
International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

106

PROVIDING SECURITY IN CLOUD FOR
GENOMIC SEQUENCE

Mrs. L. Indu#1, M. Harini*2, J. Divya Lakshmi*2, P. Lavanya*3

*Assistant Professor; P.B.College of Engineering,Chennai.
#1 UG Scholars; P.B.College of Engineering; : harinimani23@gmail.com,Chennai.

#2UG Scholars; P.B.College of Engineering,Chennai.

#3UG Scholars; P.B.College of Engineering,Chennai.

 ABSTRACT- This paper watches out for the issue of
sharing individual specific genomic progressions
without slighting the assurance of their data subjects to
help broad scale biomedical research wanders. The
proposed procedure develops the framework. However,
extends the results in different ways. One change is that
our arrangement is deterministic, with zero probability
of a wrong answer (instead of a low probability). We in
like manner give another working point in the space-
time tradeoff, by offering an arrangement that is twice
as brisk as theirs however uses twofold the storage
space. This point is impelled by how limit is more
affordable than figuring in current circulated
processing evaluating plans. Likewise, our encoding of
the data makes it plausible for us to manage a wealthier
plan of inquiries than revise organizing between the
request and each gathering of the database.

INTRODUCTION
 DNA or Deoxyribonucleic Acid is the medium of
longterm storage and transmission of genetic
information for all modern living organisms. Human
DNA data (DNA sequences within the 23
chromosome pairs) are private and sensitive personal
information. However, such data is critical for
conducting biomedical research and studies, for
example, diagnosis of pre-disposition to develop a
specific disease, drug allergy, or prediction of success
rate in response to a specific treatment. Providing a
publicly available DNA database for fostering
research in this field is mainly confronted by privacy
concerns. Today, the abundant computation and
storage capacity of cloud services enables practical
hosting and sharing of DNA databases and efficient
processing of genomic sequences, such as performing
sequence comparison, exact and approximate
sequence search and various tests. What is missing is
an efficient security layer that preserves the privacy
of individuals’ records and assigns the burden of
query processing to the cloud. Whereas
anonymization techniques such as de-identification

[2], data augmentation [3], or database partitioning
[4] solve this problem partially, they are not
sufficient because in many cases, re-identification of
persons is possible [5]. It follows that the DNA data
must be protected, not just unlinked from the
corresponding persons. In this paper, we consider the
framework proposed in [1] where the DNA records
coming from several hospitals are encrypted and
stored at a data storage site, and biomedical
researchers are able to submit aggregate counting
queries to this site. Counting queries are particularly
interesting for statistical analysis. This paper
provides a new method that addresses a larger set of
problems and provides a faster query response time
than the technique introduced in [1]. Our approach is
based on the fact that, given current pricing plans at
many cloud services providers, storage is cheaper
than computing. Therefore, we favor storage over
computing resources to optimize cost. Moreover,
from a user experience point of view, response time
is the most tangible indicator of performance; hence
it is natural to aim at reducing it. Our method
enhances the state of the art at both the conceptual
level and the implementation level. More concretely:

• At the conceptual level, we provide a
deterministic scheme, with zero probability
of a wrong answer.

• We also provide a new operating point in the
space-time tradeoff, by giving a scheme that
is twice as fast as theirs but uses twice the
storage space.

• Moreover, our encoding of the data makes it
possible for us to handle a richer set of queries
than exact matching between the query and each
sequence of the database, including:

 i. Counting the number of matches between the
query symbols and a sequence;

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

107

ii. Logical OR matches where a query symbol is
allowed to match a subset of the alphabet thereby
making it possible to handle (as a special case) a
“not equal to” requirement for a query symbol
(e.g., “not a G”);

iii. Support for the extended alphabet of
nucleotide base codes that encompasses
ambiguities in DNA sequences (contrary to the
previous item this happens on the DNA sequence
side instead of the query side);

 iv. Queries that specify the number of
occurrences of each kind of symbol in the
specified sequence positions (e.g., two ‘A’ and
four ‘C’ and one ‘G’ and three ‘T’, occurring in
any order in the query-specified sequence
positions);

v. A threshold query whose answer is ‘yes’ if the
number of matches exceeds a query-specified
threshold (e.g., “7 or more matches out of the 15
query-specified positions”).

vi. For all query types we can hide the answers
from the decrypting server, so that only the client
learns the answer.

