
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 3 – FEBRUARY 2017 (SPECIAL ISSUE).

5

Abstract— Big data processing is a hot topic of today’s

computer world. One of the key paradigms behind it is
MapReduce—parallel and massively distributed model inspired
by the map and reduce functions commonly used in functional
programming. Due to its simplicity and general availability of
standard implementations, the paradigm has been massively
adopted on current computer clusters. Yet, MapReduce is not
optimal for all big data problems. My work focuses on the area
of an alternative paradigm—stream processing—which has
multiple advantages over the MapReduce, e.g., it avoids
persistent data storing if not required. The research aims at
overcoming deficiencies of existing stream processing
frameworks that prevent its wider adoption.

Basic scheduling decisions are discussed and demonstrated on
naive scheduling of a sample application. The paper presents a
proposal of a novel scheduler for stream processing frameworks
on heterogeneous clusters, which employs design-time
knowledge as well as benchmarking techniques to achieve
optimal resource-aware deployment of applications over the
clusters and eventually better overall utilization of the cluster.

In particular, the work deals with scheduling problems of
stream processing applications on heterogeneous clusters.
Heterogeneity is a typical characteristic of today’s large data
centers (caused by incremental upgrades and combinations of
computing architectures, including specialized hardware such
as GPU or FPGA) and advanced scheduling mechanisms can
significantly increase efficiency of their utilization. The
state-of-the-art research and development of stream processing
and advanced methods of related scheduling techniques are
discussed in this document. A special attention is paid to
benchmark-based scheduling for distributed stream processing
which also forms the core of my previous work and the proposed
research towards my doctoral thesis. Finally, the concept of
novel heterogeneity aware scheduler is presented first in the
intuitive way and then discussed deeper on theoretical basis. The
prototype of the scheduler is then described and promising
results of basic experiments are showed.

Index Terms—heterogeneous clusters, survey, map reduce,
big data

I. INTRODUCTION

 In homogeneous computing environments, all nodes have
identical performance and capacity. Resources can be
allocated evenly across all available nodes and effective task
scheduling is determined by quantity of the nodes, not by their
individual quality. Typically, resource allocation and

scheduling in the homogeneous computing environments
balance of workload across all the nodes which should have
identical workload. Contrary to the homogeneous computing
environments, there are different types of nodes in a
heterogeneous cluster with various computing performance
and capacity. High-performance nodes can complete the
processing of identical data faster than low-performance
nodes. Moreover, the performance of the nodes depends on
the character of computation and on the character of input
data. For example, graphic-intensive computations will run
faster on nodes that are equipped with powerful GPUs while
memory-intensive computation will run faster on nodes with
large amount of RAM or disk space.
To balance workload in a heterogeneous cluster optimally, a
scheduler has to (1) know performance characteristics for
individual types of nodes employed in the cluster for different
types of computations and to (2) know or to be able to analyse
computation characteristics of incoming tasks and input data.
The first requirement, i.e., the performance characteristics for
individual types of employed nodes, means the awareness of
infrastructure and topology of a cluster including detailed
specification of its individual nodes. In the most cases, this
information is provided at the cluster design-time by its
administrators and architects. Moreover, the performance
characteristics for individual nodes employed in a cluster can
be adjusted at the cluster’s run-time based on historical data
of performance monitoring and their statistical analysis of
processing different types of computations and data by
different types of nodes. The second requirement is the
knowledge or the ability to analyse computation
characteristics of incoming tasks and input data. In batch
processing, tasks and data in a batch can be annotated or
analysed in advance, i.e., before the batch is executed, and
acquired knowledge can be utilized in optimal allocation of
resources and efficient task scheduling. In stream processing,
the second requirement is much more difficult to meet due to
continuous flow and unpredictable variability of the input
data which make thorough analysis of computation
characteristics of the input data and incoming tasks
impossible, especially with real-time limitations in their
processing.
To address the above mentioned issues of stream processing
in heterogeneous clusters with optimal performance, user
defined tasks processing (at least some) of the input data has
to help the scheduler. For example, an application may

A SURVEY OF STREAM PROCESSING ON
HETEROGENEOUS CLUSTERS

A.Vignesh #1, K.Dhakshnamurthy *2 and D.B.Shanmugam *3
#1M.Phil, Research Scholar, Dr.M.G.R.Chockalingam Arts College, Arni.

