
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 – APRIL 2016.

99

EFFECTIVE BLACK BOX BASED SELF
ADAPTIVE CLOUD CONTROLLERS

R.Raja Monsingh, P.Manjula

Departmant of computer science and engineering,, Mahendra Engineering College(Autonomous), Namakkal Dt.

Assistant Professor, Departmant of computer science and engineering, Mahendra Engineering College (Autonomous) , NamakkalDt

Monsingh.raja664@gmail.com

Abstract - Cloud computing is emerging as a new paradigm of
large scale distributed computing. Load balancing is one of the
main Challenges in Cloud computing which is required to
distribute the dynamic workload evenly across all the nodes. In the
cloud storage, Load balancing is a key issue. The Map reducing
task can be performed parallel over the nodes. The file chunks are
not distributed uniformly as possible among the nodes. Emerging
distributed systems in production system strongly depends on a
central node for chunk reallocation. It would consume a lot of cost
to maintain load information. Proper load balancing aids in
minimizing resource consumption. This concludes that all the
existing techniques mainly focus on reducing overhead, service
response time and improving performance etc. various parameters
are also identified, and these are used to compare the existing
techniques. This paper proposed for centralized server is change in
to the decentralized server using Map reducing task.

Keywords – load balancing algorithm, load balancing challenges,
cloud computing, distributed computing

1.INTRODUCTION

During the last several decades, dramatic advances in
computing power, storage,and networking technology have
allowed the human race to generate, process, and shareincreasing
amounts of information in dramatically new ways. As new
applications ofcomputing technology are developed and
introduced, these applications are often used inways that their
designers never envisioned. New applications, in turn, lead to
new demandsfor even more powerful computing infrastructure.
It is now possible to assemble very large,powerful systems
consisting of many small, inexpensive commodity components
becausecomputers have become smaller and less expensive, disk
drive capacity continues toincrease, and networks have gotten
faster. Such systems tend to be much less costly than asingle,
faster machine with comparable capabilities. Software
challenges also arise in thisenvironment because writing
software that can take full advantage of the aggregatecomputing
power of many machines is far more difficult than writing
software for a single,faster machine Regardless of the exact
definition used, numerous companies and researchorganizations
are applying cloud-computing concepts to their business or
research problemsincluding Google, Amazon, Yahoo, and
numerous universities.

A Cloud computing is emerging as a new paradigm of
large scale distributed computing. It has moved computing and
dataaway from desktop and portable PCs, into large data centre’s
[1]. It provides the scalable IT resources such as applicationsand
services, as well as the infrastructure on which they operate,
over the Internet, on pay-per-use basis to adjust thecapacity
quickly and easily. It helps to accommodate changes in demand
and helps any organization in avoiding thecapital costs of
software and hardware [2] [3]. Thus, Cloud Computing is a
framework for enabling a suitable, on-demandnetwork access to
a shared pool of computing resources (e.g. networks, servers,
storage, applications, and services).These resources can be
provisioned and de-provisioned quickly with minimal
management effort or service providerinteraction. This further
helps in promoting availability [4]. Due to the exponential
growth of cloud computing, it has beenwidely adopted by the
industry and there is a rapid expansion in data centres.

Load balancing in computer networks is a technique

used to spread workload across multiple network links of
computers [2]. It facilitates networks and resources by providing
a maximum throughput with minimum time, thus it helps to
improve performance by optimally using available resources and
helps in minimizing latency and response time. Load balancing
is achieved by using multiple resources that is, multiple servers
that are able to fulfill a request or by having multiple paths to a
resource. Load balancing helps to achieve a high user
satisfaction and resource utilization. When one or more
components of any service fail, load balancing facilitates
continuation of the service by implementing fair-over, that is, it
helps in provisioning and deprovisioning of instances of
applications without fail. It also ensures that every computing
resource is distributed efficiently and fairly [5]

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 – APRIL 2016.