vii. In all cases the client deterministically
learns only the query's answer, except for
query type

II. RELATED WORK

 There is no universal method to create a protocol
for secure multi-party computation and handling
aggregate queries on encrypted data is not an
exception. Several homomorphic systems only
support a subset of mathematical operations, like
addition (Paillier [19], Benaloh [23]), multiplication
(ElGamal [24], RSA [25]), or exclusive-or
(Goldwasser and Micali [26]). From a security
perspective, only the additive Paillier and the
multiplicative ElGamal are classified to be IND-CPA
(stands for indistinguishability under chosen plaintext
attack) [27]. Partially homomorphic cryptosystems
are more desirable from a performance point of view
than somewhat homomorphic cryptosystems, which
support a limited operation depth.

A. Forensic databases
 In a forensic database, a suspect record has to be
tested against an entire database. A record of the
database can be decrypted only if it matches the
suspect record. This protects the other records from
being unveiled [7]. Similarly, negative databases

prevent the enumeration of its members by reversely
saving the non-members, in a compressed form [8].

B. Profile matching
 In [9] the authors address a multitude of tests such
as identity, ancestry and paternity tests based on
Short Tandem Repeat (STR) profiles. The STR
profile is composed of a number of loci and for each
locus the number of repetitions for a given repeat
structure. The authors translate each test into an
algebraic expression and provide a homomorphic
encryption scheme allowing two semi-honest parties
to compare their stored profiles in a semantically
secure manner. The proposed approach allows exact
answers or small error tolerance as practically
required by the tests.

C. Sequence comparison
 The edit distance is the optimal cost of insertion,
deletion and substitution of characters to go from a
sequence � to a sequence �. The edit script is the
chart of the steps leading to the optimal edit distance.
Atallah et al. [10] offers a solution for securely
outsource a dynamic programming solution for
finding the edit distance and the edit script for two
given sequences (particularly genomic sequences
with small alphabet size). The outsourcing protocol is
based on two noncolluding (honest-but-curious)
agents that securely collaborate to performing table
lookup and minimum finding. The secure minimum
finding protocol determines the minimum of an
additively split vector based on Yao’s garbled circuits
and a blind-and-permute protocol for hiding the index
of this minimum. In [11] their scheme has been
improved for performance and requires space only
linear in the input size. The work in [12] addresses a
similar dynamic programming solution for finding
the longest common subsequence. By using the “four
Russians” technique in a new way, the authors
propose a communication-efficient SMC protocol
that improves over the generic solution based on
Yao’s garbled circuits.Their scheme, based on
computation with obscured data, preserves a
reasonable level of accuracy but does not provably
protect the privacy of the inputs.

D. Sequence testing by finite automata
 Sometimes the queries on DNA need to take into
account various errors such as irrelevant mutations,
incomplete specifications and sequencing errors.
Therefore, the pattern of the query should be
expressed using regular expressions. Many works
address practical and privacy-preserving outsourcing

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

108

of this regular expression type of queries,
implemented as oblivious evaluation of finite
automata [15]– [17].

E. Aggregate queries
 For biomedical researchers, important queries
have often the form “How many records contain a
diagnosis of Alzheimer disease and gene variant X?”
Secure outsourcing of the database and allowing such
type of queries without requiring the server to
decrypt the data has been addressed in [1]. The paper
presents very practical results. For example, a count
query over 40 records in a database of 5000 records
takes 30 minutes. Our paper extends these results by
proposing a variant storage and computation scheme.

III. ARCHITECTURE AND MODELLING

 Computer scientists often represent DNA by a
large sequence of characters from the alphabet � =
{ �,�,�,�}, representing the four nucleotide types.
This alphabet can be augmented with additional
characters representing ambiguity in the sequence.
This extended alphabet is denoted by �′ =
{ �,�,�,�,�,	,
,�,�,
,�,�,�,�,�} as defined by
IUPAC [18], see Table 1. Given a database of �
sequences �1,�2, …,�� each having � characters; the
query is represented as a list of tuples (��,��) of
characters �� and positions ��; for � = 1..�. The result
of the query is the number of sequences where �[��]
== �� for all the tuples (��,��). The pseudo (Python-
like) code of a query in clear is shown in Listing 1.