*2 Assistant Professor, Department of BCA, King Nandhivarman College of Arts & science, Thellar
*3Associate Professor, Department of MCA, Sri Balaji Chockalingam Engineering College , Arni

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 3 – FEBRUARY 2017 (SPECIAL ISSUE).

6

include user-defined helper-tasks tagging input data at
run-time by their expected computation characteristics for
better scheduling1. Moreover, individual tasks of a stream
application should be tagged at design-time according to their
required computation resources and real-time constraints on
the processing to help with their future scheduling.
Implementation of the mentioned tagging of tasks at
design-time should be part of modeling (a meta-model) of
topology and infrastructure of such applications.

II. TYPICAL USES OF HETEROGENEOUS NETWORKS

In this section, we outline how heterogeneous networks of
computers are typically used by their end-users. In general,
heterogeneous networks are used traditionally, for parallel
computing or for distributed computing. The traditional use
means that the network of computers is used just as an
extension of the user’s computer. This computer can be serial
or parallel. The application to be run is a traditional
application, that is, the one that can be executed on the user’s
computer. The code of the application and input data are
provided by the user. The only difference from the fully
traditional execution of the application is that it can be
executed not only on the user’s computer but on any other
relevant computer of the network. The decision where to
execute one or other application is made by the operating
environment and mainly aimed at better utilization of
available computing resources (e.g., at higher throughput of
the network of computers as a whole multi-user computer
system). Faster execution of each individual application is not
the main goal of the operating environment but can be
achieved for some applications as a side-effect of its
scheduling policy. This use of the heterogeneous network
assumes the application and hence the software is portable
and can be run on another computing resource. This
assumption may not be true for some applications.
A heterogeneous network of computers can be used for
parallel computing. The network is used as a parallel
computer system in order to accelerate the solution of a single
problem. In this case, the user provides a dedicated parallel
application written to efficiently solve the problem on the
heterogeneous network of computers. High performance is
the main goal of that type of use. As in the case of traditional
use, the user provides both the (source) code of the
application and input data. In the general case, when all
computers of the network are of the different architecture, the
source code is sent to the computers where it is locally
compiled. All the computers are supposed to provide all
libraries necessary to produce local executables.
A heterogeneous network of computers can be also used for
distributed computing. In the case of parallel computing, the
application can be executed on the user’s computer or on any
other single computer of the network. The only reason to
involve more than one computer is to accelerate the execution
of the application. Unlike parallel computing, distributed
computing deals with situations when the application cannot
be executed on the user’s computer just because not all
components of the application are available on this computer.

One such a situation is that some components of the code of
the application cannot be provided by the user and are only
available on remote computers. The reasons behind this can
be various: the user’s computer may not have the resources to
execute such a code component, or the efforts and amount of
resources needed to install the code component on the user’s
computer are too significant compared with the frequency of
its execution, or this code may be just not available for
installation, or it may make sense to execute this code only on
the remote processor (say, associated with an ATM machine),
etc.
Another situation is that some components of input data for
this application cannot be provided by the user and reside on
remote storage devices. For example, the size of the data may
be too big for the disk storage of the user’s computer, or the
data for the application are provided by some external party
(remote scientific device, remote data base, remote
application, and so on), or the executable file may not be
compatible with the machine architecture, etc.
The most complex is the situation when both some
components of the code of the application and some
components of its input data are not available on the user’s
computer. Performance. An immediate implication from the
heterogeneity of processors in a network of computers is that
the processors run at different speeds. A1 good parallel
application for a homogeneous distributed memory
multiprocessor system tries to evenly distribute computations
over available processors. This very distribution ensures the
maximal speedup on the system consisting of identical
processors. If the processors run at different speeds, faster
processors will quickly perform their part of computations
and begin waiting for slower ones at points of synchronization
and data transfer. Therefore, the total time of computations
will be determined by the time elapsed on the slowest
processor. In other words, when executing parallel
applications, which evenly distribute computations among
available processors, the heterogeneous network will
demonstrate the same performance as a network of
interconnected identical processors equivalent the slowest
processor of the heterogeneous network of computers.
Therefore, a good parallel application for the heterogeneous
network must distribute computations unevenly taking into
account the difference in processor speed. The faster the
processor is, the more computations it must perform. Ideally,
the volume of computation performed by a processor should
be proportional to its speed. Let us summarize our brief
analysis of the performance-related programming issues in
parallel and distributed computing for heterogeneous
networks of computers.
There are two basic related issues that should be addressed:
• Performance model of heterogeneous network of computers
quantifying the ability of the network to perform
computations and communications,
• Performance model of application quantifying the
computations and communications to be performed by the
application.
In the presence of such models, given parameters of the

