
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

138

Abstract— MapReduce is an effective model that aids the
programmers to run their application over hundreds,
thousands, or even tens of thousands of machines in a
cluster. By breaking down each job into small map and
reduce tasks and executing them in parallel across a
number of machines, MapReduce significantly reduces the
running time of data-intensive jobs. However, despite recent
effort towards designing resource-efficient MapReduce
schedulers, existing solutions that focus on scheduling at the
task and phase-level still offer sub-optimal job performance.
This paper proposes a processor-level scheduling that
improves job running time and high resource utilization
without introducing stragglers.

Index Terms—Hadoop, MapReduce, Resource allocation,
Stragglers.

I. INTRODUCTION

In recent years large scale data industry is trending towards
Data-intensive computing. MapReduce that breaks down job
into map and reduce tasks are scheduled parallel across multiple
machines. These tasks significantly reduces job running time.
Subsequently, the performance and efficiency for scheduling the
job under various resource requirements provide resource
utilization and support today’s internet companies.

The key component of MapReduce is its Job Scheduler. The
scheduler schedules map and reduce tasks which reduces job
running time and increases resource utilization. A schedule with
large numbers of tasks running on a single machine in resource
contention and the machine with very few tasks will lead to poor
resource utilization.
The job scheduling is quite easier in systems having
homogenous resource requirements in terms of CPU, memory,
Network bandwidth. In PRISM, a Phase and Resource
Information-aware Scheduler for MapReduce clusters, the
running time of the tasks vary significantly from phase.
Consequently, the resource demand at the phase level is possible
for the scheduler to achieve higher degrees of parallelism
avoiding resource contention. To this end, a phase-level
scheduling algorithm delivers up to 18 percent improvement in
resource utilization while allowing jobs to complete up to 3
times faster than current Hadoop schedulers. To end with

PRISM is currently designed for Hadoop MapReduce, it can be
functional to Dryad [19] and other parallel computing
frameworks as well.

Recent studies have reported that workloads often have
assorted utilization profiles and performance requirements [8],
[20]. Failing to consider these job usage features can possibly
lead to inept job schedules with low resource utilization and long
job execution time. Certainly, current MapReduce systems, such
as Hadoop MapReduce schedulers make this assumption to
abridge the scheduling problem. These systems use a phase-level
scheduling algorithm, where the physical resources on each
machine are captured by the assigned to tasks and phase-level.
Unfortunately, in practice, running-time of resource
consumption varies from phase to phase and from job to job.

Motivated by this observation, some recent proposals, such as
PRISM, a Phase and Resource Information-aware Scheduler for
MapReduce resource-aware adaptive scheduling [15] and
Hadoop MapReduce Version 2 [7], have presented resource
aware job schedulers to the MapReduce framework. Clusters
that performs resource-aware scheduling at the level of task
phases. Precisely, for most MapReduce applications, resource
consumption varies significantly from phase to phase.
Therefore, the resource demand of the scheduler to reaches
higher degrees of parallelism avoiding resource contention.

This paper is structured as follows. Section II covers an
overview of Hadoop MapReduce and PRISM. Section III
provides the Processor-Level scheduling. The algorithm is
described in section IV. The performance evaluation is
presented in section V. The related work of the existing system
is summarized in section VI. Conclusion and Future
enhancement are cited in Section VII and VIII respectively
followed by Reference.

II. BACKGROUND

A. Hadoop MapReduce

A parallel computing model known as MapReduce is widely
used for large scale data intensive computation. In MapReduce,
a job entails map and reduced tasks. A map task takes a
key-value block as input which is stored in the core distributed
file system. A user specified map function is run to generate

PROCESSOR LEVEL RESOURCE-AWARE
SCHEDULING FOR MAPREDUCE IN

HADOOP

G.Hemalatha #1 and S.Shibia Malar *2
#P.G Student, Department of Computer Science, Thirumalai College of Engineering, Kanchipuram, India

