International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume

21 Issue 2 — APRIL 2016.

EFFECTIVE BLACK BOX BASED SELF

ADAPTIVE CLOU

D CONTROLLERS

R.Raja Monsingh, P.Manjula

Departmant of computer science and engineering,, Mahendra Engineering College(Autonomous), Namakkal Dt.
Assistant Professor, Departmant of computer science and engineering, Mahendra Engineering College (Autonomous) , Namakkal Dt

Monsi ngh. raj a664@nuai | . com

Abstract - Cloud computing is emerging as a new paradigm of
large scale distributed computing. Load balancings one of the
main Challenges in Cloud computing which is requird to

distribute the dynamic workload evenly across allthe nodes. In the
cloud storage, Load balancing is a key issue. The & reducing

task can be performed parallel over the nodes. Thiile chunks are

not distributed uniformly as possible among the nods. Emerging

distributed systems in production system strongly eépends on a
central node for chunk reallocation. It would consume a lot of cost
to maintain load information. Proper load balancing aids in

minimizing resource consumption. This concludes thaall the

existing techniques mainly focus on reducing overlal, service
response time and improving performance etc. variosl parameters

are also identified, and these are used to compare existing

techniques. This paper proposed for centralized seer is change in
to the decentralized server using Map reducing task

Keywords —load balancing algorithm, load balancing challenges
cloud computing, distributed computing

1.INTRODUCTION

During the last several decades, dramatic advaimces
computing power, storage,and networking technoldgve
allowed the human race to generate, process, amdisbreasing
amounts of information in dramatically new ways. Asw
applications ofcomputing technology are developedd a
introduced, these applications are often used iswhgt their
designers never envisioned. New applications, in,tlead to
new demandsfor even more powerful computing infuastire.

It is now possible to assemble very large,powedystems
consisting of many small, inexpensive commodity ponents
becausecomputers have become smaller and lesssexpetisk
drive capacity continues toincrease, and netwoikge hgotten
faster. Such systems tend to be much less cosily &single,
faster machine with comparable capabilities. Saftwa
challenges also arise in thisenvironment becausdingr
software that can take full advantage of the aggesmpmputing
power of many machines is far more difficult thamitivg
software for a single,faster machine Regardlesghef exact
definition used, numerous companies and researahimations
are applying cloud-computing concepts to their hess or
research problemsincluding Google, Amazon, Yahood a
numerous universities.

99

A Cloud computing is emerging as a new paradigm of
large scale distributed computing. It has moved mating and
dataaway from desktop and portable PCs, into ldege centre’s
[1]. It provides the scalable IT resources such@sicationsand
services, as well as the infrastructure on whicky tperate,
over the Internet, on pay-per-use basis to adjustapacity
quickly and easily. It helps to accommodate changetemand
and helps any organization in avoiding thecapitabte of
software and hardware [2] [3]. Thus, Cloud Computis a
framework for enabling a suitable, on-demandnetvairgess to
a shared pool of computing resources (e.g. netwabsrers,
storage, applications, and services).These resoucea be
provisioned and de-provisioned quickly with minimal
management effort or service providerinteractiohisTfurther
helps in promoting availability [4]. Due to the expential
growth of cloud computing, it has beenwidely addpby the
industry and there is a rapid expansion in daté&resn

Load balancing in computer networks is a technique
used to spread workload across multiple networlkslirof
computers [2]. It facilitates networks and resoarbg providing
a maximum throughput with minimum time, thus it geelto
improve performance by optimally using availablsowces and
helps in minimizing latency and response time. Lbathncing
is achieved by using multiple resources that isltipla servers
that are able to fulfill a request or by having tiplé paths to a
resource. Load balancing helps to achieve a higkr us
satisfaction and resource utilization. When one roore
components of any service fail, load balancing litates
continuation of the service by implementing fairovthat is, it
helps in provisioning and deprovisioning of instesc of
applications without fail. It also ensures that rgveomputing
resource is distributed efficiently and fairly [5]

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 — APRIL 2016.

