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   ABSTRACT- This paper watches out for the issue of 
sharing individual specific genomic progressions 
without slighting the assurance of their data subjects to 
help broad scale biomedical research wanders. The 
proposed procedure develops the framework. However, 
extends the results in different ways. One change is that 
our arrangement is deterministic, with zero probability 
of a wrong answer (instead of a low probability). We in 
like manner give another working point in the space-
time tradeoff, by offering an arrangement that is twice 
as brisk as theirs however uses twofold the storage 
space. This point is impelled by how limit is more 
affordable than figuring in current circulated 
processing evaluating plans. Likewise, our encoding of 
the data makes it plausible for us to manage a wealthier 
plan of inquiries than revise organizing between the 
request and each gathering of the database. 

INTRODUCTION 
    DNA or Deoxyribonucleic Acid is the medium of 
longterm storage and transmission of genetic 
information for all modern living organisms. Human 
DNA data (DNA sequences within the 23 
chromosome pairs) are private and sensitive personal 
information. However, such data is critical for 
conducting biomedical research and studies, for 
example, diagnosis of pre-disposition to develop a 
specific disease, drug allergy, or prediction of success 
rate in response to a specific treatment. Providing a 
publicly available DNA database for fostering 
research in this field is mainly confronted by privacy 
concerns. Today, the abundant computation and 
storage capacity of cloud services enables practical 
hosting and sharing of DNA databases and efficient 
processing of genomic sequences, such as performing 
sequence comparison, exact and approximate 
sequence search and various tests. What is missing is 
an efficient security layer that preserves the privacy 
of individuals’ records and assigns the burden of 
query processing to the cloud. Whereas 
anonymization techniques such as de-identification 

[2], data augmentation [3], or database partitioning 
[4] solve this problem partially, they are not 
sufficient because in many cases, re-identification of 
persons is possible [5]. It follows that the DNA data 
must be protected, not just unlinked from the 
corresponding persons. In this paper, we consider the 
framework proposed in [1] where the DNA records 
coming from several hospitals are encrypted and 
stored at a data storage site, and biomedical 
researchers are able to submit aggregate counting 
queries to this site. Counting queries are particularly 
interesting for statistical analysis.  This paper 
provides a new method that addresses a larger set of 
problems and provides a faster query response time 
than the technique introduced in [1]. Our approach is 
based on the fact that, given current pricing plans at 
many cloud services providers, storage is cheaper 
than computing. Therefore, we favor storage over 
computing resources to optimize cost. Moreover, 
from a user experience point of view, response time 
is the most tangible indicator of performance; hence 
it is natural to aim at reducing it. Our method 
enhances the state of the art at both the conceptual 
level and the implementation level. More concretely:  

• At the conceptual level, we provide a 
deterministic scheme, with zero probability 
of a wrong answer.   

•  We also provide a new operating point in the 
space-time tradeoff, by giving a scheme that 
is twice as fast as theirs but uses twice the 
storage space.  

•  Moreover, our encoding of the data makes it 
possible for us to handle a richer set of queries 
than exact matching between the query and each 
sequence of the database, including:  
 
 i. Counting the number of matches between the 
query symbols and a sequence;  
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ii. Logical OR matches where a query symbol is 
allowed to match a subset of the alphabet thereby 
making it possible to handle (as a special case) a 
“not equal to” requirement for a query symbol 
(e.g., “not a G”);   
 
iii. Support for the extended alphabet of 
nucleotide base codes that encompasses 
ambiguities in DNA sequences (contrary to the 
previous item this happens on the DNA sequence 
side instead of the query side); 
 
 iv. Queries that specify the number of 
occurrences of each kind of symbol in the 
specified sequence positions (e.g., two ‘A’ and 
four ‘C’ and one ‘G’ and three ‘T’, occurring in 
any order in the query-specified sequence 
positions);   
 
v. A threshold query whose answer is ‘yes’ if the 
number of matches exceeds a query-specified 
threshold (e.g., “7 or more matches out of the 15 
query-specified positions”).   
 
vi. For all query types we can hide the answers 
from the decrypting server, so that only the client 
learns the answer. 

vii. In all cases the client deterministically 
learns only the query's answer, except for 
query type  

 
II. RELATED WORK 

      There is no universal method to create a protocol 
for secure multi-party computation and handling 
aggregate queries on encrypted data is not an 
exception. Several homomorphic systems only 
support a subset of mathematical operations, like 
addition (Paillier [19], Benaloh [23]), multiplication 
(ElGamal [24], RSA [25]), or exclusive-or 
(Goldwasser and Micali [26]). From a security 
perspective, only the additive Paillier and the 
multiplicative ElGamal are classified to be IND-CPA 
(stands for indistinguishability under chosen plaintext 
attack) [27]. Partially homomorphic cryptosystems 
are more desirable from a performance point of view 
than somewhat homomorphic cryptosystems, which 
support a limited operation depth.  
 

