volume 9 Issue 1 –JULY 2014. 

 

14 

 

3) When evaluating the performance of the 
feature   subset selection algorithms, four 
metrics, (i) the proportion of selected 
features (ii) the time to obtain the feature 
subset, (iii) the classification accuracy, and 
(iv) the Win/Draw/Loss record [65], are 
used. The proportion of selected features is 
the ratio of the number of features selected 
by a feature selection algorithm to the 
original number of features of a data set. 
The Win/Draw/Loss record presents three 
values on a given measure, i.e. the 
numbers of data sets for which our 
proposed algorithm FAST obtains better, 
equal, and worse performance than other 
five feature selection algorithms, 
respectively. The measure can be the 
proportion of selected features, the runtime 
to obtain a feature subset, and the 
classification accuracy, respectively. 
TABLE 1: Summary of the 35 benchmark 
data sets 
 

 
 
3.3 Experimental procedure 
In order to make the best use of the data and 
obtainstable results, a (M = 5)×(N = 10)-cross 
validation strategy is used. That is, for each 
data set, each feature subset selection 
algorithm and each classification algorithm, 
the 10-fold cross-validation is repeated M = 5 
times, with each time the order of the instances 
of the data set being randomized. This is 
because many of the algorithms exhibit order 
effects, in that certain orderings dramatically 
improve or degrade performance [21]. 
Randomizing the order of the inputs can help 
diminish the order effectsIn the experiment, 
for each feature subset selection algorithm, we 
obtain M×N feature subsets Subset and the 
corresponding runtime Time with each data 
set. Average ∣Subset∣and Time, we obtain the 
number of selected features further the 
proportion of selected features and the 
corresponding runtime for each feature 
selection algorithm on each data set. For each 
classification algorithm, we obtain M×N 
classification Accuracyfor each feature 
selection algorithm and each data set. Average 
these Accuracy, we obtain mean accuracy of 
each classification algorithm under each 
feature selection algorithm and each data set. 

The procedure ExperimentalProcess shows the 
details. 
 

 
 
3.4 Results and analysis 
In this section we present the experimental 
results in terms of the proportion of selected 
features, the time to obtain the feature subset, 
the classification accuracy, and the 
Win/Draw/Loss record. For the purpose of 
exploring the statistical significance of the 
results, we performed a nonparametric 
Friedman test followed by Nemenyi post-hoc 
test, as advised by Demsar and Garcia and 
Herrerato to statistically compare algorithms 
on multiple data sets. Thus the Friedman and 
the Nemenyi test results are reported as 
well.3.4.1 Proportion of selected features 
Table 2 records the proportion of selected 
features of the six feature selection algorithms 
for each data set. From it we observe that 1) 
generally all the six algorithms achieve 
significant reduction of dimensionality by 
selecting only a small portion of the original 
features. FAST on average obtains the best 
proportion of selected features of 1.82%. The 
Win/Draw/Loss records show FAST wins 
other algorithms as well. 2) For image data, 
the proportion of selected features of each 
algorithm has an increment compared with the 
corresponding average proportion of selected 
features on the given data sets except Consist 
has an improvement. This reveals that the five 
algorithms are not very suitable to choose 
features for image data compared with for 
microarray and text data. FAST ranks 3 with 
the proportion of selected features of 3.59% 
that has a tiny margin of 0.11% to the first and 
second best proportion of selected features 
3.48% of Consist and FOCUS-SF, and a 
margin of 76.59% to the worst proportion of 
selected features 79.85% of ReliefF. 3) For 
microarray data, the proportion of selected 
features has been improved by each of the six 
algorithms compared with that on the given 
data sets. This indicates that the six algorithms 
work well with microarray data. FAST ranks 1 
again with the proportion of selected features 
of 0.71%. Of the six algorithms, only CFS 
cannot choose features for two data sets whose 
dimensionalities are 19994 and 49152, 
respectively. 4) For text data, FAST ranks 1 
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again with a margin of 0.48% to the second 
best algorithm FOCUS-SF. 
 