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 3 – FEBRUARY 2017 (SPECIAL ISSUE).

7

application model, parameters of the model of the executing
network of computers and a mapping of the application to the
processors of the network, it would be possible to calculate
the execution time of the application on the network.
Application and system programmers could incorporate the
models in their applications and programming systems to
achieve better distribution of computations and
communications leading to higher performance. The
performance model of heterogeneous network of computers
includes two submodels:

• Performance model of a set of heterogeneous processors
which is used to estimate the execution time of computations,

• Performance model of communication network which is
necessary to predict the execution time of communication
operations.
Now we briefly outline performance models currently used in
programming systems and operating environments for
heterogeneous networks of computers.

III. CURRENT DEVELOPMENT

Recently, based on the popularity of MapReduce and the wide
spread of Hadoop, there were introduced series of systems
exploiting ideas of a MapReduce paradigm in context of the
stream processing. As was already mentioned in the
Introduction, the developers of the Hadoop Online extended
the original Hadoop system by ability to stream intermediate
results from the map to the reduce tasks as well as the
possibility to pipeline data across the different MapReduce
jobs.
To facilitate these new features, they extended the semantics
of the classic reduce function by time-based sliding windows,
picked up this idea and further improved the suitability of
Hadoop-based systems for continuous streams by replacing
the sort-merge implementation for partitioning by a new
hash-based approach.
The Muppet system also focuses on the parallel processing of
continuous stream data while preserving a MapReduce-like
programming abstraction. However, the authors decided to
replace the reduce function by a more generic update function
to allow for greater flexibility when processing intermediate
data with identical keys. Muppet also aims to support
near-real-time processing latencies.
The systems and Storm can also be classified as
massively-parallel data processing systems with a clear
emphasis on low latency. Their programming abstraction is
finally not MapReduce but allows the developers to assemble
arbitrarily complex DAG of processing tasks. For example,
Twitter Storm does not use the intermediate queues to pass the
data items from one task to the other; instead, data items are
passed directly between the tasks using batch messages on the
network level to achieve a good balance between latency and
throughput.
In the end, it is important to note that along with the stream
processing paradigm we can lately observe another movement
in the field of low latency computations based on the fast
message brokers such as Apache Kafka or Apache Flume.
Although the message brokers are well known concept, the
new wave of this technology focuses on different objectives,
which makes it more suitable for high throughput processing.

Traditional enterprise messaging systems e.g., IBM
Websphere MQ, or JMS specification compliant brokers,
emphasize strong delivery guarantees mostly with pushing
data to consumers and ignore the throughput, which makes
them very robust and often slow. The new wave of message
delivery systems, on the other hand, accentuates throughput
and lets consumers to pull data as they need. This opens a way
for the new distributed applications with high throughput and
straightforward design constructed on top of these queues. In
my opinion, such message delivery systems are another kind
of stream processing systems with less limited
communication schemas i.e., DAGs are welcomed but not
required. This was a brief overview of “historical” and recent
approaches to the stream processing. Because this work deals
mainly with the resource allocation and scheduling, from now
on we will discuss the parallel systems only.

