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Abstract— MapReduce is an effective model that aids the
programmers to run their application over hundreds,
thousands, or even tens of thousands of machines m
cluster. By breaking down each job into small map id
reduce tasks and executing them in parallel across
number of machines, MapReduce significantly reducethe
running time of data-intensive jobs. However, despé recent
effort towards designing resource-efficient MapRedaoe
schedulers, existing solutions that focus on schelihg at the
task and phase-level still offer sub-optimal job pgormance.
This paper proposes a processor-level scheduling ah
improves job running time and high resource utilizaion
without introducing stragglers.

Index Terms—Hadoop, MapReduce,
Stragglers.

Resource allocation,

|. INTRODUCTION

In recent years large scale data industry is treptihwards
Data-intensive computing. MapReduce that breaksndipb
into map and reduce tasks are scheduled paratiedsamultiple
machines. These tasks significantly reduces jolmingntime.
Subsequently, the performance and efficiency fbedaling the
job under various resource requirements provideures
utilization and support today’s internet companies.

The key component of MapReduce is its Job Scheduler
scheduler schedules map and reduce tasks whicltegedab
running time and increases resource utilizatioschedule with
large numbers of tasks running on a single macinimesource
contention and the machine with very few tasks dld to poor
resource utilization.

PRISM is currently designed for Hadoop MapReducean be
functional to Dryad [19] and other parallel compgti
frameworks as well.

Recent studies have reported that workloads oftewve h
assorted utilization profiles and performance regaents [8],
[20]. Failing to consider these job usage featwass possibly
lead to inept job schedules with low resourcezgtion and long
job execution time. Certainly, current MapReducgemys, such
as Hadoop MapReduce schedulers make this assumjgtion
abridge the scheduling problem. These systems pisase-level
scheduling algorithm, where the physical resourceseach
machine are captured by the assigned to tasks lzakgevel.
Unfortunately, in practice, running-time of resaarc
consumption varies from phase to phase and fronojgdb.

Motivated by this observation, some recent progsaich as
PRISM, a Phase and Resource Information-aware 8tdredr
MapReduce resource-aware adaptive scheduling [18] a
Hadoop MapReduce Version 2 [7], have presentedureso
aware job schedulers to the MapReduce framewonkst&is
that performs resource-aware scheduling at thel lefréask
phases. Precisely, for most MapReduce applicati@snurce
consumption varies significantly from phase to phas
Therefore, the resource demand of the scheduleedohes
higher degrees of parallelism avoiding resourcdetion.

This paper is structured as follows. Section Il emsvan
overview of Hadoop MapReduce and PRISM. Section Il
provides the Processor-Level scheduling. The algoriis
described in section IV. The performance evaluatisn
presented in section V. The related work of thistarg system
is summarized in section VI. Conclusion and Future
enhancement are cited in Section VII and VIl retpely

The job scheduling is quite easier in systems Igavirfollowed by Reference.

homogenous resource requirements in terms of CRithary,

Network bandwidth. In PRISM, a Phase and Resource

Information-aware Scheduler for MapReduce clustehs
running time of the tasks vary significantly fromhgse.
Consequently, the resource demand at the phaded@assible
for the scheduler to achieve higher degrees of llpisa
avoiding resource contention. To this end, a pheasa-
scheduling algorithm delivers up to 18 percent ompment in
resource utilization while allowing jobs to comgetip to 3
times faster than current Hadoop schedulers. To itk

Il. BACKGROUND

A. Hadoop MapReduce

A parallel computing model known as MapReduce idelyi
used for large scale data intensive computatioMadpReduce,
a job entails map and reduced tasks.map task takes a
key-value block as input which is stored in theecdistributed
file system. A user specified map function is rongenerate
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intermediary key-value output. Consequently, a cedtask
collects and apply the user-specified reduce fondtd generate

the output. Apache Hadoop MapReduce is the software | ©) '

framework widely used to implement MapReduce. Tlaelddp
cluster is comprised of large number of commodigchines
where single node serves as a master and otheasetslaves.