* Assistant Professor, Department of Computer Science, Thirumalai College of Engineering, Kanchipuram,India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

139

intermediary key-value output. Consequently, a reduce task
collects and apply the user-specified reduce function to generate
the output. Apache Hadoop MapReduce is the software
framework widely used to implement MapReduce. The Hadoop
cluster is comprised of large number of commodity machines
where single node serves as a master and other acts as a slaves.
The master node which is resource manager Job Tracker
programs job to the slave nodes. For each task a Local node
manager or task tracker launches and allocates resources with
the help of Java Virtual Machine. In earlier versions, Hadoop
MapReduce accomplishes a slot based resource allocation
scheme.

A Hadoop cluster is a multi-user system where many users
submit jobs to the cluster at the same time. The Resource
Manager upholds a job list. The progress of the running task and
the available resources in the node are monitored by the
respective slave node. Periodically the slave nodes sends a
heartbeat message and transfer information to the master node.
With the provided information the resource scheduler makes the
scheduling decision Hadoop MapReduce also supports other
task level job schedulers such as Capacity Scheduler [2] and Fair
Scheduler [3]. As task-level scheduling implements a simple slot
based allocation run-time task is not considered here. This leads
to resource contention if multiple tasks are assigned.

From this observation, Resource-Level scheduling in Hadoop
MapReduce clusters is facilitated by Hadoop Yarn. In alpha
version, the size of the task container for the task process can be
specified.

B. PRISM

PRISM or Phase and Resource Information-aware scheduler
for MapReduce clusters performs resource-aware scheduling at
the phase level avoids resource contention. An overview of the
PRISM mechanism is shown in Fig. 1. PRISM consists of three
main components:

� Phase-Based Scheduler at the master node
� Local Node Managers that coordinate phase

transitions with the scheduler
� Job Progress Monitor to capture phase-level progress

information.
In the Phase-Level scheduling mechanism, (1) the Node

Manager transmits a heartbeat message to the scheduler. (2) The
scheduler receives the heartbeat message and replies to the
request. (3) The task is then launched by the Node Manager. (4)
Once the task completes the execution in a particular phase it
asks for permission to begin the next phase. The scheduler
receives the permission request from the Local Node Manager.
(5) Based on the resource requirements and the current progress
information, the scheduler makes scheduling decision. The
scheduler either starts a new task or pauses a task and begin the
task in next phase and informs to the Node Manager. (6) If the
task is executed in the next phase the Node Manager provides
permission to complete the task process. (7) The Node Manager
receives task status (8) and forwards task status to the scheduler

Fig. 1 PRISM Mechanism

From this it is observed that by pausing the task at run-time

results time delay for job completion of the current and
subsequent tasks which leads to stragglers.

III. PROCESSOR LEVEL SCHEDULING

The importance of processor-level scheduling is demonstrated
in this paper. In a phase-level, performance of a task or process
with heterogeneous resource requirements is carried out. In
processor-level scheduling algorithm execution parallelism and
performance of task is improved. PRISM, i.e. Phase and
Resource Information-aware Scheduler for MapReduce at the
phase-level is an existing solution. While preceding a task, it has
many run-time resources within its lifetime. While scheduling
the job, PRISM always have higher degree of parallelism than
current Hadoop cluster. It refers at the phase-level to improve
resource utilization and performance. In this the thread will
assign jobs to the processor, but the thread doesn’t know about
the processor. After the jobs are assigned to the processor,
information about the job size will go and the map reduces and
then MapReduce know the processor capacity and it assign the
job based on their Processor capacity.

The processor will complete all works that are assigned does
not leave any unfinished jobs as like the existing ones. After that
the results of each processor will go to the i2FAR Mechanism. In
this Mechanism it checks if all the jobs are finished by the
processor it will go to Success Result Otherwise If any jobs are
incomplete it will go to the map reduce and it will find the
processors and make that processor to complete the jobs.

