
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 2 Issue 1 –OCTOBER 2013.

ISSN: 0976-1353

 An Improving Performance of Filter Method Using
Feature Subset Selection Algorithm

L. Gomathi#1, S. Kanimozhi*2
#Associate Professor, Dept. of Computer Science, Muthayammal College of Arts & Science, TN, India

2 kanics10@gmail.com
Dept. of Computer Science, Muthayammal College of Arts & Science, TN, India

Abstract: To analyze data efficiently, Data mining systems are
widely using datasets with columns in horizontal tabular layout.
Preparing a data set is more complex task in a data mining
project, requires many SQL queries, joining tables and
aggregating columns. Conventional RDBMS usually manage
tables with vertical form. Aggregated columns in a horizontal
tabular layout returns set of numbers, instead of one number per
row. The system uses one parent table and different child tables,
operations are then performed on the data loaded from multiple
tables. PIVOT operator, offered by RDBMS is used to calculate
aggregate operations. Relational databases are acceptable
repository for structured data; integrating data mining
algorithms with a relational DBMS is an essential research issue
for database programmers. In a relational database, a significant
effort is required to prepare a summary data set that can be used
as input for the data mining process.

Index Terms- Aggregation, Data Mining, Structured query
language (SQL), PIVOT, Lattice.

I. INTRODUCTION

Horizontal aggregation is new class of function to return

aggregated columns in a horizontal layout. Most algorithms
require datasets with horizontal layout as input with several
records and one variable or dimensions per columns.
Managing large data sets without DBMS support can be a
difficult task. Trying different subsets of data points and
dimensions is more flexible, faster and easier to do inside a
relational database with SQL queries than outside with
alternative tool. Horizontal aggregation can be performing by
using operator, it can easily be implemented inside a query
processor, much like a select, project and join. PIVOT
operator on tabular data that exchange rows, enable data
transformations useful in data modelling, data analysis, and
data presentation. There are many existing functions and
operators for aggregation in Structured Query Language. The
most commonly used aggregation is the sum of a column and
other aggregation operators return the average, maximum,
minimum or row count over groups of rows.

 All operations for aggregation have many limitations to
build large data sets for data mining purposes. Database

schemas are also highly normalized for On-Line Transaction
Processing (OLTP) systems where data sets that are stored in
a relational database or data warehouse. But data mining,
statistical or machine learning algorithms generally require
aggregated data in summarized form. Data mining algorithm
requires suitable input in the form of cross tabular (horizontal)
form, significant effort is required to compute aggregations
for this purpose. Such effort is due to the amount and
complexity of SQL code which needs to be written, optimized
and tested. Data aggregation is a process in which information
is gathered and expressed in a summary form, and which is
used for purposes such as statistical analysis. A common
aggregation purpose is to get more information about
particular groups based on specific variables such as age,
name, phone number, address, profession, or income. Most
algorithms require input as a data set with a horizontal layout,
with several records and one variable or dimension per
column. That technique is used with models like clustering,
classification, regression and PCA. Dimension used in data
mining technique are point dimension.

II. HORIZONTAL AGGREGATIONS

We introduce a new class of aggregations that have similar

behavior to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, we call standard
SQL aggregations vertical aggregations since they produce
tables with a vertical layout. Horizontal aggregations just
require a small syntax extension to aggregate functions called
in a SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from a data
mining tool to build data sets for data mining analysis. We
start by explaining how to automatically generate SQL code.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 2 Issue 1 –OCTOBER 2013.

