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Abstract— In present life, the practices of human are being 

conquered by the mobile devices. It exhibits the functionalities 
similar to the personal computers. The emergences of android 
phones are everlastingly increases day by day. Thus, the 
attackers aim to steal the sensitive information from mobile 
devices. The proposed framework intends to develop a machine 
learning-based malware detection system on Android to detect 
malware applications and to develop security and privacy of 
smart phone users. This system monitors various API features 
and events obtained from the android applications, and analyses 
these characteristics by using machine learning classifiers to 
classify whether the application is benign or malware using 
k-nearest neighbouring algorithm. Experimental results have 
shown the effectiveness of the proposed model. 

 
 

Index Terms— Mobile devices, attackers, machine learning 
model, API features, k-nearest neighbour, security and privacy. 
 

I. INTRODUCTION 

  With the rapid growth in mobile computing technology, 
smart phones and tablets have evolved to offer stylish 
functionalities at lower costs. The Android platform has been 
in the front position of this mobile revolution and has gained 
enormous popularity over the last four years [1]. But the 
popularity has also brought the attention of major malware 
developers towards the platform. The fact that Android offers 
an open market model not like the closed app Store model of 
Apple, where each application (app) is manually inspected by 
security experts, makes it a more favourable target for 
malicious developers. The existence of many third-party app 
stores also contributes to the spreading of malicious apps for 
Android platform. The motivation for this research is to 
recognize the current state of malware research in Android 
smart devices, classify existing malware techniques and their 
countermeasures and through that process come up with novel 
suggestions for tackling current malwares. The main 
contributions of this paper are dual: (i) survey and 
classification of existing techniques and (ii) proposal of novel 
growth techniques and countermeasures. 

 There are different potential attack scenarios where an 
attacker can take advantage of the vulnerabilities of the 
Android platform to compromise a user. A possible scenario 

 
 

would be where a Trojan app performs some innocent job in 
the foreground, say download HD wallpapers, while it 
secretly leaks confidential private data such as contacts from 
users’ mobile phone. In the case of the wallpapers app, it will 
contain INTERNET permission for downloading the 
wallpapers. An unsuspecting user might give not check the 
permissions requested and might allowance 
READ_CONTACTS permission as well accidentally. This 
data can be used for monetary benefits and/or propagating the 
malware by the attacker. In a different attack scenario, an 
attacker can try to kill the Smartphone of a victim by draining 
its battery life by excessive use of resource consuming 
services like radio, GPS etc [2]. These apps can be distributed 
as repackaged versions of popular apps such as ones which 
present location-based social media services. In this way, the 
user will be kept in the dark about private data leakage. 

 Each of the detection techniques can engage one of the 
three different approaches: static, dynamic or hybrid. The 
exact approach of an anomaly-based or signature-based 
method is determined by how information is gathered for use 
in malware detection. Anomaly based detection systems 
develop a prior training phase to establish a normality model 
for the system activity. In this method of detection, the 
detection system is first trained on the normal behavior of the 
application or target system to be monitored [3]. Using the 
normality model of behavior, it becomes possible to detect 
anomalous activities by looking for abnormal behavior or 
activities that deviate from the normal behavior earlier 
defined occurring in the system. Though this technique look 
more difficult, it has the advantage of being able to detect new 
and unknown malware attacks. Anomaly-based detection 
requires the use of feature vectors to train the classifier before 
successive classification can be carried out. These feature 
vectors are obtained from description or data collected from 
the system. 

 The rest of the paper is organized as follows: Section II 
describes the related work; Section III describes proposed 
work; Section IV represents experimental analysis and 
concludes in Section V.   

II.  RELATED WORK 

 This section depicts the variants malwares and the 
existing approaches in malware detection of android system.  
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A. Different sorts of Malwares 

1) Trojans: 
 Trojans come into view to a user as a benign app [5]. In 

fact, they actually steal the user’s secret information without 
the user’s knowledge. Such apps can easily get right to use to 
the browsing history, mail, contacts and device IMEI numbers 
etc. of victim’s device and steal this information without the 
approval of user. Fake Netflix [10] is an example of such 
malwares that provide user interface identical to original 
Netflix app and gather the user’s login credentials. SMS 
Trojans exploit the premium services to bring upon yourself 
financial loss to the victim. Fake player is a well-known SMS 
Trojan that sends messages to best rate numbers without user 
awareness [11]. Z sone [12] and Android. Foney are also the 
examples of such SMS Trojan apps. Malwares also capture 
the user’s banking information such as financial credit 
number and password. Zitmo and Spitmo Trojans are planned 
to steal the user’s mTANs (Mobile Transaction 
Authentication Number) which then entire the transactions 
silently [13]. 

