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Abstract: To analyze data efficiently, Data mining systems are 
widely using datasets with columns in horizontal tabular layout. 
Preparing a data set is more complex task in a data mining 
project, requires many SQL queries, joining tables and 
aggregating columns. Conventional RDBMS usually manage 
tables with vertical form. Aggregated columns in a horizontal 
tabular layout returns set of numbers, instead of one number per 
row. The system uses one parent table and different child tables, 
operations are then performed on the data loaded from multiple 
tables. PIVOT operator, offered by RDBMS is used to calculate 
aggregate operations. Relational databases are acceptable 
repository for structured data; integrating data mining 
algorithms with a relational DBMS is an essential research issue 
for database programmers. In a relational database, a significant 
effort is required to prepare a summary data set that can be used 
as input for the data mining process. 
 
 
Index Terms- Aggregation, Data Mining, Structured query 
language (SQL), PIVOT, Lattice. 
 

I. INTRODUCTION 

 
Horizontal aggregation is new class of function to return 

aggregated columns in a horizontal layout. Most algorithms 
require datasets with horizontal layout as input with several 
records and one variable or dimensions per columns. 
Managing large data sets without DBMS support can be a 
difficult task. Trying different subsets of data points and 
dimensions is more flexible, faster and easier to do inside a 
relational database with SQL queries than outside with 
alternative tool. Horizontal aggregation can be performing by 
using operator, it can easily be implemented inside a query 
processor, much like a select, project and join. PIVOT 
operator on tabular data that exchange rows, enable data 
transformations useful in data modelling, data analysis, and 
data presentation. There are many existing functions and 
operators for aggregation in Structured Query Language. The 
most commonly used aggregation is the sum of a column and 
other aggregation operators return the average, maximum, 
minimum or row count over groups of rows.         

   All operations for aggregation have many limitations to 
build large data sets for data mining purposes. Database 

schemas are also highly normalized for On-Line Transaction 
Processing (OLTP) systems where data sets that are stored in 
a relational database or data warehouse. But data mining, 
statistical or machine learning algorithms generally require 
aggregated data in summarized form. Data mining algorithm 
requires suitable input in the form of cross tabular (horizontal) 
form, significant effort is required to compute aggregations 
for this purpose. Such effort is due to the amount and 
complexity of SQL code which needs to be written, optimized 
and tested. Data aggregation is a process in which information 
is gathered and expressed in a summary form, and which is 
used for purposes such as statistical analysis. A common 
aggregation purpose is to get more information about 
particular groups based on specific variables such as age, 
name, phone number, address, profession, or income. Most 
algorithms require input as a data set with a horizontal layout, 
with several records and one variable or dimension per 
column. That technique is used with models like clustering, 
classification, regression and PCA. Dimension used in data 
mining technique are point dimension. 

 

II. HORIZONTAL AGGREGATIONS 

 
We introduce a new class of aggregations that have similar 

behavior to SQL standard aggregations, but which produce 
tables with a horizontal layout. In contrast, we call standard 
SQL aggregations vertical aggregations since they produce 
tables with a vertical layout. Horizontal aggregations just 
require a small syntax extension to aggregate functions called 
in a SELECT statement. Alternatively, horizontal 
aggregations can be used to generate SQL code from a data 
mining tool to build data sets for data mining analysis. We 
start by explaining how to automatically generate SQL code. 
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III.  BACKGROUND WORK 

 
To prepare summarized format for data mining algorithm, 

many methods are introduced by researchers in the past. 
Carlos Ordonez [3] introduced three SQL implementations of 
the popular K-means clustering algorithm to integrate it with a 
relational DBMS. Xiaoxin Yin [14] proposed a new approach, 
called CrossMine, which includes a set of novel and powerful 
methods for multirelational classification. Carlos Ordonez [2] 
focused on programming Bayesian classifiers in SQL. 
Carrasco [6] defined a new type of object dmFSQL consists of 
a series of operations on the object project (create, alter, 
drop…). The DML of dmFSQL executes the true DM process. 
Elena Baralis[9] presented the IMine indx, a general and 
compact structure which provides tight integration of item set 
extraction in a relational DBMS. Charu C. Aggarwal[7] 
provided a survey of uncertain data mining and management 
applications. Sally McClean[11] considered the problem of 
aggregation using an imprecise probability data model. Conor 
Cunningham [8] described PIVOT and UNPIVOT, two 
operators on tabular data that exchange rows and columns. 
Haixun Wang [14] implemented ATLaS, to develop complete 
data-intensive applications in SQL—by writing new 
aggregates and table functions in SQL, it includes query 
rewriting, optimization techniques and the data stream 
management module.Carlos Ordonez [1] introduced 
techniques to efficiently compute fundamental statistical 
models inside a DBMS exploiting User-Defined Functions 
(UDFs). 