The master node which is resource manager Job drack

programs job to the slave nodes. For each taskcalllmde
manager or task tracker launches and allocatesine® with
the help of Java Virtual Machine. In earlier versipHadoop
MapReduce accomplishes a slot based resource tiloca
scheme.

A Hadoop cluster is a multi-user system where masgrs
submit jobs to the cluster at the same time. TheoRee
Manager upholds a job list. The progress of th@ingtask and
the available resources in the node are monitongdthie
respective slave node. Periodically the slave nosls a
heartbeat message and transfer information to #tennode.
With the provided information the resource schedmlakes the
scheduling decision Hadoop MapReduce also supmaihtsr
task level job schedulers such as Capacity Sche@}land Fair
Scheduler [3]. As task-level scheduling implemensgmple slot
based allocation run-time task is not considered.hghis leads
to resource contention if multiple tasks are assign

From this observation, Resource-Level schedulingadoop
MapReduce clusters is facilitated by Hadoop Yamalpha
version, the size of the task container for th& fascess can be
specified.

B. PRISM

PRISM or Phase and Resource Information-aware stdred
for MapReduce clusters performs resource-awaredsiting at
the phase level avoids resource contention. Amvigre of the
PRISM mechanism is shown in Fig. 1. PRISM congi$three
main components:

» Phase-Based Scheduler at the master node

» Local Node Managers that
transitions with the scheduler

>

information.

In the Phase-Level scheduling mechanism, (1) theleNo
Manager transmits a heartbeat message to the dehg@y The
scheduler receives the heartbeat message andsreplithe
request. (3) The task is then launched by the Nidaleager. (4)
Once the task completes the execution in a paatiquihase it
asks for permission to begin the next phase. Thedder
receives the permission request from the Local Nddaager.
(5) Based on the resource requirements and thertysrogress
information, the scheduler makes scheduling detisibhe
scheduler either starts a new task or pauses ataskegin the
task in next phase and informs to the Node Mangggif the
task is executed in the next phase the Node Marageides
permission to complete the task process. (7) ThaeNdanager
receives task status (8) and forwards task stattietscheduler
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Scheduler
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Fig. 1 PRISM Mechanism

From this it is observed that by pausing the taskua-time
results time delay for job completion of the cutreand
subsequent tasks which leads to stragglers.

The importance of processor-level scheduling isatestrated
in this paper. In a phase-level, performance afs& br process
with heterogeneous resource requirements is caoigd In
processor-level scheduling algorithm execution lpglism and
performance of task is improved. PRISM, i.e. Phasel
Resource Information-aware Scheduler for MapRedaicthe

PROCESSOR LEVEL SCHEDULING

coordinate phasEhase-level is an existing solution. While precgdirtask, it has

many run-time resources within its lifetime. Wh#eheduling

Job Progress Monitor to capture phase-level pregreg,o job, PRISM always have higher degree of pdisitethan

current Hadoop cluster. It refers at the phasetgvémprove

resource utilization and performance. In this theead will

assign jobs to the processor, but the thread doksoiv about
the processor. After the jobs are assigned to tleegsor,
information about the job size will go and the nnaguces and
then MapReduce know the processor capacity argbiga the
job based on their Processor capacity.

The processor will complete all works that are gresil does
not leave any unfinished jobs as like the existings. After that
the results of each processor will go to the i2MA&chanism. In
this Mechanism it checks if all the jobs are fimdhby the
processor it will go to Success Result Otherwismy jobs are
incomplete it will go to the map reduce and itl\iihd the
processors and make that processor to complejelibe

In distributed system while distributing the tagke thread
allow task to the processor. But they don't knovoutbthe
processor capability. Suppose if the thread aoevalg a very
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Fig. 2 Processor level Scheduling.

huge task to the processor without knowing thefracity. The
processor will do their task according to theiraiaipty. But the
remaining works are left undone. Here the distedusystem
will processed in to the thread in that the systepws about the
capacity of the thread. Based on the thread theegsowill be
synchronized.

