International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)

ISSN: 0976-1353Volume 24 Issue 3 —

FEBRUARY 2017 (SPECIAL ISSUE).

A SURVEY OF STREAM PROCESSINGN
HETEROGENEOUS CLUSTERS

A.Vignesh™, K.Dhakshnamurthy and D.B.Shanmugarh

“IM.Phil, Research Scholar, Dr.M.G.R.Chockalingam Arts College, Arni.
"2 Assistant Professor, Department of BCA, King Nandhivarman College of Arts & science, Thellar
“3Associate Professor, Department of MCA, Sri Balaji Chockalingam Engineering College, Arni

Abstract— Big data processing is a hot topic of today’'s
computer world. One of the key paradigms behind itis
MapReduce—parallel and massively distributed modeinspired
by the map and reduce functions commonly used in fictional
programming. Due to its simplicity and general avdability of
standard implementations, the paradigm has been maiely
adopted on current computer clusters. Yet, MapRedue is not
optimal for all big data problems. My work focuseson the area
of an alternative paradigm—stream processing—whichhas
multiple advantages over the MapReduce, e.g., it aids
persistent data storing if not required. The resears aims at
overcoming deficiencies of existing stream procesg
frameworks that prevent its wider adoption.

Basic scheduling decisions are discussed and deminated on
naive scheduling of a sample application. The paperesents a
proposal of a novel scheduler for stream processirfgameworks
on heterogeneous clusters, which employs design-8m
knowledge as well as benchmarking techniques to aele
optimal resource-aware deployment of applications \er the
clusters and eventually better overall utilizationof the cluster.

In particular, the work deals with scheduling problems of
stream processing applications on heterogeneous stars.
Heterogeneity is a typical characteristic of todays large data
centers (caused by incremental upgrades and combitians of
computing architectures, including specialized hardriare such
as GPU or FPGA) and advanced scheduling mechanisnesn
significantly increase efficiency of their utilizaton. The
state-of-the-art research and development of strearmprocessing
and advanced methods of related scheduling technige are
discussed in this document. A special attention ipaid to
benchmark-based scheduling for distributed stream mcessing
which also forms the core of my previous work andhe proposed
research towards my doctoral thesis. Finally, the ancept of
novel heterogeneity aware scheduler is presentedi in the
intuitive way and then discussed deeper on theoretl basis. The
prototype of the scheduler is then described and pmising
results of basic experiments are showed.

Index Terms—heterogeneous clusters, survey, map reduce,
big data

I. INTRODUCTION

In homogeneous computing environments, all nduese
identical performance and capacity. Resources can
allocated evenly across all available nodes arettfie task
scheduling is determined by quantity of the nodeshy their
individual quality. Typically, resource allocatiorand

scheduling in the homogeneous computing environsnent
balance of workload across all the nodes which Ishbave
identical workload. Contrary to the homogeneous matng
environments, there are different types of nodesain
heterogeneous cluster with various computing perémrce
and capacity. High-performance nodes can comple¢e t
processing of identical data faster than low-penfamce
nodes. Moreover, the performance of the nodes dispen
the character of computation and on the charadtémput
data. For example, graphic-intensive computatioitlsrun
faster on nodes that are equipped with powerful &Rbile
memory-intensive computation will run faster on esdvith
large amount of RAM or disk space.
To balance workload in a heterogeneous clustermaii, a
scheduler has to (1) know performance charactesistr
individual types of nodes employed in the clusterdifferent
types of computations and to (2) know or to be &bknalyse
computation characteristics of incoming tasks apaii data.
The first requirement, i.e., the performance charistics for
individual types of employed nodes, means the awvem® of
infrastructure and topology of a cluster includidgtailed
specification of its individual nodes. In the masises, this
information is provided at the cluster design-tifme its
administrators and architects. Moreover, the pearéorce
characteristics for individual nodes employed oiwster can
be adjusted at the cluster’s run-time based omwfiisi data
of performance monitoring and their statistical lgsia of
processing different types of computations and daia
different types of nodes. The second requirementhés
knowledge or the ability to analyse computation
characteristics of incoming tasks and input databatch
processing, tasks and data in a batch can be aedota
analysed in advance, i.e., before the batch iswedc and
acquired knowledge can be utilized in optimal adlien of
resources and efficient task scheduling. In strpesuessing,
the second requirement is much more difficult tehte to
continuous flow and unpredictable variability ofetinput
data which make thorough analysis of computation
characteristics of the input data and incoming gask
impossible, especially with real-time limitationa their
rocessing.
To address the above mentioned issues of strearegsiog
in heterogeneous clusters with optimal performancssr
defined tasks processing (at least some) of thet idata has
to help the scheduler. For example, an applicatimay