ISSN: 0976-1353

III. BACKGROUND WORK

To prepare summarized format for data mining algorithm,

many methods are introduced by researchers in the past.
Carlos Ordonez [3] introduced three SQL implementations of
the popular K-means clustering algorithm to integrate it with a
relational DBMS. Xiaoxin Yin [14] proposed a new approach,
called CrossMine, which includes a set of novel and powerful
methods for multirelational classification. Carlos Ordonez [2]
focused on programming Bayesian classifiers in SQL.
Carrasco [6] defined a new type of object dmFSQL consists of
a series of operations on the object project (create, alter,
drop…). The DML of dmFSQL executes the true DM process.
Elena Baralis[9] presented the IMine indx, a general and
compact structure which provides tight integration of item set
extraction in a relational DBMS. Charu C. Aggarwal[7]
provided a survey of uncertain data mining and management
applications. Sally McClean[11] considered the problem of
aggregation using an imprecise probability data model. Conor
Cunningham [8] described PIVOT and UNPIVOT, two
operators on tabular data that exchange rows and columns.
Haixun Wang [14] implemented ATLaS, to develop complete
data-intensive applications in SQL—by writing new
aggregates and table functions in SQL, it includes query
rewriting, optimization techniques and the data stream
management module.Carlos Ordonez [1] introduced
techniques to efficiently compute fundamental statistical
models inside a DBMS exploiting User-Defined Functions
(UDFs).

Algorithm: (Alignment)

Detection System ti:

collect raw alerts ri locally

// LAi : correlate – and – filter (ri,ti)

Al⇐ correlate and filter(ri,1)

for each pij Є Al do

// look up destination node for pij

dt=lookup(srcIP of pij)

subscribe(pij,nij,dj) on dt

end for

end for

IV. PROPOSED WORK

 The main goal is to define a template to generate SQL

code by combining aggregation and transposition. The
proposal has two perspectives such as to evaluate efficient
aggregations and perform query optimization. The first one
includes the following approaches, pivoting, transposition and
cross-tabulation. Pivoting approach is a built-in method in a
commercial DBMS. It can help evaluating an aggregated
tabular format for summarized data set. It perform the
following steps, The pivoting method is used to write cross-
tabulation queries that rotate rows into columns, aggregating
data in the process of the rotation. The output of a pivot
operation typically includes more columns and fewer rows
than the starting data set. The pivot computes the aggregation
functions specified at the beginning of the clause. Aggregation
functions must specify a GROUP BY clause to return multiple
values; the pivot performs an implicit GROUP BY. New
columns corresponding to values in the pivot, each aggregated
value is transposed to the appropriate new column in the
cross-tabulation. The subclauses of the pivot have the
following semantics: expr - specify an expression that
evaluates to a constant value of a pivot column. Subquery –
to specify a subquery, all values found by the subquery are
used for pivoting. The subquery must return a list of unique
values at the execution time of the pivot query.

V. RESULT ANALYSIS

Comparing Evaluation Methods

 On the other hand, the second important issue is

automatically generating unique column names. If there are
many subgrouping columns R1; . . .;Rk or columns are of
string data types, this may lead to generate very long column
names, which may exceed DBMS limits. However, these are
not important limitations because if there are many
dimensions that is likely to correspond to a sparse matrix
(having many zeroes or nulls) on which it will be difficult or
impossible to compute a data mining model. On the other
hand, the large column name length can be solved as
explained below. The problem of d going beyond the
maximum number of columns can be solved by vertically
partitioning FH so that each partition table does not exceed the
maximum number of columns allowed by the DBMS.
Evidently, each partition table must have L1; . . . ; Lj as its
primary key. Alternatively, the column name length issue can
be solved by generating column identifiers with integers and
creating a “dimension” description table that maps identifiers
to full descriptions, but the meaning of each dimension is lost.
An alternative is the use of abbreviations, which may require
manual input.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
Volume 2 Issue 1 –OCTOBER 2013.

ISSN: 0976-1353

Query Optimizations

 Our first query optimization, applied to three methods.

Our goal is to assess the acceleration obtained by
precomputing a cube and storing it on FV . We can see this
optimization uniformly accelerates all methods. This
optimization provides a different gain, depending on the
method: for SPJ the optimization is best for small n, for
PIVOT for large n and for CASE there is rather a less
dramatic improvement all across n. It is noteworthy PIVOT is
accelerated by our optimization, despite the fact it is handled
by the query optimizer. Since this optimization produces
significant acceleration for the three methods (at least 2 faster)
we will use it by default. Notice that precomputing FV takes
the same time within each method. Therefore, comparisons
are fair. We now evaluate an optimization specific to the
PIVOT operator. This PIVOT optimization is well known, as
we learned from SQL Server DBMS users groups. shows the
impact of removing (trimming) columns not needed by
PIVOT. That is, removing columns that will not appear in FH.
We can see the impact is significant, accelerating evaluation
time from three to five times. All our experiments incorporate
this optimization by default.