A. Forensic databases 
    In a forensic database, a suspect record has to be 
tested against an entire database. A record of the 
database can be decrypted only if it matches the 
suspect record. This protects the other records from 
being unveiled [7]. Similarly, negative databases 

prevent the enumeration of its members by reversely 
saving the non-members, in a compressed form [8].  
 
 
B. Profile matching 
    In [9] the authors address a multitude of tests such 
as identity, ancestry and paternity tests based on 
Short Tandem Repeat (STR) profiles. The STR 
profile is composed of a number of loci and for each 
locus the number of repetitions for a given repeat 
structure.  The authors translate each test into an 
algebraic expression and provide a homomorphic 
encryption scheme allowing two semi-honest parties 
to compare their stored profiles in a semantically 
secure manner. The proposed approach allows exact 
answers or small error tolerance as practically 
required by the tests.  
 
C. Sequence comparison   
    The edit distance is the optimal cost of insertion, 
deletion and substitution of characters to go from a 
sequence � to a sequence �. The edit script is the 
chart of the steps leading to the optimal edit distance. 
Atallah et al. [10] offers a solution for securely 
outsource a dynamic programming solution for 
finding the edit distance and the edit script for two 
given sequences (particularly genomic sequences 
with small alphabet size). The outsourcing protocol is 
based on two noncolluding (honest-but-curious) 
agents that securely collaborate to performing table 
lookup and minimum finding. The secure minimum 
finding protocol determines the minimum of an 
additively split vector based on Yao’s garbled circuits 
and a blind-and-permute protocol for hiding the index 
of this minimum. In [11] their scheme has been 
improved for performance and requires space only 
linear in the input size.  The work in [12] addresses a 
similar dynamic programming solution for finding 
the longest common subsequence. By using the “four 
Russians” technique in a new way, the authors 
propose a communication-efficient SMC protocol 
that improves over the generic solution based on 
Yao’s garbled circuits.Their scheme, based on 
computation with obscured data, preserves a 
reasonable level of accuracy but does not provably 
protect the privacy of the inputs.  
 
D. Sequence testing by finite automata 
    Sometimes the queries on DNA need to take into 
account various errors such as irrelevant mutations, 
incomplete specifications and sequencing errors. 
Therefore, the pattern of the query should be 
expressed using regular expressions. Many works 
address practical and privacy-preserving outsourcing 
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of this regular expression type of queries, 
implemented as oblivious evaluation of finite 
automata [15]– [17].  
 
E. Aggregate queries   
     For biomedical researchers, important queries 
have often the form “How many records contain a 
diagnosis of Alzheimer disease and gene variant X?” 
Secure outsourcing of the database and allowing such 
type of queries without requiring the server to 
decrypt the data has been addressed in [1]. The paper 
presents very practical results. For example, a count 
query over 40 records in a database of 5000 records 
takes 30 minutes. Our paper extends these results by 
proposing a variant storage and computation scheme. 

 

III. ARCHITECTURE AND MODELLING 

    Computer scientists often represent DNA by a 
large sequence of characters from the alphabet � = 
{ �,�,�,�}, representing the four nucleotide types. 
This alphabet can be augmented with additional 
characters representing ambiguity in the sequence. 
This extended alphabet is denoted by �′ = 
{ �,�,�,�,�,	,
,�,�,
,�,�,�,�,�} as defined by 
IUPAC [18], see Table 1. Given a database of � 
sequences �1,�2, …,�� each having � characters; the 
query is represented as a list of tuples (��,��) of 
characters �� and positions  ��; for � = 1..�. The result 
of the query is the number of sequences where �[��] 
== �� for all the tuples (��,��). The pseudo (Python-
like) code of a query in clear is shown in Listing 1.  