IV. COMPONENTS AND ARCHITECTURE

In this section, the focus will be given to S4 and Storm
because the overview of wider range of systems would be
excessively long, and, at the same time, we can consider these
two being representative examples of modern stream
processing architectures. Across many massively parallel
systems, a kind of a master-worker pattern is very common.
The master node usually receives data or tasks and distributes
them over the network of worker nodes. A good example
could be again the MapReduce—its master process after
receiving a job descriptor starts mappers and reducers on
different machines; at the same time, the master process is
responsible for a fault tolerance and liveness of the worker
nodes (see Fig. 1). For parallel stream systems where the
streams of data are often running for a long time, the
placement of tasks can be less frequent but the concept of
master and worker nodes stays unchanged. One interesting
difference is that MapReduce job eventually finishes, whereas
stream processing topologies run forever.

Fig. 1 Master and worker nodes (mappers and reducers) in MapReduce,
reproduced form

When we look deeper into the structure of parallel systems,
we can see that the computations are divided into jobs. The
arrangement of jobs can be described by a graph with vertices
representing the job’s individual tasks and the edges denoting
communication channels between them. For example, from a
high-level perspective, the graph representation of a typical
MapReduce job would consist of a set of Map vertices
connected to a set of Reduce vertices.
Some frameworks have generalized the MapReduce model to
arbitrary directed acyclic graphs (DAGs), some even allow
graph structures containing loops. The stream processing

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 3 – FEBRUARY 2017 (SPECIAL ISSUE).

8

systems are very similar to other parallel systems. The
computation is mostly described as a DAG. There are slight
differences in a communication layer, while some systems use
queues and intermediate message brokers; the others use a
straight point to point (process to process) communication.
Let me now describe the example topologies of S4 and Storm.
Heterogeneity of large clusters and cloud setups is inevitable
over the time. Main reasons are the need for growth in time
and gradual upgrades of hardware. Simultaneously, the right
treatment of computing resources with different capabilities
can potentially bring better performance in the means of
increased number of completed jobs per time period and thus
the shorter time from queued to finished of each job.

V. CONCLUSION

This paper overviews my current knowledge and
understanding of the topic of stream processing systems’
scheduling on heterogeneous clusters and proposes a plan for
the future research work towards the doctoral thesis. The
introduction section has history and basic notions of stream
processing, scheduling, and benchmarking. Argumentation
about the present unsatisfying situation of stream processing
regarding the integration into the big data ecosystems, e.g.,
Hadoop, about the lack of advanced scheduling algorithms,
and about the problems accompanying heterogeneous clusters
is discussed. Separated sections look into the solutions
exploiting the benchmark-based scheduling in combination
with other advanced scheduling techniques and to description
of areas that currently lack deeper research. Besides that, my
previous work and affiliation lying in multicloud middleware
mOSAIC and in processing of scientific papers in grid and
cloud (ReReSearch) was presented. Main part of the work
then brings the motivations for my research with intuitive
example of potentials laying in exploitation of heterogeneity
of clusters. Basic ideas and dependencies of benchmark based
scheduling are then shown and connected.

 REFERENCES

[1] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy and
R. Sears, "MapReduce Online," 2010.

[2] E. Mazur, B. Li, Y. Diao and P. Shenoy, "Towards Scalable One-Pass
Analytics Using MapReduce," pp. 1102--1111, 2011.

[3] B. Lohrmann, D. Warneke and O. Kao, "Nephele streaming: stream
processing under QoS constraints at scale," Cluster Computing, pp.
1-18, 2013.

[4] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker and N. Tatbul, "Aurora: a new model and
architecture for data stream management," The Vldb Journal, vol. 12,
no. 2, pp. 120--139, 2003.

[5] S. Babu and J. Widom, "Continuous queries over data streams,"
Sigmod Record, vol. 30, no. 3, pp. 109--120, 2001.

[6] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S.
Manku, C. Olston, J. Rosenstein and R. Varma, "Query Processing,
Approximation, and Resource Management in a Data Stream
Management System," 2003.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Çetintemel and Y. Xing, "Scalable Distributed Stream Processing,"
2003.

[8] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-h. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul

and Y. Xing, "The Design of the Borealis Stream Processing Engine,"
2005.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, "Dryad:
distributed data-parallel programs from sequential building blocks,"
2007.