 
2) Worms:  

 Such malwares produce copies of it and distribute them 
over the network. For example, Bluetooth worms extend 
malware through the Bluetooth network by transfer copies of 
it to the paired devices. Android.Obad.OS is the illustration of 
Bluetooth worm [8]. 

3) Spyware : 
Nick spy [11] and GPS Spy [14] are the example of 

spyware apps which appear as benign app, but it really 
monitors the user’s secret information such as mail, contacts, 
bank mTANs, location etc. for some unwanted consequences. 
Personal spywares can install the malicious payload without 
the victim’s information. It send the user’s information such 
as text messages, contacts etc. to the attacker who install that 
software on victim’s device [6]. 

4) Botnets: 
 Botnet is a network of compromise Android devices. Bot 

master, a remote server, control the botnet from side to side 
the C&C network. Geinimi [11] is one of the Android botnets. 

5) Ransom wares: 
 Ransomware avoid the user from accessing their data on 

device by locking the device, until ransom sum is paid. 
FakeDefender.B [15] is a malware that masquerade itself as 
avast!, an antivirus. It locks the victim’s device and power the 
user to pay ransom amount to release the device. 

B. Malware Detection in Android System 

 In general, the android malwares are detected in two 
approaches, namely, static approaches and dynamic 
approaches [13].  

1) Static approach:  
 Static approach verify the android functions without the 

applications usage. It is useful for finding malicious 
behaviours that may not operate until the particular condition 
occurs.  

2) Signature based approaches: 
 The author in [14] suggested Andro Similar that detects 

the malwares used by repackaging and code obfuscation 
techniques. It is statistical signature process which is robust in 

nature.  It generate the variable length signature for the 
application under test and compare it with the signatures in 
Andro Similar malware database and recognize the app as 
malware and benign on the basis of resemblance percentage. 
Authors tested the Andro Similar against 1260 apps among 
which 6779 apps were Google Play apps and 545 apps were 
from third party app store. 

 Droid Analytics is a signature based analytic system 
which take out and analyze the apps at op-code level. It not 
only generates the signature but also associate the malware 
with existing malwares after identifying the malicious 
content. It generates 3 level signatures. First it generates 
signature at process level by API call tracing then combining 
all the signatures of methods in a class it generates the class 
level signatures and at third level it generate the application 
signature by combine the signatures of the classes in the 
application. 

 Although signature based detection is very efficient for 
known malwares but it cannot detect the unknown malware 
types. Also because of limited signature database most of the 
malwares remain undetected. 

3) Permission based analysis: 
 During installation, user must allow the app  right to use 

all the resources requested by the app. Developers must 
mention the permissions requested for the resources in the 
AndroidManifest.xml file. But all confirmed permissions are 
not necessarily the required permissions for that specific 
application. 

 The author in [11] proposed a method for better 
detection of permission based malware detection which 
includes the analysis of both requested and required 
permissions as most of the time malware authors declare more 
permissions in the manifest file than they actually require for 
the application. Also it analyses the easy to retrieve features 
and then labels the application as benign or malware. 

 The author in [13] used a state machine based approach 
and formally analyzes the permission based Android security 
model. They also verified that the specified system satisfy the 
security property. The author in [14] proposed a Security 
Distance Model for mitigation of Android malware. Security 
Distance Model is based on the concept that not a single 
permission is enough for an application to threaten the 
security of Android devices. For example an application 
requesting permission READ_PHONE_STATE can access 
the phone number and IMEI but it cannot move data out of the 
device. There must be a combination of permissions to affect 
the security model of device such as INTERNET permission 
allows to concept the device with the network and will be 
needed to move data to some remote server. 

 Permission based detection is a quick filter for the 
application scanning and identifying that whether the 
application is benign or malware but it only analyses the 
manifest file it do not analyze other files which contain the 
malicious code. Also there is very small difference in 
permissions used by the malicious and benign apps. 
Permission based methods require second pass to provide 
efficient malware detection. 