 

NUCLEOTIDE BASE CODES (IUPAC) 

Symbol Nucleotide Base 
A Adenine 
C Cytosine 
G Guanine 
T Thymine 
N A or C or G or T 
M A or C 
R A or G 
W A or T 
S C or G 
Y C or T 
K G or T 
V Not T 
H Not G 
D Not C 
B Not A 

 

 In our model, hospitals who have DNA 
sequences do not have the computing and processing 
capabilities to process researchers’ requests, so they 
all store their DNA sequences at a server (which is 
also more convenient to do queries across all 
hospitals). The clients, who are typically researchers, 
query the server to obtain statistics on the occurrence 
of a given subsequence in the pool of DNA 
sequences stored on the server. 

LISTING 1 
PSEUDO-CODE OF AN AGGREGATE QUERY 

 

1.  #Example of a query:  
2.  q=[(A,0), (A,2), (C,3), (G,6)]  
3. #Example of sequence matching the 
query:  
4.  #AAACAGG  
5.  #D is the set of all sequences  
6.  count=0  
7.  for s in D:  
8.   match=True  
9.   for (v,j) in q:  
10.  if s[j]!=v:  
11.  match=False  
12.  Break  
13.  if(match):  
14.  count+=1  
 

To be more precise the security model is as follows:  
• Hospitals want to protect the confidentiality 

of the DNA sequences that they own and no 
external party has the right to access these 
DNA sequences for privacy reasons. 

• Additively homomorphic encryption is 
suitable for the purpose of performing count 
statistics on encrypted data. Paillier's 
homomorphic encryption [19] possesses the 
following properties: (i) It's a public key 
scheme, which means encryption can be 
performed by anyone who knows the public 
key, whereas decryption can only be done 
by the matching private key, known only to 
a trusted party. (ii) It is probabilistic. In 
other words, it is impossible for an 
adversary to tell whether two ciphertexts are 
encryptions of the same plaintext or not. (iii) 
It possesses the homomorphic properties for 
addition, in particular: 

• ���((�1+�2) ��� 
�)=���(�1)∗���(�2) ��� �2 

• ���((�∗�1) ��� �)=���(�1)� ��� �2 



International Journal of Emerging Technology in Computer Science & Electronics 
(IJETCSE) ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE). 

 

109 

 

• We consider a framework similar to [1] 
composed of several hospitals, several 
clients representing biomedical researchers 
and two non-colluding servers (can be two 
different cloud providers, or one cloud 
provider and one trusted host). In Fig. 1 we 
call these two databases database1 and 
database2 to emphasize that the framework 
can be deployed in a cloud environment:  

•  Database1 represents the data store where 
all the encrypted DNA records are stored 
and is responsible of processing the queries.  

•  Database2 is a trusted party that generates 
and holds the private and public keys of the 
homomorphic encryption scheme. In step 1 
the public key is sent to the other parties. 
Database2 is later used as a decyption oracle 
and it also shares security associations with 
the clients in order to send them the results 
securely.  

•  The hospitals obtain the public key in order 
to encrypt their DNA records and upload 
them to Database1 (step 2).  

• A client representing a biomedical 
researcher submits a query to Database1 
(step 3). The database processes the query 
over the encrypted records and sends the 
results to Database2 in order to be 
decrypted (step 4). Finally the client 
receives from Database2 the decrypted 
count of matches (step 5) through a secure 
channel. 
 

IV. STORAGE AND COMPUTATION SCHEMES 
 

A.Summary of the scheme in [1] 
 
     The proposed protocol is based on a binary 
storage scheme. Each letter has a binary 
representation over two bits and each bit is encrypted 
using Paillier encryption. For example the letter ‘A’ 
is coded in binary as two bits 00. Similarly the query 
is translated to binary encoding. For example finding 
the letter ‘A’ at position 6 is equivalent to finding the 
bit 0 at position 12 in the encoded sequence and the 
bit 0 at position 13 in the encoded sequence. 
Therefore, the required storage capacity for a 
sequence is 2∗�∗2� where m is the length of the 
sequence and 2b is the size for storing an encrypted 
value (b is the bit length of the key modulus). The 
query is computed as an algebraic expression that 
evaluates to an encryption of 0 for each record 
matching the query. Two random numbers are used 

in order to limit false positives. Without loss of 
generality, consider an encoded sequence and a query 
of the form (��,1), for �=1..  and (��,0), for �= +1..2� 
where k is the length (i.e., number of letters) of the 
query; the server computes an expression of the form: 


(!,�)=((ΠE(s[ji]) ti=1)∗E(−t))r1∗(ΠE(s[ji]) 
2ki=t+1)r0 

Where r1 and r0 are random numbers. If s matches 
the query, the result of this expression is an 
encryption of zero with a high probability. The server 
sends a permutation of the results of expressions for 
all the sequences �1,…,��. The key holder decrypts 
and counts the zeros to obtain the result of the query. 
Note that the number of modular exponentiation 
required is equal to 2, in addition to 2k modular 
multiplications.  
 