100

Fig.1 Cloud Computing

Consumption of resources and conservation of energy

is not always a prime focus of discussion in cloud computing.
However, resource consumption can be kept to minimum with
proper load balancing which not only helps in reducing costs but
making enterprise greener. Scalability, one of the very important
features of cloud computing, is also enabled by load balancing.
Hence, improving resource utility and the performance of a
distributed system in such a way will reduce the energy
consumption and carbon footprints to achieve Green computing
[1]. The objective and motivation of this survey is to provide a
analytic survey of existing load balancing techniques in cloud
computing. In this paper, we are interested in studying the
loadrebalancing problem in distributed file systems
specializedfor large-scale, dynamic and data-intensive clouds.
(Theterms “rebalance” and “balance” are interchangeable in
thispaper.) Such a large-scale cloud has hundreds or thousandsof
nodes (and may reach tens of thousands in the future).Our
objective is to allocate the chunks of files as uniformlyas
possible among the nodes such that no node manages
anexcessive number of chunks. Additionally, we aim to reduce
network traffic (movement cost) reduce network traffic (or
movement cost) caused byrebalancing the loads of nodes as
much as possible tomaximize the network bandwidth available
to normal application.

Applications need information on both when and how
to rebalance;
The three load balancing steps are:
1. Evaluate the imbalance;
2. Decide how to balance if needed;
3. Redistribute work to correct the imbalance.

We address the first two requirements and derive

complete informationon how to perform the third; the
application must be ableto redistribute its work units as
instructed by our framework (a requirement also imposed by
partitioners. Our load model couplesabstract application
information with scalable load measurements. We derive
actionable load metrics to evaluate the accuracy of
theinformation. Our load model evaluates the cost of correcting
loadimbalance with specific load balancing algorithms. We use

it to selectthe method that most efficiently balances a particular
scenario.We demonstrate this methodology on two large-scale
productionapplications that simulate molecular dynamics and
dislocation dynamics.Overall, we make the following
contributions.

Load rebalances in the distributed file system carried

out using the map reducingtask in cloud which helps in
arranging files in nodes of every chunk i.e. stores the files
inrelated nodes of the chunks. Objective of this project is to
allocate the chunks of files asuniformly as possible among the
nodes such that no node manages an excessive number ofchunks
and also to reduce network traffic and maximize the network
bandwidth available tonormal applications. Using the distributed
file system, arranging the file system in a cloud:that is the file
chunks are no distributed uniformly as possible among the nodes
because theload is put under workload that is linearly scaled
with the system and to increase theperformance of the
transformation of the file. This performance of the proposal
isimplemented to be used in the clustered environment.

II. SYSTEM OVERVIEW

The load rebalancing problem in distributed file
systems specialized for large-scale,dynamic and data-intensive
clouds. Suggest offloading the load rebalancing task to storage
nodesby having the storage nodes balance their loads
spontaneously. The storage nodes are structuredas a network
based on distributed hash tables (DHTs) discovering a file chunk
can simply referto rapid key lookup in DHTs, given that a
unique handle is assigned to each file.DHTs enable nodes to
self-organize and -repair while constantly offering
lookupfunctionality in node dynamism, simplifying the system
provision and management. Present aload rebalancing algorithm
for distributing file chunks as uniformly as possible and
minimizingthe movement cost as much as possible. Nodes
perform their load-balancing tasks independentlywithout
synchronization or global knowledge regarding the system. This
project not only takesadvantage of physical network locality in
the reallocation of file chunks to reduce the movement
Cost but also exploits capable nodes to improve the overall
system performance. Algorithmreduces overhead introduced to
the DHTs as much as possible. Additionally, our load-
balancingalgorithm exhibits a fast convergence rate.The
Architecture can be shown in figure 2.

A. Storage Node Creation

In cloud server simultaneously create node, serve
computing and storage functions;a file is partitioned into a
number of chunks allocated in distinct nodes. In this module, a
cloudpartitions the file into a large number of disjointed and
fixed-size pieces (or file chunks) andassigns them to different
cloud storage nodes (i.e., chunk servers). Each storage node
thencalculates the frequency of each unique word by scanning
and parsing its local file chunks. Usercreates a storage node after
successful register our account.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 – APRIL 2016.