P N,

<" Cloud Computing "\

Virtual Desktop ~ Software Piatform Applicatiors S

Ll -
(—

N

@ ,% M o oMl ol ol

Fig.1 Cloud Computing

Consumption of resources and conservation of energ

is not always a prime focus of discussion in cl@ednputing.
However, resource consumption can be kept to minimuith
proper load balancing which not only helps in redgecosts but
making enterprise greener. Scalability, one ofwéey important
features of cloud computing, is also enabled by Ibalancing.
Hence, improving resource utility and the perforoarof a
distributed system in such a way will reduce thesrgp
consumption and carbon footprints to achieve Graenputing
[1]. The objective and motivation of this surveytisprovide a
analytic survey of existing load balancing techesjun cloud
computing. In this paper, we are interested in \@hgl the
loadrebalancing problem in distributed file
specializedfor large-scale, dynamic and data-imtenslouds.
(Theterms “rebalance” and “balance” are interchabége in
thispaper.) Such a large-scale cloud has hundrett®osandsof
nodes (and may reach tens of thousands in the efju@ur
objective is to allocate the chunks of files asfamilyas

possible among the nodes such that no node manag

anexcessive number of chunks. Additionally, we #&inrteduce
network traffic (movement cost) reduce network ficaf(or
movement cost) caused byrebalancing the loads deésas
much as possible tomaximize the network bandwidtilable
to normal application.

Applications need information on both when and how
to rebalance;
The three load balancing steps are:
1. Evaluate the imbalance;
2. Decide how to balance if needed;
3. Redistribute work to correct the imbalance.

systems

it to selectthe method that most efficiently baksa particular
scenario.We demonstrate this methodology on twgelacale
productionapplications that simulate molecular dyita and
dislocation dynamics.Overall, we make the following
contributions.

Load rebalances in the distributed file systemiedrr
out using the map reducingtask in cloud which heips
arranging files in nodes of every chunk i.e. stotes files
inrelated nodes of the chunks. Objective of thisjeut is to
allocate the chunks of files asuniformly as possiainong the
nodes such that no node manages an excessive nafobanks
and also to reduce network traffic and maximize tegwork
bandwidth available tonormal applications. Using tlistributed
file system, arranging the file system in a clobattis the file
chunks are no distributed uniformly as possible agnihe nodes
because theload is put under workload that is tipescaled

ith the system and to increase theperformance ref t
ransformation of the file. This performance of tpeoposal
isimplemented to be used in the clustered envirattime

Il. SYSTEM OVERVIEW

The load rebalancing problem in distributed file
systems specialized for large-scale,dynamic and-idé¢nsive
clouds. Suggest offloading the load rebalancing tasstorage
nodesby having the storage nodes balance their sload
spontaneously. The storage nodes are structuredastveork
based on distributed hash tables (DHTSs) discovaifilg chunk
can simply referto rapid key lookup in DHTs, givémat a
unique handle is assigned to each file.DHTs enablges to
self-organize and -repair while constantly offering
lookupfunctionality in node dynamism, simplifyinget system
provision and management. Present aload rebalaadgiogithm
for distributing file chunks as uniformly as podsiband
ginimizingthe movement cost as much as possibledeNo
perform their load-balancing tasks independentlyaut
synchronization or global knowledge regarding tstemm. This
project not only takesadvantage of physical netwodality in
the reallocation of file chunks to reduce the mogam
Cost but also exploits capable nodes to improve dherall
system performance. Algorithmreduces overhead duotred to
the DHTs as much as possible. Additionally, our dloa
balancingalgorithm exhibits a fast convergence .Téie
Architecture can be shown in figure 2.

A. Storage Node Creation
In cloud server simultaneously create node, serve

We address the first two requirements and deriv€omputing and storage functions;a file is partiéidninto a

complete informationon how to perform the third;eth
application must be ableto redistribute its workitsinas
instructed by our framework (a requirement also degul by
partitioners. Our load model couplesabstract appbo
information with scalable load measurements. Weivder
actionable load metrics to evaluate the accuracy
theinformation. Our load model evaluates the céstoorecting
loadimbalance with specific load balancing algarith We use

100

number of chunks allocated in distinct nodes. s thodule, a
cloudpartitions the file into a large number ofjdisted and
fixed-size pieces (or file chunks) andassigns thendifferent
cloud storage nodes (i.e., chunk servers). Eactagdonode
thencalculates the frequency of each unique worddanning

ofhd parsing its local file chunks. Usercreateoeage node after

successful register our account.

