
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

172

AN APPROACH FOR LOSSLESS DATA HIDING

USING LZW CODES

Sindhuja J
1
,Anitha B

2

1
PG Scholar, Department of Information Technology, Kongu Engineering College, Perundurai,Erode-638 052,Tamil Nadu,India.

2
Assistant Professor, Department of Information Technology, Kongu Engineering College, Perundurai,Erode-638 052,Tamil

Nadu,India.

Abstract
Abstract--Hiding a message in compression codes can

reduce transmission costs and simultaneously make the

transmission more secure. In high-performance, data-hiding

Lempel–Ziv–Welch (HPDH-LZW) scheme, which reversibly

embeds data in LZW compression codes by modifying the

value of the compression codes, where the value of the LZW

code either remains unchanged or is changed to the original

value of the LZW code plus the LZW dictionary size according

to the data to be embedded. Compared to other information-

hiding schemes based on LZW compression codes, the

proposed scheme achieves better hiding capacity by increasing

the number of symbols available to hide secrets and also

achieves faster hiding and extracting speeds due to the lower

computation requirements.

Keywords

LZW, Steganography, Information hiding.

I. INTRODUCTION

 With the rapid development of new Internet

techniques, huge amounts of data are generated on the

Internet daily. With the extensive, worldwide use of the

Internet, it is now necessary to encrypt sensitive data before

transmission to protect those data. Reversible data-hiding

techniques can ensure that the receiver can receive hidden

messages and recover needed data without distortion.

Reversible data-hiding has received extensive attention since

recoverable media are more useful when protecting the

security and privacy of sensitive information. For example,

assume that the personal information of a patient is private

information and the patient‟s X-ray images are used as cover

media. It is very important to recover the X-ray images

without any loss of detail after retrieving the patient‟s

personal information. Currently, reversible data-hiding

schemes are applied in three domains, i.e., the spatial

domain, the transformed domain and the compression

domain. In the spatial domain, the values of the pixels of the

cover image are altered directly to hide the data. In the

transformed domain, the cover image is processed by a

transform algorithm to obtain the frequency coefficients.

Then, the frequency coefficients are modified to hide the

data. In the compression domain, the compression code is

altered to hide the data. LZW coding is a simple,well-

known, lossless compression algorithm that compresses

and decompresses data by using a dictionary that is

automatically produced, so LZW coding eliminates the need

to analyze the source file or transmit any auxiliary

information to the decoder.

The related DH-LZW scheme based on the LZW

algorithm hides the data by shrinking one character of one

symbol to hide the data. However, the hiding capacity was

low because only the symbol whose length is greater than

the threshold can hide secret data and an embeddable

symbol hides only one secret bit.

The HCDH-LZW scheme is used to improve the

performance of Shim, Ahn, and Jeon‟s method by shrinking

the characters according to the length of the symbol used to

hide the data, thereby achieving higher embedding capacity.

This hiding capacity is higher because more symbols are

available to hide secret bits and because one symbol can

hide more than one secret bit. However, only symbols with

lengths larger than the threshold can hide data and repeated

symbols increase the size of the dictionary, which, in turn,

lowers the hiding speed. In addition, the extracting

algorithm is very complicated, and this increases the

computation costs. Further, both scheme must transmit

auxiliary information, the threshold value.

To overcome the shortcomings of these methods, the

proposed data-hiding scheme that is based on LZW codes by

utilizing the relationship between the output compression

codes and the size of the dictionary. The proposed scheme

guarantees that the receiver can recover the source data and

extract the hidden data without loss. In comparison to other

proposed schemes, our scheme can achieve a much higher

embedding capacity and lower computation costs.

The need for data hiding is such that the existence of the

message is not known to anyone apart from the sender and

the intended receiver. In data hiding, the receiver can able to

recover only the hidden data and not the source data which

is used as a cover medium.

Cover Medium
 This is the medium in which he/she wants to

hide data. It can be an image or text data or any audio or

video file. It is also called as source data.