4) Dalvik byte code analysis: 
 The author in [7] developed SCANDAL, a static 

analyzer that analyze the Dalvik byte code of applications and 
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detects the privacy leakage in applications. It determines the 
data flow from information source to any remote server. 
Dalvik byte code contains branch, method invocation and 
jump instructions which alters the order of execution of code 
and obfuscates the code. During execution, the possible paths 
that an application can take can be identified by the Byte code 
analysis. In [6] Authors have examined 90 applications from 
Android official market and 8 malicious applications from 
third party market place. They found privacy leakage in 11 
Google market applications and 8 third party market 
applications. There is a need of performance optimization 
techniques to implement as SCANDAL consumes more time 
and memory for analysis of application. Also it does not 
support the applications which use reflections for data 
leakage. In the SCANDAL authors have implemented 
reflection semantics manually to detect the privacy leakage in 
malicious apps taken from black market. 

 Droid APIMiner [4], build upon Androgaurd [39], 
identifies the malware by tracking the sensitive API calls, 
dangerous parameters invoked and package level information 
within the byte code. To classify the application as benign or 
malware it implements KNN algorithm and detected up to 99 
% accuracy and 2.2% false positive rate. The author in [5] 
presented SC android which analyze the Android application 
statically as they are installed and performs data flow analysis 
to checks whether the data flow through the applications is 
consistent or not. On the basis of data flows it declares the 
application as safe to be run with requested permissions. 
Authors use it as a security certification tool for Android apps. 

 In this method analysis is performed at instruction level 
and consumes more power and storage space. As the android 
devices are resource poor so they limits this detection 
approach. 

5) Dynamic approaches  
 Dynamic analysis examines the application during 

execution. It may neglect some of the code sections that are 
not executed but it can easily identify the malicious 
behaviours that are not detected by static analysis methods. 
Although static analysis methods are earlier to malware 
detection but they fail against the code obfuscation and 
encryption malwares. 

6) Anomaly based detection  
  Crow Droid is used to detect the behavior of 

applications dynamically. Details of system calls invoked by 
the app are collected by the Strace tool  and then crowd 
sourcing app, which is installed on the device, creates a log 
file and sends it to remote server. Log file may include the 
following information: Device information, apps installed on 
device and system calls. 2-mean clustering algorithm is 
applied at server side to classify the application as malware or 
benign. Results are stored at server database.  

 The author in [15] proposed Andromaly, a behavior 
based Android malware detection system. In order to classify 
the application as benign or malware it continuously monitor 
the different kind and patterns that indicate the device state 
such as battery level, CPU consumption etc. The machine 
learning algorithms is used to discriminate between malicious 
and benign apps. The solution can detect continuous attacks 
and can notify the user about these attacks.  

7) Taint analysis 
  Taint Droid is the system-wide information flow 

tracking for Android. It can simultaneously track multiple 
sources of sensitive data such as camera, GPS and 
microphone etc. and identify the data leakage in third party 
developer apps. It labels the sensitive data and keeps track of 
that data and app when tainted data leaves moves from the 
device. It provides efficient tracking of sensitive information 
but it does not perform control flow tracking. Also, it cannot 
track information that leaves deice and returns in network 
reply.  

8) Emulation based detection: 
 Android dynamic analysis platform Droid Scope, based 

on Virtual Machine Introspection was introduced. As the 
antimalware detect the presence of malwares because both of 
them reside in the same execution environment so the 
malwares also can detect the presence of antimalware. Droid 
Scope monitors the whole operating system by staying out of 
the execution environment and thus have more privileges than 
the malware programs. 

 Android      Application Sandbox (AASandbox) which 
detects the suspicious applications by performing both static 
and dynamic analysis on them. It first extracts the .dex file 
into human readable form and then performs static analysis on 
application. Then it analyzes the low level interactions with 
system by execution of application in isolated sandbox 
environment. Actions of application are limited to sandbox 
due to security policy and do not affect the data on device. It 
uses Money tool to dynamically analyze the application 
behavior which randomly generates the user events like 
touches, clicks and gestures etc. It cannot detect the new 
malware types. 