 
 
 
 TABLE 2: Proportion of selected features of 
the six feature selection algorithms 

 
 
 
3.4.1 Sensitivity analysis 
Like many other feature selection algorithms, 
our proposed FAST also requires a parameter 
�that is the threshold of feature relevance. 
Different �values might end with different 
classification results. In order to explore which 
parameter value results in the best 
classification accuracy for a specific 
classification problem with a given classifier, a 
10 fold cross-validation strategy was 
employed to reveal how the classification 
accuracy is changing with value of the 
parameter �. 
Fig. 2 shows the results where the 35 
subfigures represent the 35 data sets, 
respectively. In each subfigure, the four curves 
denotes the classification accuracies of the 
four classifiers with the different �values. The 
cross points of the vertical line with the 
horizontal axis represent the default values of 

the parameter �recommended by FAST, and 
the cross points of the vertical line with 
the four curves are the classification accuracies 
of the corresponding classifiers with the 
�values. From it we observe that: 
 

 
 

Fig. 2: Accuracies of the four classification 
algorithms with different �values. 
1) Generally, for each of the four classification 
algorithms, (i) different �values result in 
different classification accuracies; (ii) there is 
a �value where the corresponding 
classification accuracy is the best; and (iii) the 
�values, in which the best classification 
accuracies are obtained, are different for both 
the different data sets and the different 
classification algorithms. Therefore, an 
appropriate �value is desired for a specific 
classification problem and a given 
classification algorithm. 
2) In most cases, the default �values 
recommended by FAST are not the optimal. 
Especially, in a few cases (e. g., data sets 
GCM, CLL-SUB-11, and TOX- 171), the 
corresponding classification accuracies are 
very small. 
3) For each of the four classification 
algorithms, although the �values where the 
best classification accuracies are obtained are 
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different for different data sets, The value of 
0.2 is commonly accepted because the 
corresponding classification accuraciesare 
among the best or nearly the best ones. When 
determining the value of �, besides 
classification accuracy, the proportion of the 
selected features should be taken into account 
as well. This is because improper proportion of 
the selected features results in a large number 
of features are retained, and further affects the 
classification efficiency. 

 
Fig. 3: Accuracy differences between FAST 
and the comparing algorithms 
Just like the default �values used for FAST in 
the experiments are often not the optimal in 
terms of classification accuracy, the default 
threshold values used for FCBF and ReliefF 
(CFS, Consist, and FOCUS-SF do not require 
any input parameter) could be so. In order to 
explore whether or not FAST still outperforms 
when optimal threshold values are used for the 
comparing algorithms, 10-fold cross validation 
methods were firstly used to determine the 
optimal threshold values and then were 
employed to conduct classification for each of 
the four classification methods with the 
different feature subset selection algorithms 
upon the 35 data sets. The results reveal that 
FAST still outperforms both FCBF and 
ReliefF for all the four classification methods, 
Fig.  3 shows the full details. At the same time, 
Wilcox on signed ranks tests [75] with -= 0.05 
were performed to confirm the results as 
advised by Demsar. All the � values are 
smaller than 0.05, this indicates that the FAST 
is significantly better than both FCBF and 
ReliefF (please refer to Table 3 for details). 

TABLE 3: p values of the Wilcoxon tests 

 

Note that the optimal �value can be obtained 
via the cross-validation method. 
Unfortunately, it is very time consuming. 
 
 
5 CONCLUSION 
In this paper, we have presented a novel 
clustering-based feature subset selection 
algorithm for high dimensional data. The 
algorithm involves (i) removing irrelevant 
features, (ii) constructing a minimum spanning 
tree from relative ones, and (iii) partitioning 
the MST and selecting representative features. 
In the proposed algorithm, a cluster consists of 
features. Each cluster is treated as a single 
feature and thus dimensionality is drastically 
reduced. We have compared the performance 
of the proposed algorithm with those of the 
five well-known feature selection algorithms 
FCBF, ReliefF, CFS, Consist, and FOCUS-SF 
on the 35 publicly available image, 
microarray, and text data from the four 
different aspects of the proportion of selected 
features, runtime, classification accuracy of a 
given classifier, and the Win/Draw/Loss 
record. Generally, the proposed algorithm 
obtained the best proportion of selected 
features, the best runtime, and the best 
classification accuracy for Naive Bayes, C4.5, 
and RIPPER, and the second best 
classification accuracy for IB1. The 
Win/Draw/Loss records confirmed the 
conclusions. We also found that FAST obtains 
the rank of 1 for microarray data, the rank of 2 
for text data, and the rank of 3 for image data 
in terms of classification accuracy of the four 
different types of classifiers, and CFS is a 
good alternative. At the same time, FCBF is a 
good alternative for image and text data. 
Moreover, Consist and FOCUSS Fare 
alternatives for text data. For the future work, 
we plan to explore different types of 
correlation measures, and study some formal 
Properties of feature space. 
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