International Journal of Emerging Technology

ISSN: 0976-1353Volume 24 Issue 3 —

include user-defined helper-tasks tagging inputadat
run-time by their expected computation charactessfor
better schedulingl. Moreover, individual tasks ofteeam
application should be tagged at design-time acogrtti their
required computation resources and real-time caimssron

in Conputer Science & Electronics (IJETCSE)
FEBRUARY 2017 (SPECIAL ISSUE).

One such a situation is that some components ofdde of
the application cannot be provided by the useramedonly
available on remote computers. The reasons behiactcéan
be various: the user’'s computer may not have theurees to
execute such a code component, or the efforts euodiet of

the processing to help with their future schedulingesources needed to install the code componeriteonger’s

Implementation of the mentioned tagging of tasks
design-time should be part of modeling (a meta-rf)ode
topology and infrastructure of such applications.

In this section, we outline how heterogeneous netsvof
computers are typically used by their end-usergydneral,
heterogeneous networks are used traditionally,pémallel
computing or for distributed computing. The traslital use
means that the network of computers is used jusaras
extension of the user’s computer. This computerEasgerial
or parallel. The application to be run is a tramhl
application, that is, the one that can be execotethe user’s
computer. The code of the application and input dae
provided by the user. The only difference from fthéy
traditional execution of the application is thatcin be
executed not only on the user’s computer but onahgr
relevant computer of the network. The decision wher
execute one or other application is made by theatipg
environment and mainly aimed at better utilizatiof
available computing resources (e.g., at higherutnput of
the network of computers as a whole multi-user astep
system). Faster execution of each individual apfitho is not
the main goal of the operating environment but ten
achieved for some applications as a side-effectitef
scheduling policy. This use of the heterogeneouwar&
assumes the application and hence the softwarertale

TYPICAL USES OFHETEROGENEOUNETWORKS

atomputer are too significant compared with the dmty of

its execution, or this code may be just not avéglafor
installation, or it may make sense to executedhde only on
the remote processor (say, associated with an ABkghime),
etc.

Another situation is that some components of irgait for
this application cannot be provided by the userrasdie on
remote storage devices. For example, the sizecaddlta may

be too big for the disk storage of the user’s campwor the
data for the application are provided by some asteparty
(remote scientific device, remote data base, remote
application, and so on), or the executable file may be
compatible with the machine architecture, etc.

The most complex is the situation when both some
components of the code of the application and some
components of its input data are not availablehenuser’s
computer. Performance. An immediate implicatiomfrthe
heterogeneity of processors in a network of comptigethat
the processors run at different speeds. Al goodalipar
application for a homogeneous distributed memory
multiprocessor system tries to evenly distributspatations
over available processors. This very distributioswes the
maximal speedup on the system consisting of idaintic
processors. If the processors run at different dpefaster
processors will quickly perform their part of congions
and begin waiting for slower ones at points of $ynaization
and data transfer. Therefore, the total time of patations

and can be run on another computing resource. THdll be determined by the time elapsed on the skiwe

assumption may not be true for some applications.
A heterogeneous network of computers can be used

processor. In other words, when executing parallel
fpplications, which evenly distribute computaticarsong

parallel computing. The network is used as a parall@vailable processors, the heterogeneous network wil

computer system in order to accelerate the solati@nsingle
problem. In this case, the user provides a dedicpteallel

application written to efficiently solve the probieon the

heterogeneous network of computers. High performdsac
the main goal of that type of use. As in the cddeaalitional

use, the user provides both the (source) code eof
application and input data. In the general casegnwall

computers of the network are of the different asstture, the
source code is sent to the computers where it gallio

compiled. All the computers are supposed to prowtle
libraries necessary to produce local executables.

A heterogeneous network of computers can be alsd fos

distributed computing. In the case of parallel catimg, the

application can be executed on the user’'s computen any
other single computer of the network. The only o@ato

involve more than one computer is to acceleratexieeution

of the application. Unlike parallel computing, distited

computing deals with situations when the applicatannot

demonstrate the same performance as a network of
interconnected identical processors equivalent dlogvest
processor of the heterogeneous network of computers
Therefore, a good parallel application for the tegeneous
network must distribute computations unevenly tgkinto
tgccount the difference in processor speed. Therfabe
processor is, the more computations it must perfédeally,
the volume of computation performed by a procestould

be proportional to its speed. Let us summarize loigf
analysis of the performance-related programmingeissn
parallel and distributed computing for heterogeseou
networks of computers.