While allocating task with help of MapReduce theyow
their capability of each processor. When the tasksallocated
to the processor they will go the Map Reduce army thill
assign the task to the processor by knowing thaability.
Then thread will assign the task to the proceasdrit will send
it to the MapReduce and then the MapReduce willl $ba task
to the Processor, it will finished the task anddséme result to the
12 FAR. If any processors works are left undoneilt send to
the processor again and complete the left work

12 FAR will give the results if the processor fingl their jobs
it will give the results as success. If the joleslaft undone it will
go to the processor again complete their tasks. rébeived
result will finished then it will go to the i2FARrpcess and
produced to execute complete process. If the rdsuhot
completed then it will be re forwarded to the resthanap
mechanism. There the remaining uncompleted resuiltshe
completed.

IV. ALGORITHM DESCRIPTION

A. i2FARALGORITHM

1. Input from the users
2. Obtain the Input from the users
3. Inputs are allocated to each processor.
4. Each Job is assigned to the processor j € p
5. Repeat
6. for each processor the job is assigned
P€J
endfor

7.if processor job assigned

8 phase selectéegphase selected U{j}

9.endif
10. Endfor
11. if processot job assigned
12.PhaseSelectéePhaseSelected U{j}
13. p<select the processor that has finished the job
14. Update the resource utilization of the machine
15.end if
16. endif
17.until p==job assigned
18.return phase

Supposing each machine run at most N tasks, thedstgr
considers N schedulable processor for each job.rdineéng of
the processor is carried out by the local managhus the
overall running time of the Job is calculated ughig algorithm.
Though the scheduling will not improve phase-leastl task
level parallelism, the resources are shared thusiding
stragglers. It should be said that the process@i kcheduling
assigns job to the processor in case of any jdbaridone. The
scheduler then reassign the job to the procesabatk free and
update the resource utilization reducing the joloifes.

V. PERFORMANCE EVALUATION

In this processor —level scheduling, a cluster isting of two
nodes is run using Apache Hadoop 2.7.2. The infpsize 4 GB
consisting of whether data of various countries wsed. The
input data are divided into Map and Reduce tasks.jobs are
assigned to the processor and are executed witticagglers
using failover resilience Mechanism. This mechanidracks
whether the processor finishes assigned undone gotis
completes the job execution without stragglers.

The result is compared with the PRISM and as exgetite
job is completed with high resource utilization hatit

As soon as the processor finishes their job itrefeesuccess jnroducing stragglers. And the job running timeldss when

result. In case of any incomplete jobs that isif af the job is
not done by the processor. It is forwarded to thepReduce
Mechanism again. Here the jobs are allocated tgtheessor
that are free. The processor that completes thwijbo to that
i2FAR to execute the complete process. Considelijups are
assigned to the Processor P in Algorithm 1. Fohegab j

assigned to the processor p. The phase selectdefassigned

job has the utility function U {j}. If job j is notlone in the phase

selected it is assigned to the processor thahfsishe job. U {j}
is assigned to the processor in the selected phaseresource
utilization is updated until all the jobs are assid to the
processor.

compared to the existing schedulers.
For better understanding we considered the rescsuck as

CPU, Memory Usage, and Network 1/O usage. With the

previous results the yarn and Fair scheduler arseviiian
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Fig.3Resource Utilization in Processor-Level Scheduling.

PRISM. While PRISM introduces stragglers and ttas tess
resource utilization and job completion time whempared to
processor-level scheduling algorithm.

Fig.3. Resource utilization of various resourceuregments
such as CPU, Network, Disk, memory usage are plofi&ée
performance gain of the processor-level schedubngigher
than the phase-level scheduling. Hadoop achievehehi
resource utilization than the current schedulecs s yarn and
Fair scheduler. The Application Master that momitand
manages the job execution also consumes lessangutime.

The Map, Reduce and Shuffle phases reduce thengitinie
as the can run simultaneously. The time delay @& réduced
phase is scheduled by scheduling the shuffle phHasksowing
the processor capacity. Therefore achieves higtoures
utilization with reduced resource contention.

