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Abstract— Big data processing is a hot topic of today’s 

computer world. One of the key paradigms behind it is 
MapReduce—parallel and massively distributed model inspired 
by the map and reduce functions commonly used in functional 
programming. Due to its simplicity and general availability of 
standard implementations, the paradigm has been massively 
adopted on current computer clusters. Yet, MapReduce is not 
optimal for all big data problems. My work focuses on the area 
of an alternative paradigm—stream processing—which has 
multiple advantages over the MapReduce, e.g., it avoids 
persistent data storing if not required. The research aims at 
overcoming deficiencies of existing stream processing 
frameworks that prevent its wider adoption. 

Basic scheduling decisions are discussed and demonstrated on 
naive scheduling of a sample application. The paper presents a 
proposal of a novel scheduler for stream processing frameworks 
on heterogeneous clusters, which employs design-time 
knowledge as well as benchmarking techniques to achieve 
optimal resource-aware deployment of applications over the 
clusters and eventually better overall utilization of the cluster. 

In particular, the work deals with scheduling problems of 
stream processing applications on heterogeneous clusters. 
Heterogeneity is a typical characteristic of today’s large data 
centers (caused by incremental upgrades and combinations of 
computing architectures, including specialized hardware such 
as GPU or FPGA) and advanced scheduling mechanisms can 
significantly increase efficiency of their utilization. The 
state-of-the-art research and development of stream processing 
and advanced methods of related scheduling techniques are 
discussed in this document. A special attention is paid to 
benchmark-based scheduling for distributed stream processing 
which also forms the core of my previous work and the proposed 
research towards my doctoral thesis. Finally, the concept of 
novel heterogeneity aware scheduler is presented first in the 
intuitive way and then discussed deeper on theoretical basis. The 
prototype of the scheduler is then described and promising 
results of basic experiments are showed.  
 

Index Terms—heterogeneous clusters, survey, map reduce, 
big data  
 

I. INTRODUCTION 

  In homogeneous computing environments, all nodes have 
identical performance and capacity. Resources can be 
allocated evenly across all available nodes and effective task 
scheduling is determined by quantity of the nodes, not by their 
individual quality. Typically, resource allocation and 

 
 

scheduling in the homogeneous computing environments 
balance of workload across all the nodes which should have 
identical workload. Contrary to the homogeneous computing 
environments, there are different types of nodes in a 
heterogeneous cluster with various computing performance 
and capacity. High-performance nodes can complete the 
processing of identical data faster than low-performance 
nodes. Moreover, the performance of the nodes depends on 
the character of computation and on the character of input 
data. For example, graphic-intensive computations will run 
faster on nodes that are equipped with powerful GPUs while 
memory-intensive computation will run faster on nodes with 
large amount of RAM or disk space. 
To balance workload in a heterogeneous cluster optimally, a 
scheduler has to (1) know performance characteristics for 
individual types of nodes employed in the cluster for different 
types of computations and to (2) know or to be able to analyse 
computation characteristics of incoming tasks and input data. 
The first requirement, i.e., the performance characteristics for 
individual types of employed nodes, means the awareness of 
infrastructure and topology of a cluster including detailed 
specification of its individual nodes. In the most cases, this 
information is provided at the cluster design-time by its 
administrators and architects. Moreover, the performance 
characteristics for individual nodes employed in a cluster can 
be adjusted at the cluster’s run-time based on historical data 
of performance monitoring and their statistical analysis of 
processing different types of computations and data by 
different types of nodes. The second requirement is the 
knowledge or the ability to analyse computation 
characteristics of incoming tasks and input data. In batch 
processing, tasks and data in a batch can be annotated or 
analysed in advance, i.e., before the batch is executed, and 
acquired knowledge can be utilized in optimal allocation of 
resources and efficient task scheduling. In stream processing, 
the second requirement is much more difficult to meet due to 
continuous flow and unpredictable variability of the input 
data which make thorough analysis of computation 
characteristics of the input data and incoming tasks 
impossible, especially with real-time limitations in their 
processing. 
To address the above mentioned issues of stream processing 
in heterogeneous clusters with optimal performance, user 
defined tasks processing (at least some) of the input data has 
to help the scheduler. For example, an application may 
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include user-defined helper-tasks tagging input data at 
run-time by their expected computation characteristics for 
better scheduling1. Moreover, individual tasks of a stream 
application should be tagged at design-time according to their 
required computation resources and real-time constraints on 
the processing to help with their future scheduling. 
Implementation of the mentioned tagging of tasks at 
design-time should be part of modeling (a meta-model) of 
topology and infrastructure of such applications.  

