
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

1

RESPONSE TIME BASED OPTIMAL WEB

SERVICE SELECTION

Miss. A.Nandhini
[1]

Mr.P.V.Sankar Ganesh

 [2]

Abstract--In this paper, we propose a novel method for Quos

metrification based on Hidden Markov Models (HMM), which

further suggests an optimal path for the execution of user

requests. The technique we show can be used to measure and

predict the behavior of Web Services in terms of response time,

and can thus be used to rank services quantitatively rather than

just qualitatively. We demonstrate the feasibility and usefulness

of our methodology by drawing experiments on real world data.

The results have shown how our proposed method can help the

user to automatically select the most reliable Web Service taking

into account several metrics, among them, system predictability

and response time variability. For Internet services, the presence

of low-performance servers, high latency or overall poor service

quality can translate into lost sales, user frustration, and

customers lost.

I. INTRODUCTION

The Internet made the world a smaller place.

Companies from all around the world may now compete over

different service offerings not only with their local

adversaries, but do now under a global scale. Escalating the

competition and lead in industry segment can often be a matter

of offering and, perhaps even most importantly, assuring the

good quality of the services offered. In the Web this should be

no different; controlling quality for Web Services (WS) is

done by enforcing Quality of Service (QoS) policies and

assuring needed quality conditions are always met. In this

paper, we propose a novel method for Quos metrification

based on Hidden Markov Models (HMM), which further

suggests an optimal path for the execution of user requests.

The technique we show can be used to measure and predict the

behavior of Web Services in terms of response time, and can

thus be used to rank services quantitatively rather than just

qualitatively. We demonstrate the feasibility and usefulness of

our methodology by drawing experiments on real world data.

The results have shown how our proposed method can help

the user to automatically select the most reliable Web Service

taking into account several metrics, among them, system

predictability and response time variability. For Internet

services, the presence of low-performance servers, high

latency or overall poor service quality can translate into lost

sales, user frustration, and customers lost.

II. LITERATURE SURVEY

1. Architecture-based Dependability Prediction for

Service-oriented Computing

In service-oriented computing, services are built as an

assembly of pre-existing, independently developed services.

Hence, predicting their dependability is important to

appropriately drive the selection and assembly of services, to

get some required dependability level. We present an approach

to the dependability prediction of such services, exploiting

ideas from the Software Architecture- and component-based

approaches to software design.

2. QoS Analysis forWeb Service Composition

The quality of service (QoS) is a major concern in the

design and management of Web service composition. Existing

methods for QoS calculation either do not take the probability

of path execution into consideration when QoSs are provided

for different execution paths, or do not take different

execution paths into consideration when a single integrated

QoS is provided for the whole composition. In this paper, a

comprehensive QoS analysis approach is proposed that

calculates the QoS probability distribution by considering both

the execution probability and execution conditions of each

path in the service composition.

3. Run-Time Monitoring in Service-Oriented

Architectures

Modern software architectures are increasingly dynamic.

Among them, Service-Oriented Architectures (SOAs) are

becoming a dominant paradigm. SOAs allow components to

be exported as services for external use. Service descriptions

(which include functional and non-functional properties) are

published by service providers and are later discovered by

potential users. Service discovery is based on matching the

published service descriptions with the required service

specifications provided by the user. Once an external service

is discovered, it may be bound and invoked remotely. New

services may also be created by composing existing services.

To achieve full flexibility, the binding between a service

request and a service provision may be set dynamically at run-

time. In the new setting it extends to run-time and requires

continuous monitoring of functional and non-functional

attributes.

4. Architecture-Based Reliability Prediction for Service-

Oriented Computing

In service-oriented computing, services are dynamically

built as an assembly of pre-existing, independently developed,

network accessible services. Hence, predicting as much as

possible automatically their dependability is important to

appropriately drive the selection and assembly of services, in

order to get some required dependability level. We present an

approach to the reliability prediction of such services, based

on the partial information published with each service, and

that lends itself to automatization. The proposed methodology

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

2

exploits ideas from the Software Architecture- and

Component-based approaches to software design.

III. SYSTEM ANALYSIS

Existing system

In existing, they have focused on predicting reliability of

various factors involved in building enterprise application,

nonetheless, considered reliability of remote web service as

constants. For remote web services the vender will provide

probabilistic details about the flow of executing user requests.

Existing algorithm - CSPN model

Algorithm definition

This model deals more with design time problems

and does not reflect the impact of problems that occur at

runtime. They have studied in detail transactional dependency

among different type of web services.