101

Fig.2 Storage Node Creation

B. Distributed Hash Table

DHTs guarantee that if a node leaves, then its locally
hosted chunks are reliably migratedto its successor; if a node
joins, then it allocates the chunks whose IDs immediately
precede thejoining node from its successor to manage. Our
proposal heavily depends on the node arrival anddeparture
operations to migrate file chunks among nodes. Interested
readers are referred to forthe details of the self-management
technique in DHTs.While lookups take a modest delay by
visiting n nodes in a typical DHT, the lookuplatency can be
reduced because discovering the l chunks of a file can be
performed in parallel.Proposal is independent of the DHT
protocols. To further reduce the lookup latency, can adoptstate-
of-the-art DHTs such as Amazon’s Dynamo in that offer one-
hop lookup delay.

Fig.3 Identify Storage Node

Fig.4 Distributed Hash Table

Fig.5 Overall Data Flow Diagram

C. Distributed Load Balancing

A large-scale distributed file system is in a load-
balanced state if each chunk server hostsno more than A chunks.
In our proposed algorithm, each chunk server node i first
estimatewhether it is under loaded (light) or overloaded (heavy)
without global knowledge. A node islight if the number of
chunks it hosts is smaller than the threshold. In contrast, a heavy
nodemanages the number of chunks. In the following discussion,
if a node i departs and rejoins as a successor of another node j,
then represent node i as node j+ 1, node j’s original successor
asnode j + 2, the successor of node j’s original successor as node
j + 3, and so on. For each node I∈V, if node i is light, then it
seeks a heavy node and takes over at most A chunks from the
heavynode.

Fig.6 Load Rebalancing Architecture Diagram

D. File Distribution

Chunk

User

SN1

SN2

SNn

.

.

.

DHT

Update DHT

Search File

Lookup DHT

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 – APRIL 2016.

102

A DHT node is an overlay on the application level. The
logical proximity abstractionderived from the DHT does not
necessarily match the physical proximity information in
reality.That means a message traveling between two neighbors
in a DHT overlay may travel a longphysical distance through
several physical network links. In the load-balancing algorithm,
a lightnode i may rejoin as a successor of a remote heavy node j.
Then, the requested chunks migratedfrom j to i need to traverse
several physical network links, thus generating considerable
networktraffic and consuming significant network resources
(i.e., the buffers in the switches on aCommunication path for
transmitting a file chunk from a source node to a destination
node) anddistribute the files for requesting users efficiently and
effectively.

III. PRELIMINARY RESULTS

Some preliminary results on load rebalancing are
presented. In the following subsections contains DHT
formulation, File chunks, and then map reducing task.

A. DHT formulation

Distributed hash table is given unique identity of each
every file.So files are stored in one hash table. The hash table
performed given results The storage nodes are structured as a
network based on distributed hash tables (DHTs), DHTs enable
nodes to self-organize and repair while constantly offering
lookup functionality in node dynamism, simplifying the system
provision and management.. For each entity, it provides many
web pages. File chunks size can be taken as example.

B. File Chunks

The distribution of chunks after performing the HDFS
loads balancer.

 File chunks =500
 Data nodes =20
 =500/20=25.0

C. Map reducing Task

The map reducing task is separated for all data’s. This
result is shown in figure7.all chunks are stored in goggle apps
engine. This paper using map reducing task evaualate the
balance and redistribute the balancing nodes are solving.

Table 1
Comparison of file chunk size

File Chunks Size Data nodes
250 25
300 30
400 40

450 20
500 20

IV. RESULTS

The entire system is implemented in .Net using eclipse
Platform. In computer programming, eclipse is an integrated
development environment comprisinga base work phase and an
extensible plug in system for customizing the environment. It
iswritten mostly in java. It can be used to develop application in
java, and by means of variousplug-ins other programming
languages includingAda, C, C++, COBOL, FORTRAN, Haskell,
JavaScript, lasso, Perl and Erlang.It can also be used todevelop
packages for the software mathematics. Development
environment includes the eclipsedata development tools for java
and scala.Eclipse CDT for C/C++ and Eclipse PDT for
PHPamong others. The initial codebase originated from IBM
VisualAge.The Eclipse softwaredevelopment tool is mean for
java developers. User can extend its abilities by installing plug-
inswritten for the Eclipse Platform. Such as development toolkit
for other programming languages,other programming languages,
and can write contribute their own plug-in modules. Java
contains many JAR file. JAR files help to extract the plain text
from the web pages. The result is shown in fig. 7.