II.  TYPICAL USES OF HETEROGENEOUS NETWORKS 

In this section, we outline how heterogeneous networks of 
computers are typically used by their end-users. In general, 
heterogeneous networks are used traditionally, for parallel 
computing or for distributed computing. The traditional use 
means that the network of computers is used just as an 
extension of the user’s computer. This computer can be serial 
or parallel. The application to be run is a traditional 
application, that is, the one that can be executed on the user’s 
computer. The code of the application and input data are 
provided by the user. The only difference from the fully 
traditional execution of the application is that it can be 
executed not only on the user’s computer but on any other 
relevant computer of the network. The decision where to 
execute one or other application is made by the operating 
environment and mainly aimed at better utilization of 
available computing resources (e.g., at higher throughput of 
the network of computers as a whole multi-user computer 
system). Faster execution of each individual application is not 
the main goal of the operating environment but can be 
achieved for some applications as a side-effect of its 
scheduling policy. This use of the heterogeneous network 
assumes the application and hence the software is portable 
and can be run on another computing resource. This 
assumption may not be true for some applications. 
A heterogeneous network of computers can be used for 
parallel computing. The network is used as a parallel 
computer system in order to accelerate the solution of a single 
problem. In this case, the user provides a dedicated parallel 
application written to efficiently solve the problem on the 
heterogeneous network of computers. High performance is 
the main goal of that type of use. As in the case of traditional 
use, the user provides both the (source) code of the 
application and input data. In the general case, when all 
computers of the network are of the different architecture, the 
source code is sent to the computers where it is locally 
compiled. All the computers are supposed to provide all 
libraries necessary to produce local executables. 
A heterogeneous network of computers can be also used for 
distributed computing. In the case of parallel computing, the 
application can be executed on the user’s computer or on any 
other single computer of the network. The only reason to 
involve more than one computer is to accelerate the execution 
of the application. Unlike parallel computing, distributed 
computing deals with situations when the application cannot 
be executed on the user’s computer just because not all 
components of the application are available on this computer. 

One such a situation is that some components of the code of 
the application cannot be provided by the user and are only 
available on remote computers. The reasons behind this can 
be various: the user’s computer may not have the resources to 
execute such a code component, or the efforts and amount of 
resources needed to install the code component on the user’s 
computer are too significant compared with the frequency of 
its execution, or this code may be just not available for 
installation, or it may make sense to execute this code only on 
the remote processor (say, associated with an ATM machine), 
etc. 
Another situation is that some components of input data for 
this application cannot be provided by the user and reside on 
remote storage devices. For example, the size of the data may 
be too big for the disk storage of the user’s computer, or the 
data for the application are provided by some external party 
(remote scientific device, remote data base, remote 
application, and so on), or the executable file may not be 
compatible with the machine architecture, etc. 
The most complex is the situation when both some 
components of the code of the application and some 
components of its input data are not available on the user’s 
computer. Performance. An immediate implication from the 
heterogeneity of processors in a network of computers is that 
the processors run at different speeds. A1 good parallel 
application for a homogeneous distributed memory 
multiprocessor system tries to evenly distribute computations 
over available processors. This very distribution ensures the 
maximal speedup on the system consisting of identical 
processors. If the processors run at different speeds, faster 
processors will quickly perform their part of computations 
and begin waiting for slower ones at points of synchronization 
and data transfer. Therefore, the total time of computations 
will be determined by the time elapsed on the slowest 
processor. In other words, when executing parallel 
applications, which evenly distribute computations among 
available processors, the heterogeneous network will 
demonstrate the same performance as a network of 
interconnected identical processors equivalent the slowest 
processor of the heterogeneous network of computers. 
Therefore, a good parallel application for the heterogeneous 
network must distribute computations unevenly taking into 
account the difference in processor speed. The faster the 
processor is, the more computations it must perform. Ideally, 
the volume of computation performed by a processor should 
be proportional to its speed. Let us summarize our brief 
analysis of the performance-related programming issues in 
parallel and distributed computing for heterogeneous 
networks of computers.  
There are two basic related issues that should be addressed: 
• Performance model of heterogeneous network of computers 
quantifying the ability of the network to perform 
computations and communications, 
• Performance model of application quantifying the 
computations and communications to be performed by the 
application. 
In the presence of such models, given parameters of the 
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application model, parameters of the model of the executing 
network of computers and a mapping of the application to the 
processors of the network, it would be possible to calculate 
the execution time of the application on the network. 
Application and system programmers could incorporate the 
models in their applications and programming systems to 
achieve better distribution of computations and 
communications leading to higher performance. The 
performance model of heterogeneous network of computers 
includes two submodels:  

• Performance model of a set of heterogeneous processors 
which is used to estimate the execution time of computations, 

• Performance model of communication network which is 
necessary to predict the execution time of communication 
operations. 
Now we briefly outline performance models currently used in 
programming systems and operating environments for 
heterogeneous networks of computers. 