 Disadvantages

 Quality of Service is not good.

 Response time calculation is not possible.

Proposed system

We propose a novel method for Quos metrification

based on Hidden Markov Models (HMM), which further

suggests an optimal path for the execution of user requests.

The users can weigh their options directly and individually,

for themselves.

Advantages

 Quality of Service is good.

 Response time calculation is possible.

Proposed algorithm

Hidden Markov Models.

Algorithm definition:

Building a directed graph among hidden states of

component web services used in composition. Analyzing the

current status of each vertex of directed graph i.e., underlying

hidden states. Predicting hidden states‟ behavior in terms of

response time during nth time interval t. Finally, selecting

optimal web services used in composition based on hidden

states‟ behavior.

 Applications

 Weather Application

 Online shopping applications

IV. USER INTERFACE DESIGN

To connect with server user must give their username

and password then only they can able to connect the server. If

the user already exits directly can login into the server else

user must register their details such as username, password,

Email id, City and Country into the server. Database will

create the account for the entire user to maintain upload and

download rate. Name will be set as user id. Logging in is

usually used to enter a specific page. It will search the query

and display the query.

Fig; User interface design

V. WEBSITE VISITING

The Internet is supposed to be a global network that

links the entire world, but many websites are confined to

specific countries. Unsurprisingly, piracy is higher in countries

where content isn‟t legally available. Some services work

through some DNS wizardry. Web service selection is the

action or fact of carefully choosing someone or something as

being the best or most suitable. A process in which

environmental or genetic influences determine which types of

organism thrive better than others, regarded as a factor in

evolution.

Fig; Website visiting

VI. RESPONSE TIME CALCULATION

Response time is the total amount of time it takes to

respond to a request for service. That service can be anything

from a memory fetch, to a disk IO, to a complex database

query, or loading a full web page. Ignoring

transmission time for a moment, the response time is the sum

of the service time and wait time. Response time may refer to:

The time lagged between the input and the output signal which

depends upon the value of passive components used. Response

time (technology), the time a generic system or functional unit

takes to react to a given input. Responsiveness, how quickly

an interactive system responds to user input.

WEB SERVICE 1

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

3

Fig; Response Time Calculation

VII. ARCHITECTURE DIAGRAM

Fig: Architecture Diagram

Explanation

 The systems architect establishes the basic structure of

the system, defining the essential core design features and

elements that provide the framework. The systems architect

provides the architects view of the users' vision. Above

diagram user first login to the account then he enter query and

it search which are available in server and display query.

SOFTWARE DESCRIPTION

About JAVA

Java is a programming language originally developed

by Sun Microsystems and released in 1995 as a core

component of Sun Microsystems' Java platform. The language

derives much of its syntax from C and C++ but has a simpler

object model and fewer low-level facilities. Java applications

are typically compiled to byte code that can run on any Java

virtual machine (JVM) regardless of computer architecture.

 One characteristic of Java is portability, which means

that computer programs written in the Java language must run

similarly on any supported hardware/operating-system

platform. One should be able to write a program once, compile

it once, and run it anywhere.

This is achieved by compiling the Java language

code, not to machine code but to Java byte code – instructions

analogous to machine code but intended to be interpreted by a

virtual machine (VM) written specifically for the host

hardware. End-users commonly use a JRE installed on their

own machine, or in a Web browser.

Standardized libraries provide a generic way to

access host specific features such as graphics, threading and

networking. In some JVM versions, byte code can be

compiled to native code, either before or during program

execution, resulting in faster execution.

A major benefit of using byte code is porting.

However, the overhead of interpretation means that interpreted

programs almost always run more slowly than programs

compiled to native executables would, and Java suffered a

reputation for poor performance. This gap has been narrowed

by a number of optimization techniques introduced in the

more recent JVM implementations.

One such technique, known as (just-in-time

compilation) JIT, translates Java byte code into native code

the first time that code is executed, then caches it. This result

in a program that starts and executes faster than pure

interpreted code can, at the cost of introducing occasional

compilation overhead during execution. More sophisticated

VMs also use dynamic recompilation, in which the VM

analyzes the behavior of the running program and selectively

recompiles and optimizes parts of the program. Dynamic

recompilation can achieve optimizations superior to static

compilation because the dynamic compiler can base

optimizations on knowledge about the runtime environment

and the set of loaded classes, and can identify hot spots - parts

of the program, often inner loops, that take up the most

execution time. JIT compilation and dynamic recompilation

allow Java programs to approach the speed of native code

without losing portability.