Classification of cover medium

 In modern approach, depending on the nature

of cover object, it can be divided as follows,

Text cover medium

 Hiding information in plain text can be done

in many different ways. Many techniques involve the

modification of the layout of a text, rules like using every n
th

character or the altering of the amount of white space after

lines or between words.

Image cover medium

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

173

 Image steganography is steganography

technique using image as cover. It uses the fact that human

visual system is having low sensitivity to small changes in

digital data. It modifies pixel values of image for data

hiding.

Audio cover medium

 In audio steganography system, the cover

medium is digital Audio. Secret messages are embedded in

digital sound. Some common methods used in audio

steganography are LSB coding, parity coding, phase coding,

spread spectrum and echo hiding.

Video cover medium

 Video files are generally a collection of

images and sounds, so most of the presented techniques on

images and audio can be applied to video files too. The great

advantages of video are the large amount of data that can be

hidden inside and the fact that it is a moving stream of

images and sounds.

 The reversible data hiding allows the receiver

to recover the source data and extract the hidden data

without any loss. Reversible data hiding schemes can be

applied in three domains.

 In the spatial domain, the values of the pixels of the

cover image are altered directly to hide the data. In the

transformed domain, the cover image is processed by a

transform algorithm to obtain the frequency coefficients and

then the frequency coefficients are modified to hide the data.

 In the compression domain the compression code is

altered to hide the data. The merit of using reversible data

hiding schemes in the compression domain is that such

schemes can reduce transmission costs and simultaneously

secure the information that is transmitted.For example,

assume that the personal information of a patient is private

information and the patient‟s x-ray images are used as cover

media. The receiver should be able to recover both the x-ray

image and personal information of a patient which is hided

in the x-ray image without any loss. This is an example of

reversible data hiding technique in medical field.

 The reversible data hiding techniques are used in

various applications such as military, science and education,

digital image processing and in various domains. It is used

to recover both the source data and the hidden data.

 Compression is a reduction in the number of bits

needed to represent data. Compressing data can save storage

capacity, speed file transfer, and decrease costs for storage

hardware and network bandwidth. The term data

compression refers to the process of reducing the amount of

data required to represent a given quantity of information.

The aim of data compression is to reduce redundancy in

stored or communicated data which increases data density. It

can be applied in file storage, distributed systems and data

transmission.

 The main idea of data compression is to reduce the

quantity or amount of data to be sent or transmitted. Various

algorithms are used for data compression technique to

reduce the size of the file to be transmitted without the

degradation of the original file. There are different types of

data compression present in compression technique which

can be used for compression of text.

 Compressing data can be a lossless or lossy

process. Lossless compression enables the restoration of a

file to its original state, without the loss of a single bit of

data, when the file is uncompressed. Lossless compression is

the typical approach with executables, as well as text and

spreadsheet files, where the loss of words or numbers would

change the information. A simple characterization of data

compression is that it involves transforming a string of

characters in some representation into a new string which

contains the same information but whose length is as small

as possible

 .Lossy compression permanently eliminates bits of

data that are redundant, unimportant or imperceptible. Lossy

compression is useful with graphics, audio, video and

images, where the removal of some data bits has little or no

discernible effect on the representation of the content.

Graphics image compression can be lossy or lossless.

 The main advantages of compression are a

reduction in storage hardware, data transmission time and

communication bandwidth, and the resulting cost savings.A

compressed file requires less storage capacity than an

uncompressed file, and the use of compression can lead to a

significant decrease in expenses for disk and drives. A

compressed file also requires less time for transfer, and it

consumes less network bandwidth than an uncompressed

file. Many data processing applications require storage of

large volumes of data and no of such applications are

increasing constantly as the use of computers.

II. Related works

In this section, the LZW compression, DH-LZW

and HCDH-LZW schemes are described briefly.

2.1. The LZW algorithm

The LZW algorithm compresses the source file mainly by

substituting fixed length codes for the variable length

sequential symbols of the source file. Since the dictionary

initializes with ASCII values from 0 to 255, the shortest

code length is nine bits. The encoder reads the source data

sequentially, and if the sequences are in the dictionary, the

code that corresponds to the previous symbol that was

scanned will be the output; otherwise, the sequences are

placed into the next unused dictionary location. The longer

the symbols in the dictionary are, the higher the LZW

compression ratio is. Since the decoder constructs the same

dictionary dynamically and automatically in the decoding

phase, the sender does not have to send the entire dictionary

to the receiver. Then, the decoder recovers the source file by

converting the LZW codes to the corresponding symbols

according to the dictionary.

