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Abstract— MapReduce is an effective model that aids the 
programmers to run their application over hundreds, 
thousands, or even tens of thousands of machines in a 
cluster. By breaking down each job into small map and 
reduce tasks and executing them in parallel across a  
number of machines, MapReduce significantly reduces the 
running time of data-intensive jobs. However, despite recent 
effort towards designing resource-efficient MapReduce 
schedulers, existing solutions that focus on scheduling at the 
task and phase-level still offer sub-optimal job performance. 
This paper proposes a processor-level scheduling that 
improves job running time and high resource utilization 
without introducing stragglers. 
 

Index Terms—Hadoop, MapReduce, Resource allocation, 
Stragglers.  
 

I. INTRODUCTION 

In recent years large scale data industry is trending towards 
Data-intensive computing. MapReduce that breaks down job 
into map and reduce tasks are scheduled parallel across multiple 
machines. These tasks significantly reduces job running time. 
Subsequently, the performance and efficiency for scheduling the 
job under various resource requirements provide resource 
utilization and support today’s internet companies. 

The key component of MapReduce is its Job Scheduler. The 
scheduler schedules map and reduce tasks which reduces job 
running time and increases resource utilization. A schedule with 
large numbers of tasks running on a single machine in resource 
contention and the machine with very few tasks will lead to poor 
resource utilization. 
The job scheduling is quite easier in systems having 
homogenous resource requirements in terms of CPU, memory, 
Network bandwidth. In PRISM, a Phase and Resource 
Information-aware Scheduler for MapReduce clusters, the 
running time of the tasks vary significantly from phase. 
Consequently, the resource demand at the phase level is possible 
for the scheduler to achieve higher degrees of parallelism 
avoiding resource contention. To this end, a phase-level 
scheduling algorithm delivers up to 18 percent improvement in 
resource utilization while allowing jobs to complete up to 3 
times faster than current Hadoop schedulers. To end with 

PRISM is currently designed for Hadoop MapReduce, it can be 
functional to Dryad [19] and other parallel computing 
frameworks as well. 

Recent studies have reported that workloads often have 
assorted utilization profiles and performance requirements [8], 
[20]. Failing to consider these job usage features can possibly 
lead to inept job schedules with low resource utilization and long 
job execution time. Certainly, current MapReduce systems, such 
as Hadoop MapReduce schedulers make this assumption to 
abridge the scheduling problem. These systems use a phase-level 
scheduling algorithm, where the physical resources on each 
machine are captured by the assigned to tasks and phase-level. 
Unfortunately, in practice, running-time of resource 
consumption varies from phase to phase and from job to job. 

Motivated by this observation, some recent proposals, such as 
PRISM, a Phase and Resource Information-aware Scheduler for 
MapReduce resource-aware adaptive scheduling [15] and 
Hadoop MapReduce Version 2 [7], have presented resource 
aware job schedulers to the MapReduce framework. Clusters 
that performs resource-aware scheduling at the level of task 
phases. Precisely, for most MapReduce applications, resource 
consumption varies significantly from phase to phase. 
Therefore, the resource demand of the scheduler to reaches 
higher degrees of parallelism avoiding resource contention.  

This paper is structured as follows. Section II covers an 
overview of Hadoop MapReduce and PRISM. Section III 
provides the Processor-Level scheduling. The algorithm is 
described in section IV. The performance evaluation is 
presented in section V.  The related work of the existing system 
is summarized in section VI. Conclusion and Future 
enhancement are cited in Section VII and VIII respectively 
followed by Reference.  
  
 

II.  BACKGROUND 

A. Hadoop MapReduce 

A parallel computing model known as MapReduce is widely 
used for large scale data intensive computation. In MapReduce, 
a job entails map and reduced tasks. A map task takes a 
key-value block as input which is stored in the core distributed 
file system. A user specified map function is run to generate 
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intermediary key-value output. Consequently, a reduce task 
collects and apply the user-specified reduce function to generate 
the output. Apache Hadoop MapReduce is the software 
framework widely used to implement MapReduce. The Hadoop 
cluster is comprised of large number of commodity machines 
where single node serves as a master and other acts as a slaves. 
The master node which is resource manager Job Tracker 
programs job to the slave nodes. For each task a Local node 
manager or task tracker launches and allocates resources with 
the help of Java Virtual Machine. In earlier versions, Hadoop 
MapReduce accomplishes a slot based resource allocation 
scheme. 