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume

Create Storage
Node

Fig.2 Storage Node Creation

B. Distributed Hash Table

DHTs guarantee that if a node leaves, then itsllioca
hosted chunks are reliably migratedto its succeséa node
joins, then it allocates the chunks whose IDs imiatety
precede thejoining node from its successor to man&ur
proposal heavily depends on the node arrival arattiem
operations to migrate file chunks among nodes. résted
readers are referred to forthe details of the melfragement
technique in DHTs.While lookups take a modest detgy
visiting n nodes in a typical DHT, the lookuplatgncan be
reduced because discovering the | chunks of a dda be
performed in parallel.Proposal is independent of thHT
protocols. To further reduce the lookup latency) edoptstate-
of-the-art DHTs such as Amazon’s Dynamo in thatwoffne-

hop lookup delay

Identify Storage Node
Load

Update DHT

DHT
Fig.3 Identify Storage Node

@

h File

Searc|

Update DHT

Lookup DHT DHT

Fig.4 Distributed Hash Table

101

21 Issue 2 — APRIL 2016.

@—

h File

Create Storage
Node

Identify Storage Node
Load

hunk
Searcl Chun

Re-balancing Algorithm

Update DHT

Lookup DHT

Fig.5 Overall Data Flow Diagram

C. Distributed Load Balancing

A large-scale distributed file system is in a load-
balanced state if each chunk server hostsno mareAtchunks.
In our proposed algorithm, each chunk server nodfrst
estimatewhether it is under loaded (light) or owaded (heavy)
without global knowledge. A node islight if the nbar of
chunks it hosts is smaller than the threshold dmtrast, a heavy
nodemanages the number of chunks. In the followiegussion,
if a node i departs and rejoins as a successonathar node j,
then represent node i as node j+ 1, node j's aalgsuccessor
asnode j + 2, the successor of node j's originatassor as node
j + 3, and so on. For each node\, if node i is light, then it
seeks a heavy node and takes over at most A cHuoiksthe
heavynode.

DHT

Distruted
ReBalancing

fle equest

A\

Cloud User

Fig.6 Load Rebalancing Architecture Diagram

D. File Distribution

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume

A DHT node is an overlay on the application levidie
logical proximity abstractionderived from the DHToabs not
necessarily match the physical proximity informatian
reality. That means a message traveling betweenniighbors
in a DHT overlay may travel a longphysical distartheough
several physical network links. In the load-balagcalgorithm,
a lightnode i may rejoin as a successor of a remessy node j.
Then, the requested chunks migratedfrom j to i neetaverse
several physical network links, thus generating saerable
networktraffic and consuming significant networksaarces
(i.e., the buffers in the switches on aCommunicatiath for
transmitting a file chunk from a source node to estihation
node) anddistribute the files for requesting usdfisiently and

effectively.
lIl. PRELIMINARY RESULTS

Some preliminary results on load rebalancing ar
presented.
formulation, File chunks, and then map reducing.tas

A. DHT formulation

Distributed hash table is given unique identityeatch

every fileSo files are stored in one hash table. The hade tab

performed given results The storage nodes aretstadt as a
network based on distributed hash tables (DHTs)T®knable
nodes to self-organize and repair while constamtffering
lookup functionality in node dynamism, simplifyirige system
provision and managemengor each entity, it provides many
web pages. File chunks size can be taken as example

B. File Chunks

The distribution of chunks after performing the HDF
loads balancer.

File chunks =500
Data nodes =20
=500/20=25.0

C. Map reducing Task

The map reducing task is separated for all dafdis
result is shown in figure7.all chunks are storedyamgle apps
engine. This paper using map reducing task evauaiae
balance and redistribute the balancing nodes dviango

Table 1
Comparison of file chunk size

File Chunks Size Data nodes
250 25
300 30
400 40
450 20
500 20

IV. RESULTS
102

%

In the following subsections contains TDH

21 Issue 2 — APRIL 2016.

The entire system is implemented in .Net usingpseli
Platform. In computer programming, eclipse is ategnated
development environment comprisinga base work phasean
extensible plug in system for customizing the emwvinent. It
iswritten mostly in java. It can be used to devedgplication in
java, and by means of variousplug-ins other prognamg
languages includingAda, C, C++, COBOL, FORTRAN, ks
JavaScript, lasso, Perl and Erlang.It can alsodael todevelop
packages for the software mathematics. Development
environment includes the eclipsedata developmenis for java
and scala.Eclipse CDT for C/C++ and Eclipse PDT for
PHPamong others. The initial codebase originatedn fiBM
VisualAge.The Eclipse softwaredevelopment tool isam for
java developers. User can extend its abilitiesrsyalling plug-
inswritten for the Eclipse Platform. Such as depeient toolkit
for other programming languages,other programmamgliages,
and can write contribute their own plug-in modulelava
ontains many JAR file. JAR files help to extraut tplain text
rom the web pages. The result is shown in fig. 7.

1 hngpitzegom 11

b0 Dbt

¥t

T il
o

10 490 4 Develprent Consle

Dataters Viener
i e

T B it T2l

p Dhmﬂw

i St s
S s

1

!