III.  CURRENT DEVELOPMENT 

Recently, based on the popularity of MapReduce and the wide 
spread of Hadoop, there were introduced series of systems 
exploiting ideas of a MapReduce paradigm in context of the 
stream processing. As was already mentioned in the 
Introduction, the developers of the Hadoop Online extended 
the original Hadoop system by ability to stream intermediate 
results from the map to the reduce tasks as well as the 
possibility to pipeline data across the different MapReduce 
jobs. 
To facilitate these new features, they extended the semantics 
of the classic reduce function by time-based sliding windows, 
picked up this idea and further improved the suitability of 
Hadoop-based systems for continuous streams by replacing 
the sort-merge implementation for partitioning by a new 
hash-based approach. 
The Muppet system also focuses on the parallel processing of 
continuous stream data while preserving a MapReduce-like 
programming abstraction. However, the authors decided to 
replace the reduce function by a more generic update function 
to allow for greater flexibility when processing intermediate 
data with identical keys. Muppet also aims to support 
near-real-time processing latencies. 
The systems and Storm can also be classified as 
massively-parallel data processing systems with a clear 
emphasis on low latency. Their programming abstraction is 
finally not MapReduce but allows the developers to assemble 
arbitrarily complex DAG of processing tasks. For example, 
Twitter Storm does not use the intermediate queues to pass the 
data items from one task to the other; instead, data items are 
passed directly between the tasks using batch messages on the 
network level to achieve a good balance between latency and 
throughput. 
In the end, it is important to note that along with the stream 
processing paradigm we can lately observe another movement 
in the field of low latency computations based on the fast 
message brokers such as Apache Kafka  or Apache Flume. 
Although the message brokers are well known concept, the 
new wave of this technology focuses on different objectives, 
which makes it more suitable for high throughput processing. 

Traditional enterprise messaging systems e.g., IBM 
Websphere MQ, or JMS specification compliant brokers, 
emphasize strong delivery guarantees mostly with pushing 
data to consumers and ignore the throughput, which makes 
them very robust and often slow. The new wave of message 
delivery systems, on the other hand, accentuates throughput 
and lets consumers to pull data as they need. This opens a way 
for the new distributed applications with high throughput and 
straightforward design constructed on top of these queues. In 
my opinion, such message delivery systems are another kind 
of stream processing systems with less limited 
communication schemas i.e., DAGs are welcomed but not 
required. This was a brief overview of “historical” and recent 
approaches to the stream processing. Because this work deals 
mainly with the resource allocation and scheduling, from now 
on we will discuss the parallel systems only.  

IV.  COMPONENTS AND ARCHITECTURE 

In this section, the focus will be given to S4 and Storm 
because the overview of wider range of systems would be 
excessively long, and, at the same time, we can consider these 
two being representative examples of modern stream 
processing architectures. Across many massively parallel 
systems, a kind of a master-worker pattern is very common. 
The master node usually receives data or tasks and distributes 
them over the network of worker nodes. A good example 
could be again the MapReduce—its master process after 
receiving a job descriptor starts mappers and reducers on 
different machines; at the same time, the master process is 
responsible for a fault tolerance and liveness of the worker 
nodes (see Fig. 1). For parallel stream systems where the 
streams of data are often running for a long time, the 
placement of tasks can be less frequent but the concept of 
master and worker nodes stays unchanged. One interesting 
difference is that MapReduce job eventually finishes, whereas 
stream processing topologies run forever. 

 
Fig. 1 Master and worker nodes (mappers and reducers) in MapReduce, 
reproduced form 

When we look deeper into the structure of parallel systems, 
we can see that the computations are divided into jobs. The 
arrangement of jobs can be described by a graph with vertices 
representing the job’s individual tasks and the edges denoting 
communication channels between them. For example, from a 
high-level perspective, the graph representation of a typical 
MapReduce job would consist of a set of Map vertices 
connected to a set of Reduce vertices. 
Some frameworks have generalized the MapReduce model to 
arbitrary directed acyclic graphs (DAGs), some even allow 
graph structures containing loops. The stream processing 
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systems are very similar to other parallel systems. The 
computation is mostly described as a DAG. There are slight 
differences in a communication layer, while some systems use 
queues and intermediate message brokers; the others use a 
straight point to point (process to process) communication. 
Let me now describe the example topologies of S4 and Storm. 
Heterogeneity of large clusters and cloud setups is inevitable 
over the time. Main reasons are the need for growth in time 
and gradual upgrades of hardware. Simultaneously, the right 
treatment of computing resources with different capabilities 
can potentially bring better performance in the means of 
increased number of completed jobs per time period and thus 
the shorter time from queued to finished of each job. 

V. CONCLUSION 

This paper overviews my current knowledge and 
understanding of the topic of stream processing systems’ 
scheduling on heterogeneous clusters and proposes a plan for 
the future research work towards the doctoral thesis. The 
introduction section has history and basic notions of stream 
processing, scheduling, and benchmarking. Argumentation 
about the present unsatisfying situation of stream processing 
regarding the integration into the big data ecosystems, e.g., 
Hadoop, about the lack of advanced scheduling algorithms, 
and about the problems accompanying heterogeneous clusters 
is discussed. Separated sections look into the solutions 
exploiting the benchmark-based scheduling in combination 
with other advanced scheduling techniques and to description 
of areas that currently lack deeper research. Besides that, my 
previous work and affiliation lying in multicloud middleware 
mOSAIC and in processing of scientific papers in grid and 
cloud (ReReSearch) was presented. Main part of the work 
then brings the motivations for my research with intuitive 
example of potentials laying in exploitation of heterogeneity 
of clusters. Basic ideas and dependencies of benchmark based 
scheduling are then shown and connected. 
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