Fig. 7Chunks Stored in Google AppsEngine

V. CONCLUSION

A load-balancing algorithm to deal with the load
rebalancing problem in large-scale,dynamic, and distributed file
systems in clouds has been presented in this project.
Proposalstrives to balance the loads of nodes and reduce the
demanded movement cost as much aspossible, while taking
advantage of physical network locality and node heterogeneity.
In theabsence of representative real workloads (i.e., the
distributions of file chunks in a large-scalestorage system) in the
public domain, To have investigated the performance of our
proposal andcompared it against competing algorithms through
synthesized probabilistic distributions of filechunks. The
synthesis workloads stress test the load-balancing algorithms by
creating a fewstorage nodes that are heavily loaded.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 21 Issue 2 – APRIL 2016.

103

Proposal is comparable to the centralized algorithm in
theHadoop HDFS production system and dramatically
outperforms the competing distributedalgorithm in terms of load
imbalance factor, movement cost, and algorithmic
overhead.Particularly, our load-balancing algorithm exhibits a
fast convergence rate. The efficiency andeffectiveness of our
design are further validated by analytical models and a real
implementationwith a small-scale cluster environment.Consider
a DHT with an ordered id space I with size N =|j| and a
branching factor B suchthat log N is integral. The branching
factor is used by each chunk to construct its routing table.

To provide consistency with previous work, reconsider
Chord as a tree-based routing DHT. It isstraightforward to show
that Chord finger tables are constructed like tree-based routing

tables.
REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Proc. Sixth Symp. Operating System Design and
Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[2] A.W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years”,IEEE
Transaction Pattern Analysis Machine Intelligence, Antony Rowstron and
Peter Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems,” in Proc. Middleware, 2001.

[3] John Byers, Jeffrey Considine, and Michael Mitzenmacher,
[4] “Simple Load Balancing for Distributed Hash Tables,” in Proc. IPTPS,

Feb. 2003
[5] David Karger and Matthias Ruhl, “New Algorithms for Load
[6] Balancing in Peer-to-Peer Systems,” Tech. Rep. MIT-LCS-TR-911, MIT

LCS, July 2003.
[7] J. Westbrook, “Load balancing for response time,” in EuropeanSymposium

on Algorithms, 1995, pp. 355–368.
[8] Micah Adler, EranHalperin, Richard M. Karp,and Vijay V. Vazirani. A

Stochastic Process on the Hypercube with Applications to Peer-to-Peer
Networks. In Proceedings STOC, pages 575–584, 2003.

[9] Tanveer Ahmed, Yogendra Singh, Analytic study of loadbalancing
techniques using tool cloud analyst.

[10] ZenonChaczko, VenkateshMahadevan, ShahrzadAslanzadeh and
Christopher Mcdermid, Availabilty and load balancing in cloud
computing, 2011 InternationalConference on Computer and Software
Modeling, IPCSIT vol.14 (2011) ACSIT Press, Singapore

[11] Giuseppe Valetto, Paul Snyder, Daniel J. Dubois, ElisabettaDiNitto and
Nicolo M. Calcavecchia, A self-organized load balancing algorithm for
overlay based decentralized service networks

[12] Nidhi Jain Kansal, Inderveer Chana, Cloud Load balancing techniques: A
step towards green computing, IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 1, No 1, January 2012.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proc. 21st ACM Symp.

[14] Hadoop Distributed File System, “Rebalancing Blocks,”
http://developer.yahoo.com/hadoop/tutorial/module2.html#rebalancing.

[15] HDFSFederation,http://hadoop.apache.org/common/docs/r0.23.0/hadoop-

yarn/hadoop-yarn-site/Federation.htm
[16] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for

Peer-to-Peer Systems,” in Proc. 16th ACM Symp. Parallel Algorithms and
Architectures (SPAA’04), June 2004, pp. 36–43.