2.2. The DH-LZW scheme

The main idea was to shrink one character of one symbol

to hide the data. Shim, Ahn, and Jeon‟s scheme sets THD as

a threshold to decide whether or not a symbol can be used to

hide data. During the hiding phase, a symbol can be used to

hide one secret bit only when the length of the symbol is

larger than THD. The hiding strategy must match the parity

of the symbol‟s length to the secret bit by shrinking the last

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

174

character of the symbol. The parity bit of the odd number is

1, and the parity bit of the even number is 0.

So if the secret bit equals the parity bit of the symbol‟s

length, then the symbol does not shrink; otherwise, the

symbol shrinks the last character, and the shrunken character

is returned to the source file. Since the symbol‟s length

increases gradually during the construction of a dictionary,

the shrunken symbol already exists in the dictionary. The

extracting phase just tests the parity bit of the symbol. There

may be a secret bit when a new symbol is added to the

dictionary.

 If the symbol‟s length is larger than THD, the secret bit

equals the parity bit of the previous symbol‟s length. If the

symbol‟s length is equal to THD, there are two possibilities.

One possibility is that the symbol has existed in the

dictionary, which means that the symbol hides one secret bit

that is equal to the parity bit of the previous symbol‟s length

else the symbol does not hide the data.

2.3. The HCDH-LZW scheme

The main idea of the HCDH-LZW scheme is to

shrink the symbol until it is as short as possible while hiding

as much data as possible. If current symbol‟s length is

greater than 2, it can be used to hide data. The larger the

symbol‟s length is, the more data it can hide. This scheme

still uses the LZW code as output. When the current

symbol‟s length is greater than 2, the encoder can hide

secret bits by shrinking the symbol. When the symbol‟s

length equals 2, the previous symbol‟s length equals 1, and

the symbol cannot be shrunk. The number of secret bits that

an embeddable symbol can hide is the logarithm of its

previous symbol‟s length.

For example, if the previous symbol‟s length is 2 or

3, it can be used to hide 1 bit, and if the previous symbol‟s

length is between 4 and 7, it can be used to hide 2 bits. The

main idea of the extracting phase is to examine the

following decoded characters to count the secret bits. For

example, if the symbol combines with two characters of the

following symbol still in the dictionary, then the hidden

secret bits are “10”. In the extracting phase, if the secret

value is 0, then the symbol remains unchanged; otherwise, it

is shrunk according to the secret value.

III. THE PROPOSED WORK

The main idea of the proposed scheme is to modify

the value of the LZW codes to hide a secret rather than

modifying the content of the dictionary. Every embeddable

symbol can be used to hide one secret bit. Before a new

symbol is added to the dictionary, the encoder modifies the

value of the output LZW code according to the secret value.

If the secret bit is „0‟, the output is the original LZW code

and if the secret bit is „1‟, the output is the sum of the value

of the LZW code and the current size of the dictionary. The

hiding algorithm is summarized as follows,

Input Source file and secret file.

Output LZW codes.

Step 1 Get the first character c0 from the source file.

Step 2

Set s = c0 , where s is a string variable.

If s exists in the dictionary,

 Set the previous symbol sp = s.

Get the next character c from the source file and

set s = s||c,

 where || means the concatenation operation.

 Else

 Get next secret bit b.

Get the code C, where C is the dictionary

indices of sp .

 Step 3 If b=1,set C=C+size, where size is the the

current size of the dictionary.

 Step 4 Ouput c and add s into thedictionary

 Set S=cs, where cs is the last character of s.

In this scheme, once a new symbol is added into

the dictionary, that symbol can be used to hide a secret. As a

result, the number of bits for hiding secret information is

equal to the number of new symbols. The data hiding phase

modifies the value of the LZW compression code to hide

secrets, except for the initial 256 symbols in the dictionary.