B. Our Schemes  
     We present two different schemes; the first one 
requires more storage capacity but provides better 
query response time than the second one. 
1) Quaternary storage, quaternary query : 
 
   We encode a sequence �=["�], �=1..�, using four 
vectors:  

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  
• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  

 
For example, sequence “CCGATAT” is encoded as:  

• ��=[0,0,0,1,0,1,0]  
• ��=[1,1,0,0,0,0,0]  
• ��=[0,0,1,0,0,0,0]  
• ��=[0,0,1,0,1,0,1]  

A query q=(��,��), �=1..� is decomposed into four 
queries, and represented by four vectors as follows:  

• Initialize !� to a vector of � zeroes; then 
assign !�[��]=1 �# "�== ′�′ in the 
query,�=1..�  

• qC is a vector of � zeroes; !�[��]=1 �# "�== 
′�′,�=1..�  

• qG is a vector of � zeroes; !�[��]=1 �# 
"�== ′�′,�=1..�  

• qT is a vector of � zeroes; !�[��]=1 �# "�== 
′�′,�=1..�  

The query simply needs to be as long as the position 
of the last element in the subsequence of the query 
(��). The positions after that will all be 
automatically assumed as containing 0. The query is 
then computed over an encrypted sequence using the 
following equation:  
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(!,�)=�(!���+!���+!���+!���)= 
�(Σ��,���,!�[��]=1+Σ��,���,!�[��]=1+Σ��,���,!�[��

]=1+Σ��,���,!�[��]=1) =Π�(�"�,��)!"�,���=1..� 
 

2) Ternary storage, quaternary query : 
         Since the presence of a letter in a given position 
of a sequence can be directly inferred by the absence 
of the three other letters, we can reduce the encoding 
to only three vectors:  

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  

• ��=[1 �# "�==′�′, 0 � ℎ%&'��%, �=1..�]  
 
If we retake the same example, sequence 
“CCGATAT” is encoded as:  

• ��=[0,0,0,1,0,1,0]  

• ��=[1,1,0,0,0,0,0]  
• ��=[0,0,1,0,0,0,0]  

 
3) Match/No-Match answer:  
 
            Nevertheless the scheme can output a binary 
result of the query:  

′(!,�)=(
(!,�)∗�(−�))& where r is a random non-
zero number. Note that one modular exponentiation 
is needed in this case. 
′ decrypts to 0 if a match is 
found and to a random number if not. Modular 
multiplication by a random perfectly hides the answer 
(except for 0) and has been widely used in blind 
signature protocols [20].  
 
4) Space-time comparison  
 
               We consider one sequence as a comparison 
unit and show in Table 2 the space and time costs. 
We consider only queries and sequences over � to be 
able to compare our scheme against [1], as [1] does 
not support queries over �′. In terms of storage we 
assume all the sequences have the same length m.  
 
5) Security evaluation  

 From a security perspective the framework that 
we use is similar to [1]. Both schemes are based on 
well-known security building blocks like Paillier’s 
encryption, public key encryption and symmetric key 
encryption. 

CONCLUSION: 
In this paper, we have revisited the challenge of 
sharing person-specific genomic sequences without 
violating the privacy of their data subjects in order to 
support large-scale biomedical research projects. We 

have used the framework proposed by Kantarcioglu 
et al. [1] based on additive homomorphic encryption, 
and two servers: one holding the keys and one storing 
the encrypted records. The proposed method offers 
two new operating points in the space-time tradeoff 
and handles new types of queries that are not 
supported in earlier work. Furthermore, the method 
provides support for extended alphabet of nucleotides 
which is a practical and critical requirement for 
biomedical researchers. 
Big data analytics over genetic data is a good future 
work direction. There are rapid recent advancements 
that address performance limitations of homomorphic 
encryption techniques. 
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