A Hadoop cluster is a multi-user system where many users 
submit jobs to the cluster at the same time. The Resource 
Manager upholds a job list. The progress of the running task and 
the available resources in the node are monitored by the 
respective slave node. Periodically the slave nodes sends a 
heartbeat message and transfer information to the master node. 
With the provided information the resource scheduler makes the 
scheduling decision Hadoop MapReduce also supports other 
task level job schedulers such as Capacity Scheduler [2] and Fair 
Scheduler [3]. As task-level scheduling implements a simple slot 
based allocation run-time task is not considered here. This leads 
to resource contention if multiple tasks are assigned. 

From this observation, Resource-Level scheduling in Hadoop 
MapReduce clusters is facilitated by Hadoop Yarn. In alpha 
version, the size of the task container for the task process can be 
specified. 

B. PRISM 

PRISM or Phase and Resource Information-aware scheduler 
for MapReduce clusters performs resource-aware scheduling at 
the phase level avoids resource contention.  An overview of the 
PRISM mechanism is shown in Fig. 1. PRISM consists of three 
main components:  

� Phase-Based Scheduler at the master node 
� Local Node Managers that coordinate phase 

transitions with the scheduler 
� Job Progress Monitor to capture phase-level progress 

information. 
In the Phase-Level scheduling mechanism, (1) the Node 

Manager transmits a heartbeat message to the scheduler. (2) The 
scheduler receives the heartbeat message and replies to the 
request. (3) The task is then launched by the Node Manager. (4) 
Once the task completes the execution in a particular phase it 
asks for permission to begin the next phase. The scheduler 
receives the permission request from the Local Node Manager. 
(5) Based on the resource requirements and the current progress 
information, the scheduler makes scheduling decision. The 
scheduler either starts a new task or pauses a task and begin the 
task in next phase and informs to the Node Manager. (6) If the 
task is executed in the next phase the Node Manager provides 
permission to complete the task process. (7) The Node Manager 
receives task status (8) and forwards task status to the scheduler    

 

 
 

Fig. 1 PRISM Mechanism 
 
From this it is observed that by pausing the task at run-time 

results time delay for job completion of the current and 
subsequent tasks which leads to stragglers.   

 
  

III.  PROCESSOR LEVEL SCHEDULING 

The importance of processor-level scheduling is demonstrated 
in this paper. In a phase-level, performance of a task or process 
with heterogeneous resource requirements is carried out. In 
processor-level scheduling algorithm execution parallelism and 
performance of task is improved. PRISM, i.e. Phase and 
Resource Information-aware Scheduler for MapReduce at the 
phase-level is an existing solution. While preceding a task, it has 
many run-time resources within its lifetime. While scheduling 
the job, PRISM always have higher degree of parallelism than 
current Hadoop cluster. It refers at the phase-level to improve 
resource utilization and performance. In this the thread will 
assign jobs to the processor, but the thread doesn’t know about 
the processor. After the jobs are assigned to the processor, 
information about the job size will go and the map reduces and 
then MapReduce know the processor capacity and it assign the 
job based on their Processor capacity.  

The processor will complete all works that are assigned does 
not leave any unfinished jobs as like the existing ones. After that 
the results of each processor will go to the i2FAR Mechanism. In 
this Mechanism it checks if all the jobs are finished by the 
processor it will go to Success Result  Otherwise If any jobs are 
incomplete it will  go to the map reduce and it will find the 
processors and make that processor to complete the jobs. 

In distributed system while distributing the tasks the thread 
allow task to the processor. But they don’t know about the 
processor capability. Suppose if the thread are allowing a very 
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Fig. 2 Processor level Scheduling. 
 

huge task to the processor without knowing their capacity. The 
processor will do their task according to their capability. But the 
remaining works are left undone. Here the distributed system 
will processed in to the thread in that the system knows about the 
capacity of the thread. Based on the thread the process will be 
synchronized. 