In the data extracting process, assume that the

value of the current processing code is C and the current size

of the dictionary is Size. If C is larger than size, then he

extracted secret bit is „1‟,otherwise, the secret bit is „0‟. And

if the extracted secret bit is „1‟,then the original LZW code

is the difference between C and Size. If the extracted secret

is „0‟,then the original LZW code is C. The data extracting

algorithm is summarized as follows,

Input LZW Codes

Output Source file and secret file

Step1: Get a LZW code C0
′
.

Step2: If C0
′
> Size

′
, where Size

′
 is the current size of the

dictionary, set C0
′
 =

C0

′
- Size

′

Step3: Set secret bit = „1‟.

Step4: If C0
′
< Size

′
, Set secret bit = „0‟.

Step5: Output S
′
, where S

′
 is the symbol of C0

′
in the

dictionary.

Step6: Get character Cs
′
, where Cs

′
 is the first character of

S
′
.

Step7: Set O
′
= C0

′
, where O

′
 is the old code.

Step8: Get the next LZW code C
′
.

Step9: If C0
′
> Size

′
 + 1, set C

′
 =

C

′
- Size

′
 - 1 and set secret

bit = „1‟.

Step10: Otherwise set secret bit = „0‟.

Step11: If C
′
 is not in the dictionary, set S

′
 = S0

′
 || Cs

′
. S0

′
 =

string variable.

Step12: Otherwise S
′
 = S0

′
, where S0

′
 is the symbol of O

′
in

the dictionary and output S
′

Step13: Set Snew
′
 = S0

′
|| Cs

′
 , where Snew

′
 is a new symbol.

Step14: Add Snew
′
 into the dictionary.

Step15: Set O
′
= C

′
 and continue to step 8.

In the example, the source file is

“sddsddssddsdsddsddsd,” and the secret file is

“1001000100.”In the following table, the first secret bit is

„1‟, and since 256 symbols existed in the dictionary before

the data hiding procedure, the output code is the value of the

original code plus the current size of the dictionary, i.e., 371.

 After generating the 257th item, since the secret bit is

„0‟, the second output code remains unchanged as 100. In

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

175

the extracting phase, the first LZW code is 371, which is

larger than the current dictionary size of 256, so the hiding

secret bit is „1‟, and the extracted symbol is “s”. The second

LZW code is 100, which is smaller than the current

dictionary size 257, so the secret bit is „0‟, and the extracted

symbol is “d”.

Data Hiding

__

Input Originalcode Output New item Hidden bit

sd 115 371 256=sd 1

d 100 100 257=dd 0

s 100 100 258=ds 0

dd 256 515 259=sdd 1

ss 258 258 260=dss 0

dds 259 259 261=sdds 0

ds 256 256 262=sds 0

ddsd 261 524 263=sddsd 1

dsd 257 257 264=dds 0

d 256 256 0

Data Extracting

__

Input Output New item Extracted bit

__

371 s 1

100 d 256=sd 0

100 d 257=dd 0

515 sd 258=ds 1

258 ds 259=sdd 0

259 sdd 260=dss 0

256 sd 261=sdds 0

524 sdds 262=sds 1

257 dd 263=sddsd 0

256 sd 264=dds 0

The proposed scheme increases the embedding

capacity by increasing the number of embeddable symbols.

The increased hiding and extracting speeds of the proposed

scheme are the result of the simple computation of the

proposed scheme. Moreover, the proposed scheme decreases

the dictionary‟s size because there is no modification of the

content of the dictionary during the data hiding phase.

 This schemeis based on the LZW compression

code but modifies the value of the LZW compression codes

to embed secret data. The proposed scheme increases the

number of symbols available to hide secrets and does not

change the content of the dictionary. Since the maximum

number of hidden bits in the proposed scheme is equal to the

size of the dictionary, it achieves much higher embedding

capacity than HCDH-LZW. In addition, the proposed

scheme achieves faster hiding and extracting speeds than

HCDH-LZW. Also, the dictionary generated by our

proposed scheme is much smaller than that for HCDH-

LZW.