 
Algorithm: (Alignment ) 
 
Detection System ti: 
 
collect raw alerts ri locally 
 
// LAi : correlate – and – filter (ri,ti) 
 
Al⇐ correlate and filter(ri,1) 
 
for each pij Є Al do 
 
// look up destination node for pij 
 
dt=lookup(srcIP of pij) 
 
subscribe(pij,nij,dj) on dt 
 
end for 
 
end for 
 
 
 

IV.  PROPOSED WORK 

 
  The main goal is to define a template to generate SQL 

code by combining aggregation and transposition. The 
proposal has two perspectives such as to evaluate efficient 
aggregations and perform query optimization. The first one 
includes the following approaches, pivoting, transposition and 
cross-tabulation. Pivoting approach is a built-in method in a 
commercial DBMS. It can help evaluating an aggregated 
tabular format for summarized data set. It perform the 
following steps, The pivoting method is used to write cross-
tabulation queries that rotate rows into columns, aggregating 
data in the process of the rotation. The output of a pivot 
operation typically includes more columns and fewer rows 
than the starting data set. The pivot computes the aggregation 
functions specified at the beginning of the clause. Aggregation 
functions must specify a GROUP BY clause to return multiple 
values; the pivot performs an implicit GROUP BY. New 
columns corresponding to values in the pivot, each aggregated 
value is transposed to the appropriate new column in the 
cross-tabulation. The subclauses of the pivot have the 
following semantics:  expr - specify an expression that 
evaluates to a constant value of a pivot column.  Subquery – 
to specify a subquery, all values found by the subquery are 
used for pivoting. The subquery must return a list of unique 
values at the execution time of the pivot query. 

 

V. RESULT ANALYSIS 

 
Comparing Evaluation Methods 
 
    On the other hand, the second important issue is 

automatically generating unique column names. If there are 
many subgrouping columns R1; . . .;Rk or columns are of 
string data types, this may lead to generate very long column 
names, which may exceed DBMS limits. However, these are 
not important limitations because if there are many 
dimensions that is likely to correspond to a sparse matrix 
(having many zeroes or nulls) on which it will be difficult or 
impossible to compute a data mining model. On the other 
hand, the large column name length can be solved as 
explained below. The problem of d going beyond the 
maximum number of columns can be solved by vertically 
partitioning FH so that each partition table does not exceed the 
maximum number of columns allowed by the DBMS. 
Evidently, each partition table must have L1; . . . ; Lj as its 
primary key. Alternatively, the column name length issue can 
be solved by generating column identifiers with integers and 
creating a “dimension” description table that maps identifiers 
to full descriptions, but the meaning of each dimension is lost. 
An alternative is the use of abbreviations, which may require 
manual input. 
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Query Optimizations 
 
    Our first query optimization, applied to three methods. 

Our goal is to assess the acceleration obtained by 
precomputing a cube and storing it on FV . We can see this 
optimization uniformly accelerates all methods. This 
optimization provides a different gain, depending on the 
method: for SPJ the optimization is best for small n, for 
PIVOT for large n and for CASE there is rather a less 
dramatic improvement all across n. It is noteworthy PIVOT is 
accelerated by our optimization, despite the fact it is handled 
by the query optimizer. Since this optimization produces 
significant acceleration for the three methods (at least 2 faster) 
we will use it by default. Notice that precomputing FV takes 
the same time within each method. Therefore, comparisons 
are fair. We now evaluate an optimization specific to the 
PIVOT operator. This PIVOT optimization is well known, as 
we learned from SQL Server DBMS users groups. shows the 
impact of removing (trimming) columns not needed by 
PIVOT. That is, removing columns that will not appear in FH. 
We can see the impact is significant, accelerating evaluation 
time from three to five times. All our experiments incorporate 
this optimization by default. 

 
 

 
 
Figure 1: Time complexity varying d (1.5 mb, uniform 

distribution). 
 
Time Complexity 
 
   We now verify the time complexity analysis given in  We 

plot time complexity keeping varying one parameter and the 
remaining parameters fixed. In these experiments, we 
generated synthetic data sets similar to the fact table of TPC-H 
of different sizes with grouping columns of varying 
selectivities (number of distinct values). We consider two 
basic   probabilistic distribution of values: uniform (unskewed) 
and zipf (skewed). The uniform distribution is the distribution 
used by default. 

 
 
 
 
 

VI.  CONCLUSION  

 
The proposed approaches implements an abstract but minimal 
extension to SQL standard aggregate functions to compute 
efficient summarized data set which just requires specifying 
sub grouping columns inside the aggregation function call. 
From a query optimization perspective, The proposed system 
describes the possibility of extending SQL OLAP 
aggregations with horizontal layout capabilities. Horizontal 
aggregations produce tables with fewer rows, but with more 
columns. The aggregated tables are useful to create data sets 
with a horizontal layout, as commonly required by data 
mining algorithms and OLAP cross-tabulation. The output of 
a query optimization can immediately be applied back to the 
data gathering, transformation, and analysis processes. 
Anomalous data can be detected in existing data sets, and new 
data entry can be validated in real time, based on the existing 
data. SQL Server Data Mining contains multiple algorithms 
that can perform churn analysis based on historical data. Each 
of these algorithms will provide a probability. In future, 
research issues is proposed on extending SQL code for data 
mining processing. The related work on query optimization is 
proposed and compared to horizontal aggregations with 
alternative proposals to perform transposition or pivoting. It 
includes to develop more complete I/O cost models for cost-
based query optimization and to study optimization of 
horizontal aggregations processed in parallel in a shared-
nothing DBMS architecture.  
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