PLATFORM INDEPENDENCE

Swing is platform independent both in terms of its

expression (Java) and its implementation (non-native universal

rendering of widgets).

EXTENSIBILITY

 Swing is a highly partitioned architecture, which

allows for the "plugging" of various custom implementations

of specified framework interfaces: Users can provide their

own custom implementation(s) of these components to

override the default implementations. In general, Swing users

can extend the framework by extending existing (framework)

classes and/or providing alternative implementations of core

components.

COMPONENT-ORIENTED

 Swing is a component-based framework. The

distinction between objects and components is a fairly subtle

point: concisely, a component is a well-behaved object with a

known/specified characteristic pattern of behavior. Swing

objects asynchronously fire events, have "bound" properties,

and respond to a well-known set of commands (specific to the

component.) Specifically, Swing components are Java Beans

components, compliant with the Java Beans Component

Architecture specifications.

RELATIONSHIP TO AWT

 Since early versions of Java, a portion of the Abstract

Window Toolkit (AWT) has provided platform-independent

APIs for user interface components. In AWT, each component

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

4

is rendered and controlled by a native peer component specific

to the underlying windowing system.

 By contrast, Swing components are often described

as lightweight because they do not require allocation of native

resources in the operating system's windowing toolkit. The

AWT components are referred to as heavyweight components.

 Much of the Swing API is generally a

complementary extension of the AWT rather than a direct

replacement. In fact, every Swing lightweight interface

ultimately exists within an AWT heavyweight component

because all of the top-level components in Swing (JApplet,

JDialog, JFrame, and JWindow) extend an AWT top-level

container. However, the use of both lightweight and

heavyweight components within the same window is generally

discouraged due to Z-order incompatibilities.

The core rendering functionality used by Swing to

draw its lightweight components is provided by Java 2D,

another part of JFC.

VIII. SOCKET OVERVIEW

 A network socket is a lot like an electrical socket.

Various plugs around the network have a standard way of

delivering their payload. Anything that understands the

standard protocol can “plug in” to the socket and

communicate.

 Internet protocol (IP) is a low-level routing protocol

that breaks data into small packets and sends them to an

address across a network, which does not guarantee to deliver

said packets to the destination.

 Transmission Control Protocol (TCP) is a higher-

level protocol that manages to reliably transmit data. A third

protocol, User Datagram Protocol (UDP), sits next to TCP

and can be used directly to support fast, connectionless,

unreliable transport of packets.

Client/Server

 A server is anything that has some resource that can

be shared. There are compute servers, which provide

computing power; print servers, which manage a collection of

printers; disk servers, which provide networked disk space;

and web servers, which store web pages. A client is simply

any other entity that wants to gain access to a particular server.

 In Berkeley sockets, the notion of a socket allows as

single computer to serve many different clients at once, as

well as serving many different types of information. This feat

is managed by the introduction of a port, which is a numbered

socket on a particular machine. A server process is said to

“listen” to a port until a client connects to it. A server is

allowed to accept multiple clients connected to the same port

number, although each session is unique. To manage multiple

client connections, a server process must be multithreaded or

have some other means of multiplexing the simultaneous I/O.

RESERVED SOCKETS

 Once connected, a higher-level protocol ensues,

which is dependent on which port you are using. TCP/IP

reserves the lower, 1,024 ports for specific protocols. Port

number 21 is for FTP, 23 is for Telnet, 25 is for e-mail, 79 is

for finger, 80 is for HTTP, 119 is for Netnews-and the list

goes on. It is up to each protocol to determine how a client

should interact with the port.

Java and the Net

 Java supports TCP/IP both by extending the already

established stream I/O interface. Java supports both the TCP

and UDP protocol families. TCP is used for reliable stream-

based I/O across the network. UDP supports a simpler, hence

faster, point-to-point datagram-oriented model.

InetAddress

 The InetAddress class is used to encapsulate both the

numerical IP address and the domain name for that address.

We interact with this class by using the name of an IP host,

which is more convenient and understandable than its IP

address. The InetAddress class hides the number inside. As of

Java 2, version 1.4, InetAddress can handle both IPv4 and

IPv6 addresses.

IX. FUTURE ENHANCEMENT

For future work, testing web services at the client

side is not as straightforward as testing traditional software

due to the complex nature of web services and the absence of

source code. Surveys the previous work undertaken on web

service testing, showing the strengths and weaknesses of

current web service testing strategies and identifying issues for

future work.