IV. PERFORMANCE ANALYSIS

 Four text files are taken to analyze the

performance of the proposed system. The size of each file is

measured in bytes.

Figure 6.1 Embedding and Extracting capacity

In Figure 6.1 Embedding capacity graph, the comparison

between the existing system and the proposed system is

shown. The embedding capacity is increased according to

the file size. Thus the data hiding speed increases in high

performance lossless data hiding scheme.

V. CONCLUSION AND FUTURE WORK

 In the proposed scheme, the value of the LZW

compression code is modified to embed the secret data. The

proposed scheme increases the number of symbols available

to hide secrets and does not change the content of the

dictionary. It achieves high embedding capacity and faster

hiding and extracting speed than HCDH-LZW. The

dictionary generated is also much smaller than the HCDH-

LZW. From the results it can be observed

that the proposed scheme works better when compared to

the existing system and high embedding capacity is

0
10
20
30
40
50

Ex
tr

ac
ti

n
g

Sp
ee

d

File size

Extracting capacity

HCDH

HPDH

0

10

20

30

40

50

H
id

in
g

 s
p

ee
d

File Size

Embedding capacity

HCDH

HPDH

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016.

176

achieved. This scheme can be applied with efficient version

of LZW algorithm which can be taken as the future work.

REFERENCES

[1] Chang C.C, Lee C.F, Chuang L.Y, (2009), „Embedding secret binary

message using locally adaptive data compression coding‟, International
Journal of Computer Sciences and Engineering Systems, Vol.3, No.1, pp

55-61.

[2] Chang C.C, Lin C.Y, (2007), „Reversible Steganographic method using

SMVQ Approach based on declustering‟, Information Sciences, Vol.177,

No.8, pp 1796-1805.

[3] Chang C.C, Lu T.C, (2006), „Reversible index domain information

hiding scheme based on side-match vector quantization‟, Journal of

Systems and Software, Vol.79, No.8, pp.1120-1129.

[4] Chang C.C, Wu W.C, (2006), „A Steganographic method for hiding
secret data using side match vector quantization‟, IEICE Transactions on

Information and Systems, Vol.8, No.9, pp.2159-2167.

[5] Chen C.C, Chang C.C, (2010), „High Capacity reversible data hiding for

LZW codes‟, In proceedings of the second International conference on

Computer Modeling and Simulation, No.1, pp.3-8.

[6] Chen W.J, Huang W.T, (2009), „VQ indexes compression and

information hiding using hybrid lossless index coding‟, Digital Signal
Processing, Vol.19, No.3, pp.433-443.

[7] Jo M, Kim H.D, (2002), „A Digital image watermarking scheme based
on vector quantization‟, IEICE Transactions on Information and Systems,

Vol.85, No.6, pp.1054-1056.

[8] Lu Z.M, Wang J.X, Liu B.B, (2011), „An improved lossless data hiding

scheme based on image VQ index residual coding‟, Journal of Systems
and Software, Vol.82, No.6, pp.1016-1024.

[9] Ma K, Zhang X, Yu N, Li F, (2013), „Reversible data hiding in
encrypted images by reserving room before Encryption‟, IEEE Transactions

on Information Forensics and Security, Vol.8, No.3, pp.553-562.

[10] Shim H.J, Ahn J, Jeon B, (2004), „DH-LZW Data hiding in the

Compression codes‟, In Proceedings of the International conference on
image processing, Vol.2, No.4, pp.2195–2198.

[11] Tai W.L, Yeh C.M, Chang C.C, (2009), „Reversible Data Hiding based
on Histogram modification of pixel differences‟, IEEE Transactions on

Circuits and Systems for Video technology, Vol.19, No.6, pp.906-910.

[12] Tseng H.W, Chang C.C, (2008), „An Extended Difference expansion

algorithm foe reversible watermarking‟, Image and Vision Computing,

Vol.26, No.8, pp.1148-1153.

[13] Wang Z.H, Yang H.R, Cheng T.F, (2013), „High Performance

reversible data hiding scheme for LZW codes‟, Journal of Systems and
Software, Vol.86, No.3, pp 2771-2778.