Figure 1: Time complexity varying d (1.5 mb, uniform

distribution).

Time Complexity

 We now verify the time complexity analysis given in We

plot time complexity keeping varying one parameter and the
remaining parameters fixed. In these experiments, we
generated synthetic data sets similar to the fact table of TPC-H
of different sizes with grouping columns of varying
selectivities (number of distinct values). We consider two
basic probabilistic distribution of values: uniform (unskewed)
and zipf (skewed). The uniform distribution is the distribution
used by default.

VI. CONCLUSION

The proposed approaches implements an abstract but minimal
extension to SQL standard aggregate functions to compute
efficient summarized data set which just requires specifying
sub grouping columns inside the aggregation function call.
From a query optimization perspective, The proposed system
describes the possibility of extending SQL OLAP
aggregations with horizontal layout capabilities. Horizontal
aggregations produce tables with fewer rows, but with more
columns. The aggregated tables are useful to create data sets
with a horizontal layout, as commonly required by data
mining algorithms and OLAP cross-tabulation. The output of
a query optimization can immediately be applied back to the
data gathering, transformation, and analysis processes.
Anomalous data can be detected in existing data sets, and new
data entry can be validated in real time, based on the existing
data. SQL Server Data Mining contains multiple algorithms
that can perform churn analysis based on historical data. Each
of these algorithms will provide a probability. In future,
research issues is proposed on extending SQL code for data
mining processing. The related work on query optimization is
proposed and compared to horizontal aggregations with
alternative proposals to perform transposition or pivoting. It
includes to develop more complete I/O cost models for cost-
based query optimization and to study optimization of
horizontal aggregations processed in parallel in a shared-
nothing DBMS architecture.

VII. REFERENCES
[1] [1] Carlos Ordonez,‖ Statistical model computation with UDFs‖, IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no.22, pp.
1752 - 1765, Dec. 2010.

[2] [2] Carlos Ordonez, Pitchaimalai. S.K, ―Bayesian Classifiers
Programmed in SQL‖, IEEE Trans. Knowledge and Data Eng, vol. 22,
no. 1, pp.909-921, Jan. 2010.

[3] [3] Carlos Ordonez, ―Integrating K-means clustering with a relational
DBMS using SQL‖ IEEE Trans. Knowledge and Data Eng, vol. 18 no.
2, pp.181-201, Feb. 2006

[4] [4] Carlos Ordonez, Omiecinski. E, ―Efficient Disk-Based K-Means
Clustering for Relational Databases‖, IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 8, pp.909-921, Aug. 2004.

[5] [5] Carlos Ordonez, Zhibo Chen, ―Horizontal Aggregations in SQL to
Prepare Data Sets for Data Mining Analysis‖, IEEE Trans. Knowledge
and Data Eng., vol. PP, no. 99, Jan. 2011.

[6] [6] Carrasco, R.A.; Vila, M.A.; Araque, F.,‖ dmFSQL: a Language for
Data Mining‖, DEXA '06. 17th International Workshop on 2006, pp-
440-444, 2006

[7] [7] Charu C. Aggarwal, Philip S. Yu. ―A Survey of Uncertain Data
Algorithms and Applications‖, IEEE Transactions on Knowledge and
Data Engineering, Vol. 21, No. 5. pp. 609-623, May 2009.

[8] [8] Cunningham.C, Graefe.G, and Galindo-Legaria.C.A, PIVOT and
UNPIVOT: Optimization and execution strategies in an RDBMS, In
Proc. VLDB Conference, pages 998–1009, 2004.

[9] [9] Elena Baralis, Tania Cerquitelli, Silvia Chiusano, "IMine: Index
Support for Item Set Mining," IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no.4, pp 493-506, April 2009