In distributed system while distributing the tasks the thread
allow task to the processor. But they don’t know about the
processor capability. Suppose if the thread are allowing a very

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

140

Fig. 2 Processor level Scheduling.

huge task to the processor without knowing their capacity. The
processor will do their task according to their capability. But the
remaining works are left undone. Here the distributed system
will processed in to the thread in that the system knows about the
capacity of the thread. Based on the thread the process will be
synchronized.

While allocating task with help of MapReduce they know
their capability of each processor. When the tasks are allocated
to the processor they will go the Map Reduce and they will
assign the task to the processor by knowing their capability.
Then thread will assign the task to the processor and it will send
it to the MapReduce and then the MapReduce will send the task
to the Processor, it will finished the task and send the result to the
I2 FAR. If any processors works are left undone it will send to
the processor again and complete the left work

I2 FAR will give the results if the processor finished their jobs
it will give the results as success. If the jobs are left undone it will
go to the processor again complete their tasks. The received
result will finished then it will go to the i2FAR process and
produced to execute complete process. If the result is not
completed then it will be re forwarded to the reduced map
mechanism. There the remaining uncompleted results will be
completed.

IV. ALGORITHM DESCRIPTION

As soon as the processor finishes their job it offers a success
result. In case of any incomplete jobs that is if any of the job is
not done by the processor. It is forwarded to the MapReduce
Mechanism again. Here the jobs are allocated to the processor
that are free. The processor that completes the job will go to that
i2FAR to execute the complete process. Considering J jobs are
assigned to the Processor P in Algorithm 1. For each job j
assigned to the processor p. The phase selected for the assigned
job has the utility function U {j}. If job j is not done in the phase
selected it is assigned to the processor that finishes the job. U {j}
is assigned to the processor in the selected phase. The resource
utilization is updated until all the jobs are assigned to the
processor.

A. i2FAR ALGORITHM

1. Input from the users
2. Obtain the Input from the users
3. Inputs are allocated to each processor.
4. Each Job is assigned to the processor j € p
5. Repeat
6. for each processor the job is assigned
 P�J
 endfor
 7. if processor = job assigned
 8 phase selected�phase selected U{j}
 9. endif
10. Endfor
11. if processor ≠ job assigned
12.PhaseSelected�PhaseSelected U{j}
13. p �select the processor that has finished the job
14. Update the resource utilization of the machine
15. end if
16. endif
17. until p==job assigned
18. return phase

Supposing each machine run at most N tasks, the scheduler

considers N schedulable processor for each job. The ranking of
the processor is carried out by the local manager. Thus the
overall running time of the Job is calculated using this algorithm.
Though the scheduling will not improve phase-level and task
level parallelism, the resources are shared thus avoiding
stragglers. It should be said that the processor level scheduling
assigns job to the processor in case of any jobs left undone. The
scheduler then reassign the job to the processor that are free and
update the resource utilization reducing the job failures.

V. PERFORMANCE EVALUATION

In this processor –level scheduling, a cluster consisting of two
nodes is run using Apache Hadoop 2.7.2. The input of size 4 GB
consisting of whether data of various countries are used. The
input data are divided into Map and Reduce tasks. The jobs are
assigned to the processor and are executed without stragglers
using failover resilience Mechanism. This mechanism checks
whether the processor finishes assigned undone jobs and
completes the job execution without stragglers.

The result is compared with the PRISM and as expected the
job is completed with high resource utilization without
introducing stragglers. And the job running time is less when
compared to the existing schedulers.
For better understanding we considered the resource such as
CPU, Memory Usage, and Network I/O usage. With the
previous results the yarn and Fair scheduler are worse than

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

141

Fig.3 Resource Utilization in Processor-Level Scheduling.

PRISM. While PRISM introduces stragglers and this has less
resource utilization and job completion time when compared to
processor-level scheduling algorithm.

Fig.3. Resource utilization of various resource requirements
such as CPU, Network, Disk, memory usage are plotted. The
performance gain of the processor-level scheduling is higher
than the phase-level scheduling. Hadoop achieves higher
resource utilization than the current schedulers such as yarn and
Fair scheduler. The Application Master that monitors and
manages the job execution also consumes lesser running time.