NUCLEOTIDE BASE CODES (IUPAC)

Symbol Nucleotide Base
A Adenine
C Cytosine
G Guanine
T Thymine
N A or C or G or T
M A or C
R A or G
W A or T
S C or G
Y C or T
K G or T
V Not T
H Not G
D Not C
B Not A

 In our model, hospitals who have DNA
sequences do not have the computing and processing
capabilities to process researchers’ requests, so they
all store their DNA sequences at a server (which is
also more convenient to do queries across all
hospitals). The clients, who are typically researchers,
query the server to obtain statistics on the occurrence
of a given subsequence in the pool of DNA
sequences stored on the server.

LISTING 1
PSEUDO-CODE OF AN AGGREGATE QUERY

1. #Example of a query:
2. q=[(A,0), (A,2), (C,3), (G,6)]
3. #Example of sequence matching the
query:
4. #AAACAGG
5. #D is the set of all sequences
6. count=0
7. for s in D:
8. match=True
9. for (v,j) in q:
10. if s[j]!=v:
11. match=False
12. Break
13. if(match):
14. count+=1

To be more precise the security model is as follows:
• Hospitals want to protect the confidentiality

of the DNA sequences that they own and no
external party has the right to access these
DNA sequences for privacy reasons.

• Additively homomorphic encryption is
suitable for the purpose of performing count
statistics on encrypted data. Paillier's
homomorphic encryption [19] possesses the
following properties: (i) It's a public key
scheme, which means encryption can be
performed by anyone who knows the public
key, whereas decryption can only be done
by the matching private key, known only to
a trusted party. (ii) It is probabilistic. In
other words, it is impossible for an
adversary to tell whether two ciphertexts are
encryptions of the same plaintext or not. (iii)
It possesses the homomorphic properties for
addition, in particular:

• ���((�1+�2) ���
�)=���(�1)∗���(�2) ��� �2

• ���((�∗�1) ��� �)=���(�1)� ��� �2

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

109

• We consider a framework similar to [1]
composed of several hospitals, several
clients representing biomedical researchers
and two non-colluding servers (can be two
different cloud providers, or one cloud
provider and one trusted host). In Fig. 1 we
call these two databases database1 and
database2 to emphasize that the framework
can be deployed in a cloud environment:

• Database1 represents the data store where
all the encrypted DNA records are stored
and is responsible of processing the queries.

• Database2 is a trusted party that generates
and holds the private and public keys of the
homomorphic encryption scheme. In step 1
the public key is sent to the other parties.
Database2 is later used as a decyption oracle
and it also shares security associations with
the clients in order to send them the results
securely.

• The hospitals obtain the public key in order
to encrypt their DNA records and upload
them to Database1 (step 2).

• A client representing a biomedical
researcher submits a query to Database1
(step 3). The database processes the query
over the encrypted records and sends the
results to Database2 in order to be
decrypted (step 4). Finally the client
receives from Database2 the decrypted
count of matches (step 5) through a secure
channel.

IV. STORAGE AND COMPUTATION SCHEMES

A.Summary of the scheme in [1]

 The proposed protocol is based on a binary
storage scheme. Each letter has a binary
representation over two bits and each bit is encrypted
using Paillier encryption. For example the letter ‘A’
is coded in binary as two bits 00. Similarly the query
is translated to binary encoding. For example finding
the letter ‘A’ at position 6 is equivalent to finding the
bit 0 at position 12 in the encoded sequence and the
bit 0 at position 13 in the encoded sequence.
Therefore, the required storage capacity for a
sequence is 2∗�∗2� where m is the length of the
sequence and 2b is the size for storing an encrypted
value (b is the bit length of the key modulus). The
query is computed as an algebraic expression that
evaluates to an encryption of 0 for each record
matching the query. Two random numbers are used

in order to limit false positives. Without loss of
generality, consider an encoded sequence and a query
of the form (��,1), for �=1.. and (��,0), for �= +1..2�
where k is the length (i.e., number of letters) of the
query; the server computes an expression of the form:

(!,�)=((ΠE(s[ji]) ti=1)∗E(−t))r1∗(ΠE(s[ji])
2ki=t+1)r0

Where r1 and r0 are random numbers. If s matches
the query, the result of this expression is an
encryption of zero with a high probability. The server
sends a permutation of the results of expressions for
all the sequences �1,…,��. The key holder decrypts
and counts the zeros to obtain the result of the query.
Note that the number of modular exponentiation
required is equal to 2, in addition to 2k modular
multiplications.