APPLICATIONS

 Weather Application

 Online shopping applications

X. CONCLUSION

We propose a probabilistic model for predicting

response time of web service and then selected an optimal web

service at runtime from the list of functionally equivalent web

services. To know the probabilistic insight of WSs we have

used HMM. In our model we have assumed that WS is

deployed on a cluster of web servers and sometime the delay

or crash during WS invocation is because the bad node in

sever clustering responds to users‟ requests. With the help of

HMM we have predicted the probabilistic behavior of these

web servers and then selected the WS based on their

probabilistic value.

REFERENCE

[1] V. Grassi, „„Architecture-Based Reliability Prediction for Service-
Oriented Computing,‟‟ in Architecting Dependable Systems III. Berlin,

Germany: Springer-Verlag, 2005, pp. 279-299.

[2] V. Cortellessa and V. Grassi, „„Reliability Modeling and Analysis of
Service-Oriented Architectures,‟‟ in Test and Analysis of Web Services.

Berlin, Germany: Springer-Verlag, 2007, pp. 339-362.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 22 Issue 1 – MAY 2016.

5

[3] G. Stefano, C. Ghezzi, R. Mirandola, and G. Tamburrelli, „„Quality

Prediction of Service Compositions through Probabilistic Model Checking,‟‟
in Proc. 4th Int‟l Conf. Quality Software-Architect., Models Architect., 2008,

pp. 119-134.

[4] D.A. Menasce, „„Composing Web Services: A QoS View,‟‟ IEEE Internet
Comput., vol. 8, no. 6, pp. 80-90, Nov. 2004.

[5] H. Zheng, J. Yang,W. Zhao, and A. Bouguettaya, „„QoS Analysis for Web

Service Compositions Based on Probabilistic QoS,‟‟ in Service-Oriented
Computing. Berlin, Germany: Springer-Verlag, 2011, pp. 47-61.

[6] Z. Zibin and R.L. Michael, „„Collaborative Reliability Prediction of

Service-Oriented Systems,‟‟ in Proc. 32nd ACM/IEEE Int‟l Conf. Softw.
Eng., Cape Town, Africa, 2010, vol. 1, pp. 35-44.

[7] R. Perrone, R. Macedo, G. Lima, and V. Lima, „„An Approach for

Estimating Execution Time Probability Distributions of Component- Based
Real-Time Systems,‟‟ J. Universal Comput. Sci., vol. 15, no. 11, pp. 2142-

2165, 2009.

[8] M. Cristescu and L. Ciovica, „„Estimation of the Reliability of Distributed
Applications,‟‟ Inf. Econ., vol. 14, no. 4, pp. 19-29, 2010.

[9] D. Zhong, Z. Qi, and X. Xu, „„Reliability Prediction and Sensitivity

Analysis of WS Composition,‟‟ in Petri Net: Theory and Applications, V.
Kordic, Ed. Rijeka, Croatia: Intech, 2008, pp. 459-470.

[10] J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz, „„QoSDriven
Selection of Web Services for Transactional Composition,‟‟ in Proc. IEEE

ICWS, 2008, pp. 653-660.

[11] B. Sami, G. Claude, and P. Olivier, „„Transactional Patterns for Reliable

Web Services Compositions,‟‟ in Proc. 6th Int‟l Conf. Web Eng., Palo Alto,
CA, USA, 2006, pp. 137-144.

[12] L. Li, L. Chengfei, and W. Junhu, „„Deriving Transactional Properties of

Composite Web Services,‟‟ in Proc. IEEE ICWS, 2007, pp. 631-638.
[13] K. Boumhamdi and Z. Jarir, „„A Flexible Approach to Compose Web

Services in Dynamic Environment,‟‟ Int‟l J. Digit. Soc., vol. 1, no. 2, pp. 157-

163, 2010.
[14] Y. Tao, Z. Yue, and L. Kwei-Jay, „„Efficient Algorithms for Web

Services Selection with End-to-End QoS Constraints,‟‟ ACM Trans. Web,

vol. 1, no. 1, p. 6, May 2007.
[15] Z. Yilei, Z. Zibin, and M.R. Lyu, „„WSPred: A Time-Aware Personalized

QoS Prediction Framework for Web Services,‟‟ in Proc. IEEE 22nd ISSRE,

2011, pp. 210-219.

A.NANDHINI at Studying IIYear M.E In Computer

Science and Engineering, Sapthagiri College of Engineering,

Dharmapuri.

P.V.SANKAR GANESH M.E., Assistant Professor,

Department of Computer Science and Engineering, Sapthagiri

College of Engineering, Dharmapuri

.