Ty
Wit M

ne INiblam: hunk
Vil via]

1y Iy
it il

§

1l Vo n
) U

sl Sas
L)

At U L5 RS T

T bR o b i

P

Fig. 7Chunks Stored in Google AppsEngine

V. CONCLUSION

A load-balancing algorithm to deal with the load
rebalancing problem in large-scale,dynamic, anttidiged file
systems in clouds has been presented in this [rojec
Proposalstrives to balance the loads of nodes addce the
demanded movement cost as much aspossible, whiagta
advantage of physical network locality and nodestagieneity.
In theabsence of representative real workloads., (itke
distributions of file chunks in a large-scalest@aystem) in the
public domain, To have investigated the performanteour
proposal andcompared it against competing algostitimough
synthesized probabilistic distributions of filectsn The
synthesis workloads stress test the load-balaredmgrithms by
creating a fewstorage nodes that are heavily loaded

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 — APRIL 2016.

Proposal is comparable to the centralized algorithm
theHadoop HDFS production system and dramatically
outperforms the competing distributedalgorithmenms of load
imbalance factor, movement cost, and algorithmic
overhead.Particularly, our load-balancing algoritexhibits a
fast convergence rate. The efficiency andeffecégsnof our
design are further validated by analytical modeatsl @ real
implementationwith a small-scale cluster environtr@onsider
a DHT with an ordered id space | with size N =jjdaa
branching factor B suchthat log N is integral. Thwnching
factor is used by each chunk to construct its noutable.

To provide consistency with previous work, recoesid
Chord as a tree-based routing DHT. It isstraightfod to show
that Chord finger tables are constructed like trased routing

tables
REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplifieda *bcessing on
Large Clusters,” Proc. Sixth Symp. Operating Syst&masign and
Implementation (OSDI ’'04), pp. 137-150, Dec. 2004.

[2] AW. M. Smeulders, M. Worring, S. Santini, A. Guptand R. Jain,
“Content-based image retrieval at the end of theyegears”)EEE
Transaction Pattern Analysis Machine Intelligence, Antony Rowstron and
Peter Druschel, “Pastry: Scalable, Distributed @bj®cation and Routing
for Large-scale Peer-to-Peer Systems Piinc. Middleware, 2001.

[3] John Byers, Jeffrey Considine, and Michael Mitzecines,

[4] “Simple Load Balancing for Distributed Hash Tables Proc. IPTPS,
Feb. 2003

[5] David Karger and Matthias Ruhl, “New Algorithms favad

[6] Balancing in Peer-to-Peer Systems,” Tech. Rep. MTB-TR-911, MIT
LCS, July 2003.

[7]1 J. Westbrook, “Load balancing for response time EuropeanSymposium
on Algorithms, 1995, pp. 355-368.

[8] Micah Adler, EranHalperin, Richard M. Karp,and Vjij&. Vazirani. A
Stochastic Process on the Hypercube with Applicatito Peer-to-Peer
Networks. InProceedings STOC, pages 575-584, 2003.

[9] Tanveer Ahmed, Yogendra Singh, Analytic study ofdbalancing
techniques using tool cloud analyst.

[10] ZenonChaczko, VenkateshMahadevan, ShahrzadAslamzade and
Christopher Mcdermid, Availabilty and load balargiin cloud
computing, 2011 InternationalConference on Compuwed Software
Modeling, IPCSIT vol.14 (2011) ACSIT Press, Singa&po

[11] Giuseppe Valetto, Paul Snyder, Daniel J. DuboissaBettaDiNitto and
Nicolo M. Calcavecchia, A self-organized load balag algorithm for
overlay based decentralized service networks

[12] Nidhi Jain Kansal, Inderveer Chana, Cloud Load fwtey techniques: A
step towards green computing, IJCSI Internatiomairdal of Computer
Science Issues, Vol. 9, Issue 1, No 1, January.2012

[13] G. DeCandia, D. Hastorun, M. Jampani, G. KakulapfatiLakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and Wgels “Dynamo:
Amazon'’s Highly Available Key-value Store,” in Prdtlst ACM Symp.

[14] Hadoop Distributed File System, “Rebalancing Blgtks
http://developer.yahoo.com/hadoop/tutorial/moduigfl#rebalancing.

[15] HDFSFederation,http://hadoop.apache.org/common/idb28.0/hadoop-
yarn/hadoop-yarn-site/Federation.htm

[16] D. Karger and M. Ruhl, “Simple Efficient Load Batang Algorithms for
Peer-to-Peer Systems,” in Proc. 16th ACM Symp. IRAarlgorithms and
Architectures (SPAA’04), June 2004, pp. 36—43.

103