There are two basic related issues that shouldieeased:
 Performance model of heterogeneous network ofocoens
quantifying the ability of the network to perform
computations and communications,

Performance model of application quantifying the
computations and communications to be performedhby

be executed on the user's computer just becausealhot @Pplication.

components of the application are available ondbiaputer.

In the presence of such models, given parametertheof

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 3 — FEBRUARY 2017 (SPECIAL ISSUE).

application model, parameters of the model of tkeceting Traditional enterprise messaging systems e.g., |IBM
network of computers and a mapping of the appbicetito the Websphere MQ, or JMS specification compliant breker
processors of the network, it would be possibledlzulate emphasize strong delivery guarantees mostly witshimg

the execution time of the application on the nekwor data to consumers and ignore the throughput, wimiakes
Application and system programmers could incorpotae them very robust and often slow. The new wave ofgage
models in their applications and programming systaém delivery systems, on the other hand, accentuatesighput
achieve better distribution of computations andnd lets consumers to pull data as they need.oplaiss a way
communications leading to higher performance. Thior the new distributed applications with high thgbput and

performance model of heterogeneous network of coenpu
includes two submodels:
 Performance model of a set of heterogeneous gsoce
which is used to estimate the execution time of matations,
» Performance model of communication network whgh
necessary to predict the execution time of comnaiitio
operations.
Now we briefly outline performance models currenibed in
programming systems and operating environments
heterogeneous networks of computers.

Recently, based on the popularity of MapReducelaamavide
spread of Hadoop, there were introduced serieysitms
exploiting ideas of a MapReduce paradigm in contéxhe
stream processing. As was already mentioned in
Introduction, the developers of the Hadoop Onlirreded
the original Hadoop system by ability to streaneiintediate
results from the map to the reduce tasks as welthas
possibility to pipeline data across the differenap®Reduce
jobs.

To facilitate these new features, they extendedsémeantics
of the classic reduce function by time-based sfjdiindows,
picked up this idea and further improved the sulitgbof
Hadoop-based systems for continuous streams bgaieg|
the sort-merge implementation for partitioning byneaw
hash-based approach.

The Muppet system also focuses on the parallelgssing of
continuous stream data while preserving a MapRetlkee
programming abstraction. However, the authors detith
replace the reduce function by a more generic epdatction
to allow for greater flexibility when processingeénmediate

CURRENTDEVELOPMENT

data with identical keys. Muppet also aims to suppo

near-real-time processing latencies.

The systems and Storm can also be classified
massively-parallel data processing systems withlearc
emphasis on low latency. Their programming abstrads
finally not MapReduce but allows the developerageemble
arbitrarily complex DAG of processing tasks. Foample,
Twitter Storm does not use the intermediate queupass the
data items from one task to the other; insteady dleins are
passed directly between the tasks using batch gessa the
network level to achieve a good balance betweemd¢gtand
throughput.

In the end, it is important to note that along wille stream
processing paradigm we can lately observe anotbheement
in the field of low latency computations based ba fast

straightforward design constructed on top of thigseues. In
my opinion, such message delivery systems are an&ihd

of stream processing systems with less limited
communication schemas i.e., DAGs are welcomed btit n
required. This was a brief overview of “historicalid recent
approaches to the stream processing. Becausedhisieals
mainly with the resource allocation and schedulirgn now

on we will discuss the parallel systems only.

for

IV. COMPONENTS ANDARCHITECTURE

In this section, the focus will be given to S4 a&tbrm
because the overview of wider range of systems dvbel
excessively long, and, at the same time, we casidenthese
two being representative examples of modern stream
processing architectures. Across many massivelyllpar
tisgstems, a kind of a master-worker pattern is eemymon.
The master node usually receives data or taskdiatrtbutes
them over the network of worker nodes. A good eXxamp
could be again the MapReduce—its master process aft
receiving a job descriptor starts mappers and rguon
different machines; at the same time, the mastecgss is
responsible for a fault tolerance and livenesshefworker
nodes (see Fig. 1). For parallel stream systemgentie
streams of data are often running for a long tirie
placement of tasks can be less frequent but theepdrof
master and worker nodes stays unchanged. One dtiteye
difference is that MapReduce job eventually finsshehereas
stream processing topologies run forever.