The Map, Reduce and Shuffle phases reduce the running time
as the can run simultaneously. The time delay in the reduced
phase is scheduled by scheduling the shuffle phases by knowing
the processor capacity. Therefore achieves high resource
utilization with reduced resource contention.

The running time of job various job with different input size
are given and they are compared with the existing phase-level
scheduling. The input size for various job in processor-level
scheduling offers a less job running time when compared to the
existing scheduling mechanism. The running time for the
phase-level and processor level for various job with different
input size are plotted in Fig.4

Fig.4 Running Time of Job Compared to Phase-Level
Scheduling

VI. RELATED WORK

MapReduce application runs on a large cluster of commodity
machines and is highly scalable. A typical MapReduce

computation processes a very large data on thousands of
machines. Many MapReduce programs have been executed on
Google's clusters every day. Hadoop MapReduce implements a
slot-based resource allocation scheme, which does not consider
run-time task resource consumption. As a result, several recent
works reported the inefficiency introduced due to such simple
design, and proposed solutions. For instance, Polo et al.
proposed RAS [15], an adaptive resource-aware scheduler that
uses a resource-aware scheduling technique for MapReduce
multi-job workloads that aims to improve resource utilization
across machines observes completion time goals. However,
RAS still performs scheduling at task-level, and does not
consider the task resource usage variations at run time.
Subsequently, Hadoop Yarn [7] represents a major endeavors in
resource-aware scheduling in MapReduce clusters. It offers the
ability to specify the size of each task container in terms of
requirements for each type of resources. In this context, a key
challenge is to define the notion of fairness when multiple
resource types are considered. Ghodsi et al. proposed dominant
resource fairness as a measure of fairness in the presence of
multiple resource types, and provided a simple scheduling
algorithm for achieving near-optimal DRF. However, the DRF
scheduling algorithm still focuses on task-level scheduling, and
does not consider change in resource consumption within
individual tasks. Their subsequent model, namely. Dominant
resource fair queueing (DRFQ), aims at achieving DRF for
packet scheduling over time. However, DRFQ algorithm is
mainly designed for packet scheduling, which is different from
the task-level “bin-packing” type of scheduling model we
consider in this paper. Thus it cannot be directly applied to
MapReduce scheduling. Using profiles to improve MapReduce
job performance has received considerable attention in recent
years [12]. For instance, Verma et al. [17] developed a
framework that profiles task running times and use the job
profiles to achieve deadline-ware scheduling in MapReduce
clusters. Herodotou et al. recently developed Starfish [12], a job
profiler that collects fine-grained task usage characteristics that
can be used for fine-tuning job configuration parameters.
However, the goal of profiling in these studies is to optimize job
parameters, rather than optimizing job schedules. Another
related research direction is MapReduce pipelining. In
particular, MapReduce Online [9] is a framework for
stream-based processing of MapReduce jobs. It allows partial
outputs of each phase to be sent directly to the subsequent phase,
thus enables overlaps execution of phases. In order to minimize
I/O, ThemisisMR [16] is another scheme that makes
fundamentally different design decisions from previous
MapReduce implementations. Themis performs an extensive
variety of MapReduce jobs at nearly the speed of Triton Sort's
record-setting sort performance. However, both of these
solutions does not deal with scheduling. Furthermore, they are
not resource-aware. While introducing resource awareness in
MapReduce Online is another interesting alternative, the
scheduling model for MapReduce online is much different from
the current MapReduce. It will require further investigation to
identify scheduling issues for Map- Reduce online.