III.  PROPOSED WORK 

 This section depicts general workflow of prediction and 
prevention of malware in android system. A devised machine 
learning systems is proposed to detect and preclude the 
malware apps. The API features are extracted, learned and 
stored in the android databases. The stored database contains 
the API features of malware apps and normal apps. This 
sensitive data path is studied for the prediction of malware 
behavior.  An eminent k-nearest neighbour algorithm is used 
for differentiating the malicious and normal apps.  

 A simplified data mining approach is employed for 
detecting malware apps which consists of two phases, training 
and identification. The training phase trains the feature of 
malware and benign apps. Gently, the features of malware 
apps are trained to the android systems. Contrastingly, the 
identification phase identifies the unknown app whether it is 
malware or benign app. In order to detect the malware apps, 
the features and sensitive data transmission path are studied. 
These are studied from the API which consists of two 
features, a) the count of API calls from an app,b) count of API 
calls from the app components like activities, content 
providers task etc. The feature is extracted from the Dalvik 
byte code which is known as ‘Jimple’.  It supports java source 
code and also Java byte code.  The source codes in the android 
app contain significant and critical details to describe the 
behavior of an app.  
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 The general facts of an android app are: i) most of the 
malware pose high level threats to the user’s ii) 90% of the 
android phones control using SMS or networks iii) without 
user’s knowledge, the sms or phone calls send to other users 
and iv) sensitive data is being stored on smart phones stealed. 
Hence, stealing and exploiting the sensitive data stands to be 
very outstanding features of the android malware. Along with 
these, machines learning approach is defined over the source 
and sink APIs. The source APIs associate with account, 
contact, SMS, database, and calendar. The sink APIs includes 
network, SMS, mails and files. 

 The features from the system calls are extracted and then 
associated to form call graph. It is further processed into three 
steps,  

A. Pre processing: 

 In accord to Java, the android source code do not contain 
‘main method’ and one or more components. By parsing 
androidmanifest.xml, the components and reachable call 
backs are obtained. Henceforth, the Jimple code can also be 
used for identifying the patterns of the receiver. 

a) Building the call graph: 
 This method is simple and precise which scan the class 

definition code. Initially, the dummy main method is 
generated which contain class definition code. All the 
collected call backs are registered with dummy main method. 
Thus, the global graph is formed. If the broadcast receiver is 
instantiated with register receiver call, then we can determine 
that receiver component is dynamically registered.  

B. Connect asynchronous calls:  

 A handler variable is used for handling the call back 
method which processes the messages via methods like send 
Message and sendEmptyMessage.   

  Based on the above pre processed outcomes, the 
classifier model is constructed. The target of the classifier 
model is to distinguish the malware and benign apps. It is 
processed in two steps. The first step includes the LR 
algorithm that calculates the weight values for malicious apps. 
Based on obtained weight values, top k weight score is 
measured. Thus, APIs list are trained and used for future 
process. Mahalanob is distance is measured between two 
features of unknown apps. 

 
Fig.1. Proposed block diagram 

IV.  EXPERIMENTAL ANALYSIS 

 This section depicts the experimental analysis carried 
out to justify the proposed model.  

 
Fig.2. Enrolment of android users 

 
Fig.3. Login page of admin  
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Fig.4 File uploads by admin  

 
Fig.5. List of android apps 

 
Fig.6. Detection of spywares  

 
Fig.7. Scanning the android apps to check the spam data  

 
Fig.8. Displaying risk level of the Android phone  

V. CONCLUSION 

 Android OS is the most adopted operating systems by 
the smart phone users. Due to its popularity, different 
applications and adware’s are introduced increasingly. A 
different commercial signature tools are available in the 
market to prevent incursion and distribution of the malicious 
applications. Numerous researches have been conducted 
which claims that traditional signature based detection system 
work well up to confident level and malware authors use 
numerous techniques to evade these tools. In this paper, we 
have proposed an efficient k-Nearest Neighbour (k-NN). The 
target of the study is to distinguish the malware apps and 
normal apps.  Firstly, the API features are trained into android 
databases. Then the unknown android app is identified with 
the help of trained API features. Eventually, the weight score 
between two features are used to distinguish the malware apps 
from benign apps. Experimental results have shown the 
effectiveness of the proposed algorithm. 
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