Distributed File System

i b
N
Mapoer ¥ z
Intermediate Final

results rast

Data
splits

Fig. 1 Master and worker nodes (mappers and reduaerMapReduce,
reproduced form

When we look deeper into the structure of paraiestems,
we can see that the computations are divided oite.jThe
arrangement of jobs can be described by a graphveitices
representing the job’s individual tasks and theesdipnoting
communication channels between them. For exampum &
high-level perspective, the graph representatioa tfpical
MapReduce job would consist of a set of Map vestice

message brokers such as Apache Kafka or ApacheeFlu connected to a set of Reduce vertices.

Although the message brokers are well known condbpt
new wave of this technology focuses on differerjectives,
which makes it more suitable for high throughpugassing.

Some frameworks have generalized the MapReducelrmwde
arbitrary directed acyclic graphs (DAGS), some eadow
graph structures containing loops. The stream p<icg

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 24 Issue 3 — FEBRUARY 2017 (SPECIAL ISSUE).

systems are very similar to other parallel systerfise

computation is mostly described as a DAG. Thereshght

differences in a communication layer, while songteys use
gueues and intermediate message brokers; the aibers
straight point to point (process to process) comoation.

Let me now describe the example topologies of $4Starm.

Heterogeneity of large clusters and cloud setupseigtable

over the time. Main reasons are the need for gramvtime

and gradual upgrades of hardware. Simultaneousdyrigjht

treatment of computing resources with differentatslities

can potentially bring better performance in the mseaf

increased number of completed jobs per time paiatithus
the shorter time from queued to finished of eath jo

V. CONCLUSION

This paper overviews my current
understanding of the topic of stream processindesys
scheduling on heterogeneous clusters and propgsdas for
the future research work towards the doctoral theEhe
introduction section has history and basic notiohstream
processing, scheduling, and benchmarking. Arguntienta
about the present unsatisfying situation of strgaotessing
regarding the integration into the big data ecasyst e.g.,
Hadoop, about the lack of advanced scheduling @litgos,
and about the problems accompanying heterogenégsisrs
is discussed. Separated sections look into thetisotu
exploiting the benchmark-based scheduling in coatinn
with other advanced scheduling techniques andgorgsion
of areas that currently lack deeper research. Begleht, my
previous work and affiliation lying in multicloudiddleware
MOSAIC and in processing of scientific papers i gmd
cloud (ReReSearch) was presented. Main part ofmbrk
then brings the motivations for my research wittuitive
example of potentials laying in exploitation of éxetgeneity
of clusters. Basic ideas and dependencies of bearéhimased
scheduling are then shown and connected.

REFERENCES

[1] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstefn,Elmeleegy and
R. Sears, "MapReduce Online," 2010.

[2] E. Mazur, B. Li, Y. Diao and P. Shenoy, "Towardsl&ble One-Pass
Analytics Using MapReduce," pp. 1102--1111, 2011.

[3] B. Lohrmann, D. Warneke and O. Kao, "Nephele stiegnstream
processing under QoS constraints at scale," Cli&tenputing, pp.
1-18, 2013.

[4] D. J. Abadi, D. Carney, U. Cetintemel, M. CherniaCk Convey, S.
Lee, M. Stonebraker and N. Tatbul, "Aurora: a newdsi and
architecture for data stream management,” The Vdbnal, vol. 12,
no. 2, pp. 120--139, 2003.

[5] S. Babu and J. Widom, "Continuous queries over dateams,"”
Sigmod Record, vol. 30, no. 3, pp. 109--120, 2001.

[6] R.Motwani, J. Widom, A. Arasu, B. Babcock, S. Ballu Datar, G. S.
Manku, C. Olston, J. Rosenstein and R. Varma, "Q&eocessing,
Approximation, and Resource Management in a DateeaSt
Management System," 2003.

[71 M. Cherniack, H. Balakrishnan, M. Balazinska, D.rnsy, U.
Cetintemel and Y. Xing, "Scalable Distributed Stne®rocessing,"
2003.

[8] D.J.Abadi, Y. Ahnmad, M. Balazinska, U. Cetinteyridl Cherniack,
J.-h. Hwang, W. Lindner, A. Maskey, A. Rasin, EvRina, N. Tatbul

(9]

knowledge and

and Y. Xing, "The Design of the Borealis Streamdessing Engine,"
2005.

M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fettgr "Dryad:

distributed data-parallel programs from sequertialding blocks,"
2007.