While allocating task with help of MapReduce they know 
their capability of each processor.  When the tasks are allocated 
to the processor they will go the Map Reduce and they will 
assign the task to the processor by knowing their capability. 
Then  thread will assign the task to the processor and it will send 
it to the MapReduce and then the MapReduce will send the task 
to the Processor, it will finished the task and send the result to the 
I2 FAR. If any processors works are left undone it will send to 
the processor again and complete the left work  

I2 FAR will give the results if the processor finished their jobs 
it will give the results as success. If the jobs are left undone it will 
go to the processor again complete their tasks. The received 
result will finished then it will go to the i2FAR process and 
produced to execute complete process. If the result is not 
completed then it will be re forwarded to the reduced map 
mechanism. There the remaining uncompleted results will be 
completed. 

 
 

IV.  ALGORITHM DESCRIPTION 

As soon as the processor finishes their job it offers a success 
result. In case of any incomplete jobs that is if any of the job is 
not done by the processor. It is forwarded to the MapReduce 
Mechanism again. Here the jobs are allocated to the processor 
that are free. The processor that completes the job will go to that 
i2FAR to execute the complete process. Considering J jobs are 
assigned to the Processor P in Algorithm 1. For each job j 
assigned to the processor p. The phase selected for the assigned 
job has the utility function U {j}. If job j is not done in the phase 
selected it is assigned to the processor that finishes the job. U {j} 
is assigned to the processor in the selected phase. The resource 
utilization is updated until all the jobs are assigned to the 
processor.  

A. i2FAR ALGORITHM 

1. Input from the users 
2. Obtain the Input from the users 
3. Inputs are allocated to each processor. 
4. Each Job is assigned to the processor j € p 
5. Repeat 
6. for  each processor the job is assigned 
     P�J 
     endfor 
  7. if processor = job assigned 
   8 phase selected�phase selected U{j} 
   9. endif 
10. Endfor 
11. if processor ≠ job assigned 
12.PhaseSelected�PhaseSelected U{j} 
13. p �select the processor that has finished the job 
14. Update the resource utilization of the machine 
15. end if 
16. endif 
17. until  p==job assigned 
18. return  phase 

 
Supposing each machine run at most N tasks, the scheduler 

considers N schedulable processor for each job. The ranking of 
the processor is carried out by the local manager. Thus the 
overall running time of the Job is calculated using this algorithm. 
Though the scheduling will not improve phase-level and task 
level parallelism, the resources are shared thus avoiding 
stragglers. It should be said that the processor level scheduling 
assigns job to the processor in case of any jobs left undone. The 
scheduler then reassign the job to the processor that are free and 
update the resource utilization reducing the job failures.   
 
 
 

V. PERFORMANCE EVALUATION 

In this processor –level scheduling, a cluster consisting of two 
nodes is run using Apache Hadoop 2.7.2. The input of size 4 GB 
consisting of whether data of various countries are used. The 
input data are divided into Map and Reduce tasks. The jobs are 
assigned to the processor and are executed without stragglers 
using failover resilience Mechanism. This mechanism checks 
whether the processor finishes assigned undone jobs and 
completes the job execution without stragglers. 

The result is compared with the PRISM and as expected the 
job is completed with high resource utilization without 
introducing stragglers. And the job running time is less when 
compared to the existing schedulers. 
For better understanding we considered the resource such as 
CPU, Memory Usage, and Network I/O usage. With the 
previous results the yarn and Fair scheduler are worse than  
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Fig.3 Resource Utilization in Processor-Level Scheduling. 
 

PRISM. While PRISM introduces stragglers and this has less 
resource utilization and job completion time when compared to 
processor-level scheduling algorithm. 

Fig.3. Resource utilization of various resource requirements 
such as CPU, Network, Disk, memory usage are plotted. The 
performance gain of the processor-level scheduling is higher 
than the phase-level scheduling. Hadoop achieves higher 
resource utilization than the current schedulers such as yarn and 
Fair scheduler. The Application Master that monitors and 
manages the job execution also consumes lesser running time.    

The Map, Reduce and Shuffle phases reduce the running time 
as the can run simultaneously. The time delay in the reduced 
phase is scheduled by scheduling the shuffle phases by knowing 
the processor capacity. Therefore achieves high resource 
utilization with reduced resource contention.  