The running time of job various job with differeinput size
are given and they are compared with the existimasp-level
scheduling. The input size for various job in psEmE-level
scheduling offers a less job running time when carag to the
existing scheduling mechanism. The running time foe
phase-level and processor level for various jolh wifferent
input size are plotted in Fig.4

RUNNING TIME OF EACH JOB

SIR cw SRT

e Phaga-| ove| === Processor-level

Fig.4Running Time of Job Compared to Phase-Level
Scheduling

VI.

MapReduce application runs on a large cluster ofrnodity
machines and is highly scalable. A typical MapRedu

RELATED WORK

computation processes a very large data on thossafid
machines. Many MapReduce programs have been execnte
Google's clusters every dayadoop MapReduce implements a
slot-based resource allocation scheme, which doesansider
run-time task resource consumption. As a resulerse recent
works reported the inefficiency introduced due tchs simple
design, and proposed solutions. For instance, Rolal.
proposed RAS [15], an adaptive resource-aware sbfrethat
usesa resource-aware scheduling technique for MapReduce
multi-job workloads that aims to improve resourd@ization
across machines observes completion time gdatsvever,
RAS still performs scheduling at task-level, andeslonot
consider the task resource usage variations at time.
Subsequently, Hadoop Yarn [7] represents a majdeavors in
resource-aware scheduling in MapReduce clustedstdis the
ability to specify the size of each task contaiirerterms of
requirements for each type of resources. In thigeod, a key
challenge is to define the notion of fairness whmeultiple
resource types are considered. Ghodsi et al. peapdsminant
resource fairness as a measure of fairness inrimempce of
multiple resource types, and provided a simple dualirg
algorithm for achieving near-optimal DRF. Howevitre DRF
scheduling algorithm still focuses on task-leveiestuling, and
does not consider change in resource consumptidhinwi
individual tasks. Their subsequent model, namelgmihant
resource fair queueing (DRFQ), aims at achievingFCBr
packet scheduling over time. However, DRFQ algaritls
mainly designed for packet scheduling, which isedént from
the task-level “bin-packing” type of scheduling rebdwe
consider in this paper. Thus it cannot be direagplied to
MapReduce scheduling. Using profiles to improve Reguce
job performance has received considerable attermticrecent
years [12]. For instance, Verma et al. [17] devetbpa
framework that profiles task running times and tise job
profiles to achieve deadline-ware scheduling in Reguce
clusters. Herodotou et al. recently developed Btaft2], a job
profiler that collects fine-grained task usage ahgristics that
can be used for fine-tuning job configuration paeters.
However, the goal of profiling in these studieti®ptimize job
parameters, rather than optimizing job schedulesotiier
related research direction is MapReduce pipelinirg.
particular, MapReduce Online [9] is a framework for
stream-based processing of MapReduce jobs. It aljpavtial
outputs of each phase to be sent directly to theesyuent phase,
thus enables overlaps execution of phasesrder to minimize
1/0, ThemisisMR [16] is another scheme that makes
fundamentally different design decisions from poes
MapReduce implementations. Themis performs an eiten
variety of MapReduce jobs at nearly the speed @b iSort's
record-setting sort performanceHowever, both of these
solutions does not deal with scheduling. Furtheemtitey are
not resource-aware. While introducing resource am@ss in
MapReduce Online is another interesting alternatitree
scheduling model for MapReduce online is much daffié from
the current MapReduce. It will require further istigation to
identify scheduling issues for Map- Reduce online.

VIl. CONCLUSION

In this paper we assume all machines have idertaralware
and resource capacity. It is oblivious to the fécat the
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execution of each task can be divided into phagbsrastically
different resource consumption characteristicsatdldress this
limitation, PRISM, a fine-grained resource-awareestuler that
coordinates task execution at the level of phas¢he existing
System the thread doesn’'t know about processaabiiity it
assign a huge task to the processor , So the marcesll do
their tasks according to their capability, The remmay left jobs
are not done. In the Recommended System the Majeedlill
get the task from the thread and it assign thettatiie processor
according to their capability with this all the @gsed task are
done.

VIII.

It is interesting to study the profiling and schiéiy problem
for machines with heterogeneous performance crexisiits.
Finally, improving the scalability of PRISM usingsttibuted
schedulers is also an interesting direction fonritresearch.

FUTURE ENHANCEMENT
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