VII. CONCLUSION

In this paper we assume all machines have identical hardware
and resource capacity. It is oblivious to the fact that the

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

142

execution of each task can be divided into phases with drastically
different resource consumption characteristics. To address this
limitation, PRISM, a fine-grained resource-aware scheduler that
coordinates task execution at the level of phase. In the existing
System the thread doesn’t know about processor capability it
assign a huge task to the processor , So the processor will do
their tasks according to their capability, The remaining left jobs
are not done. In the Recommended System the Map reduce will
get the task from the thread and it assign the task to the processor
according to their capability with this all the assigned task are
done.

VIII. FUTURE ENHANCEMENT

It is interesting to study the profiling and scheduling problem
for machines with heterogeneous performance characteristics.
Finally, improving the scalability of PRISM using distributed
schedulers is also an interesting direction for future research.

REFERENCES

[1] Hadoop Map Reduce distribution [Online]. Available:
http://hadoop.apache.org, 2015.
[2] Hadoop Capacity Scheduler [Online]. Available: http://hadoop.
apache.org/docs/stable/capacity_scheduler.html/, 2015.
[3] Hadoop Fair Scheduler [Online]. Available: http://hadoop.
apache.org/docs/r0.20.2/fair_scheduler.html, 2015.
[4] Hadoop Distributed File System [Online]. Available: hadoop.
apache.org/docs/hdfs/current/, 2015.
[5] Grid Mix benchmark for Hadoop clusters [Online]. Available:
http://hadoop.apache.org/docs/mapreduce/current/gridmix. html, 2015.
[6] PUMA benchmarks [Online]. Available: http://web.ics.purdue.
edu/fahmad/benchmarks/datasets.htm, 2015.
[7] The Next Generation of Apache Hadoop MapReduce [Online]. Available:
http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html, 2015.
[8] R. Boutaba, L. Cheng, and Q. Zhang, “On cloud computational models and
the heterogeneity challenge,” J. Internet Serv. Appl., vol. 3, no. 1, pp. 1–10,
2012.

[9] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R. Sears,
“MapReduce online,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2010, p. 21.
[10] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, “Dominant resource fairness: Fair allocation of multiple resource types,”
in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2011, pp. 323–336.
[12] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin, and S. Babu,
”Starfish: A self-tuning system for big data analytics,” in Proc. Conf. Innovative
Data Syst. Res., 2011, pp. 261–272.
[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K. Talwar, “Quincy:
Fair scheduling for distributed computing clusters,” in Proc. ACMSIGOPS
Symp. Oper. Syst. Principles, 2009, pp. 261–276.
[14] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. “Multi-resource allocation:
Flexible tradeoffs in a unifying framework,” in Proc. IEEE Int. Conf. Comput.
Commun., 2012, pp. 1206–1214.
[15] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J.
Torres, and E. Ayguad_e, “Resource-aware adaptive scheduling for MapReduce
clusters,” in Proc. ACM/IFIP/USENIX Int. Conf. Middleware, 2011, pp.
187–207.
[16] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G. Porter, and A. Vahdat,
“ThemisMR: An I/O-Efficient MapReduce,” in Proc. ACM Symp. Cloud
Compute. 2012, p. 13.
[17] A. Verma, L. Cherkasova, and R. Campbell, “Resource provisioning
framework for MapReduce jobs with performance goals,” in Proc.
ACM/IFIP/USENIX Int. Conf. Middleware, 2011, pp. 165–186.
[18] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is change:
Incorporating time-varying network reservations in data centers,” in Proc. ACM
SIGCOMM, 2012, pp. 199–210.
[19] Y. Yu, M. Isard, D. Fetterly, M. Budiu, _ U. Erlingsson, P. Gunda, and J.
Currey, “DryadLINQ: A system for general-purpose distributed data-parallel
computing using a high-level language,” in Proc. USENIX Symp. Oper. Syst.
Des. Implementation, 2008, pp. 1–14.
[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica, “Delay scheduling: A simple technique for achieving locality and
fairness in cluster scheduling,” in Proc. Eur. Conf. Comput. Syst., 2010, pp.
265–278.
[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,” in Proc.
USENIX Symp. Oper. Syst. Des. Implementation, 2008, vol. 8, pp. 29–42.