The running time of job various job with different input size 
are given and they are compared with the existing phase-level 
scheduling. The input size for various job in processor-level 
scheduling offers a less job running time when compared to the 
existing scheduling mechanism. The running time for the 
phase-level and processor level for various job with different 
input size are plotted in Fig.4  

 
 

 
 
 

Fig.4 Running Time of Job Compared to Phase-Level 
Scheduling 

 

VI.  RELATED WORK 

MapReduce application runs on a large cluster of commodity 
machines and is highly scalable.  A typical MapReduce 

computation processes a very large data on thousands of 
machines. Many MapReduce programs have been executed on 
Google's clusters every day. Hadoop MapReduce implements a 
slot-based resource allocation scheme, which does not consider 
run-time task resource consumption. As a result, several recent 
works reported the inefficiency introduced due to such simple 
design, and proposed solutions. For instance, Polo et al. 
proposed RAS [15], an adaptive resource-aware scheduler that 
uses a resource-aware scheduling technique for MapReduce 
multi-job workloads that aims to improve resource utilization 
across machines observes completion time goals. However, 
RAS still performs scheduling at task-level, and does not 
consider the task resource usage variations at run time. 
Subsequently, Hadoop Yarn [7] represents a major endeavors in 
resource-aware scheduling in MapReduce clusters. It offers the 
ability to specify the size of each task container in terms of 
requirements for each type of resources. In this context, a key 
challenge is to define the notion of fairness when multiple 
resource types are considered. Ghodsi et al. proposed dominant 
resource fairness as a measure of fairness in the presence of 
multiple resource types, and provided a simple scheduling 
algorithm for achieving near-optimal DRF. However, the DRF 
scheduling algorithm still focuses on task-level scheduling, and 
does not consider change in resource consumption within 
individual tasks. Their subsequent model, namely. Dominant 
resource fair queueing (DRFQ), aims at achieving DRF for 
packet scheduling over time. However, DRFQ algorithm is 
mainly designed for packet scheduling, which is different from 
the task-level “bin-packing” type of scheduling model we 
consider in this paper. Thus it cannot be directly applied to 
MapReduce scheduling. Using profiles to improve MapReduce 
job performance has received considerable attention in recent 
years [12]. For instance, Verma et al. [17] developed a 
framework that profiles task running times and use the job 
profiles to achieve deadline-ware scheduling in MapReduce 
clusters. Herodotou et al. recently developed Starfish [12], a job 
profiler that collects fine-grained task usage characteristics that 
can be used for fine-tuning job configuration parameters. 
However, the goal of profiling in these studies is to optimize job 
parameters, rather than optimizing job schedules. Another 
related research direction is MapReduce pipelining. In 
particular, MapReduce Online [9] is a framework for 
stream-based processing of MapReduce jobs. It allows partial 
outputs of each phase to be sent directly to the subsequent phase, 
thus enables overlaps execution of phases. In order to minimize 
I/O, ThemisisMR [16] is another scheme that makes 
fundamentally different design decisions from previous 
MapReduce implementations. Themis performs an extensive 
variety of MapReduce jobs at nearly the speed of Triton Sort's 
record-setting sort performance. However, both of these 
solutions does not deal with scheduling. Furthermore, they are 
not resource-aware. While introducing resource awareness in 
MapReduce Online is another interesting alternative, the 
scheduling model for MapReduce online is much different from 
the current MapReduce. It will require further investigation to 
identify scheduling issues for Map- Reduce online. 
 

VII.  CONCLUSION 

In this paper we assume all machines have identical hardware 
and resource capacity. It is oblivious to the fact that the 
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execution of each task can be divided into phases with drastically 
different resource consumption characteristics. To address this 
limitation, PRISM, a fine-grained resource-aware scheduler that 
coordinates task execution at the level of phase. In the existing 
System the thread  doesn’t know about processor capability it 
assign a huge task to the processor , So the processor will do 
their tasks according to their capability, The remaining left jobs 
are not done. In the Recommended System the Map reduce will 
get the task from the thread and it assign the task to the processor 
according to their capability with this all the assigned task are 
done.  
 

VIII.  FUTURE ENHANCEMENT 

It is interesting to study the profiling and scheduling problem 
for machines with heterogeneous performance characteristics. 
Finally, improving the scalability of PRISM using distributed 
schedulers is also an interesting direction for future research. 
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