B. Our Schemes
 We present two different schemes; the first one
requires more storage capacity but provides better
query response time than the second one.
1) Quaternary storage, quaternary query :

 We encode a sequence �=["�], �=1..�, using four
vectors:

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]

For example, sequence “CCGATAT” is encoded as:

• ��=[0,0,0,1,0,1,0]
• ��=[1,1,0,0,0,0,0]
• ��=[0,0,1,0,0,0,0]
• ��=[0,0,1,0,1,0,1]

A query q=(��,��), �=1..� is decomposed into four
queries, and represented by four vectors as follows:

• Initialize !� to a vector of � zeroes; then
assign !�[��]=1 �# "�== ′�′ in the
query,�=1..�

• qC is a vector of � zeroes; !�[��]=1 �# "�==
′�′,�=1..�

• qG is a vector of � zeroes; !�[��]=1 �#
"�== ′�′,�=1..�

• qT is a vector of � zeroes; !�[��]=1 �# "�==
′�′,�=1..�

The query simply needs to be as long as the position
of the last element in the subsequence of the query
(��). The positions after that will all be
automatically assumed as containing 0. The query is
then computed over an encrypted sequence using the
following equation:

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

110

(!,�)=�(!���+!���+!���+!���)=
�(Σ��,���,!�[��]=1+Σ��,���,!�[��]=1+Σ��,���,!�[��

]=1+Σ��,���,!�[��]=1) =Π�(�"�,��)!"�,���=1..�

2) Ternary storage, quaternary query :
 Since the presence of a letter in a given position
of a sequence can be directly inferred by the absence
of the three other letters, we can reduce the encoding
to only three vectors:

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]

If we retake the same example, sequence
“CCGATAT” is encoded as:

• ��=[0,0,0,1,0,1,0]

• ��=[1,1,0,0,0,0,0]
• ��=[0,0,1,0,0,0,0]

3) Match/No-Match answer:

 Nevertheless the scheme can output a binary
result of the query:

′(!,�)=(
(!,�)∗�(−�))& where r is a random non-
zero number. Note that one modular exponentiation
is needed in this case.
′ decrypts to 0 if a match is
found and to a random number if not. Modular
multiplication by a random perfectly hides the answer
(except for 0) and has been widely used in blind
signature protocols [20].

4) Space-time comparison

 We consider one sequence as a comparison
unit and show in Table 2 the space and time costs.
We consider only queries and sequences over � to be
able to compare our scheme against [1], as [1] does
not support queries over �′. In terms of storage we
assume all the sequences have the same length m.

5) Security evaluation

 From a security perspective the framework that
we use is similar to [1]. Both schemes are based on
well-known security building blocks like Paillier’s
encryption, public key encryption and symmetric key
encryption.

CONCLUSION:
In this paper, we have revisited the challenge of
sharing person-specific genomic sequences without
violating the privacy of their data subjects in order to
support large-scale biomedical research projects. We

have used the framework proposed by Kantarcioglu
et al. [1] based on additive homomorphic encryption,
and two servers: one holding the keys and one storing
the encrypted records. The proposed method offers
two new operating points in the space-time tradeoff
and handles new types of queries that are not
supported in earlier work. Furthermore, the method
provides support for extended alphabet of nucleotides
which is a practical and critical requirement for
biomedical researchers.
Big data analytics over genetic data is a good future
work direction. There are rapid recent advancements
that address performance limitations of homomorphic
encryption techniques.

REFERENCE:

[1] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A
cryptographic approach to securely share and query genomic
sequences,” Inf. Technol. Biomed. IEEE Trans., vol. 12, no. 5, pp.
606–617, 2008.
[2] B. Malin and L. Sweeney, “How (not) to protect genomic data
privacy in a distributed network: using trail re-identification to
evaluate and design anonymity protection systems,” J. Biomed.
Inform., vol. 37, no. 3, pp. 179–192, 2004.
 [3] Z. Lin, A. B. Owen, and R. B. Altman, “Genomic research and
human subject privacy,” Science (80-.)., vol. 305, no. 5681, p.
183, 2004.
[4] A. E. Nergiz, C. Clifton, and Q. M. Malluhi, “Updating
outsourced anatomized private databases,” in Proceedings of the
16th International Conference
[5] L. Sweeney, A. Abu, and J. Winn, “Identifying Participants in
the Personal Genome Project by Name,” Available SSRN
2257732, 2013.

