
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

1

Abstract— In present life, the practices of human are being

conquered by the mobile devices. It exhibits the functionalities
similar to the personal computers. The emergences of android
phones are everlastingly increases day by day. Thus, the
attackers aim to steal the sensitive information from mobile
devices. The proposed framework intends to develop a machine
learning-based malware detection system on Android to detect
malware applications and to develop security and privacy of
smart phone users. This system monitors various API features
and events obtained from the android applications, and analyses
these characteristics by using machine learning classifiers to
classify whether the application is benign or malware using
k-nearest neighbouring algorithm. Experimental results have
shown the effectiveness of the proposed model.

Index Terms— Mobile devices, attackers, machine learning
model, API features, k-nearest neighbour, security and privacy.

I. INTRODUCTION

 With the rapid growth in mobile computing technology,
smart phones and tablets have evolved to offer stylish
functionalities at lower costs. The Android platform has been
in the front position of this mobile revolution and has gained
enormous popularity over the last four years [1]. But the
popularity has also brought the attention of major malware
developers towards the platform. The fact that Android offers
an open market model not like the closed app Store model of
Apple, where each application (app) is manually inspected by
security experts, makes it a more favourable target for
malicious developers. The existence of many third-party app
stores also contributes to the spreading of malicious apps for
Android platform. The motivation for this research is to
recognize the current state of malware research in Android
smart devices, classify existing malware techniques and their
countermeasures and through that process come up with novel
suggestions for tackling current malwares. The main
contributions of this paper are dual: (i) survey and
classification of existing techniques and (ii) proposal of novel
growth techniques and countermeasures.

 There are different potential attack scenarios where an
attacker can take advantage of the vulnerabilities of the
Android platform to compromise a user. A possible scenario

would be where a Trojan app performs some innocent job in
the foreground, say download HD wallpapers, while it
secretly leaks confidential private data such as contacts from
users’ mobile phone. In the case of the wallpapers app, it will
contain INTERNET permission for downloading the
wallpapers. An unsuspecting user might give not check the
permissions requested and might allowance
READ_CONTACTS permission as well accidentally. This
data can be used for monetary benefits and/or propagating the
malware by the attacker. In a different attack scenario, an
attacker can try to kill the Smartphone of a victim by draining
its battery life by excessive use of resource consuming
services like radio, GPS etc [2]. These apps can be distributed
as repackaged versions of popular apps such as ones which
present location-based social media services. In this way, the
user will be kept in the dark about private data leakage.

 Each of the detection techniques can engage one of the
three different approaches: static, dynamic or hybrid. The
exact approach of an anomaly-based or signature-based
method is determined by how information is gathered for use
in malware detection. Anomaly based detection systems
develop a prior training phase to establish a normality model
for the system activity. In this method of detection, the
detection system is first trained on the normal behavior of the
application or target system to be monitored [3]. Using the
normality model of behavior, it becomes possible to detect
anomalous activities by looking for abnormal behavior or
activities that deviate from the normal behavior earlier
defined occurring in the system. Though this technique look
more difficult, it has the advantage of being able to detect new
and unknown malware attacks. Anomaly-based detection
requires the use of feature vectors to train the classifier before
successive classification can be carried out. These feature
vectors are obtained from description or data collected from
the system.

 The rest of the paper is organized as follows: Section II
describes the related work; Section III describes proposed
work; Section IV represents experimental analysis and
concludes in Section V.

II. RELATED WORK

 This section depicts the variants malwares and the
existing approaches in malware detection of android system.

K-NN BASED MALWARE DETECTION IN
ANDROID SYSTEM

V.R.Niveditha#1 and Dr. ShobaRani*2
M.TECH Information Security and Cyber Forensics, Dr. M.G.R. Educational and Research Institute University,

Chennai, India
*Professor, Department of Computer Science and Engineering, Dr. M.G.R. Educational and Research Institute

University, Chennai, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

2

A. Different sorts of Malwares

1) Trojans:
 Trojans come into view to a user as a benign app [5]. In

fact, they actually steal the user’s secret information without
the user’s knowledge. Such apps can easily get right to use to
the browsing history, mail, contacts and device IMEI numbers
etc. of victim’s device and steal this information without the
approval of user. Fake Netflix [10] is an example of such
malwares that provide user interface identical to original
Netflix app and gather the user’s login credentials. SMS
Trojans exploit the premium services to bring upon yourself
financial loss to the victim. Fake player is a well-known SMS
Trojan that sends messages to best rate numbers without user
awareness [11]. Z sone [12] and Android. Foney are also the
examples of such SMS Trojan apps. Malwares also capture
the user’s banking information such as financial credit
number and password. Zitmo and Spitmo Trojans are planned
to steal the user’s mTANs (Mobile Transaction
Authentication Number) which then entire the transactions
silently [13].

2) Worms:

 Such malwares produce copies of it and distribute them
over the network. For example, Bluetooth worms extend
malware through the Bluetooth network by transfer copies of
it to the paired devices. Android.Obad.OS is the illustration of
Bluetooth worm [8].

3) Spyware :
Nick spy [11] and GPS Spy [14] are the example of

spyware apps which appear as benign app, but it really
monitors the user’s secret information such as mail, contacts,
bank mTANs, location etc. for some unwanted consequences.
Personal spywares can install the malicious payload without
the victim’s information. It send the user’s information such
as text messages, contacts etc. to the attacker who install that
software on victim’s device [6].

4) Botnets:
 Botnet is a network of compromise Android devices. Bot

master, a remote server, control the botnet from side to side
the C&C network. Geinimi [11] is one of the Android botnets.

5) Ransom wares:
 Ransomware avoid the user from accessing their data on

device by locking the device, until ransom sum is paid.
FakeDefender.B [15] is a malware that masquerade itself as
avast!, an antivirus. It locks the victim’s device and power the
user to pay ransom amount to release the device.

B. Malware Detection in Android System

 In general, the android malwares are detected in two
approaches, namely, static approaches and dynamic
approaches [13].

1) Static approach:
 Static approach verify the android functions without the

applications usage. It is useful for finding malicious
behaviours that may not operate until the particular condition
occurs.

2) Signature based approaches:
 The author in [14] suggested Andro Similar that detects

the malwares used by repackaging and code obfuscation
techniques. It is statistical signature process which is robust in

nature. It generate the variable length signature for the
application under test and compare it with the signatures in
Andro Similar malware database and recognize the app as
malware and benign on the basis of resemblance percentage.
Authors tested the Andro Similar against 1260 apps among
which 6779 apps were Google Play apps and 545 apps were
from third party app store.

 Droid Analytics is a signature based analytic system
which take out and analyze the apps at op-code level. It not
only generates the signature but also associate the malware
with existing malwares after identifying the malicious
content. It generates 3 level signatures. First it generates
signature at process level by API call tracing then combining
all the signatures of methods in a class it generates the class
level signatures and at third level it generate the application
signature by combine the signatures of the classes in the
application.

 Although signature based detection is very efficient for
known malwares but it cannot detect the unknown malware
types. Also because of limited signature database most of the
malwares remain undetected.

3) Permission based analysis:
 During installation, user must allow the app right to use

all the resources requested by the app. Developers must
mention the permissions requested for the resources in the
AndroidManifest.xml file. But all confirmed permissions are
not necessarily the required permissions for that specific
application.

 The author in [11] proposed a method for better
detection of permission based malware detection which
includes the analysis of both requested and required
permissions as most of the time malware authors declare more
permissions in the manifest file than they actually require for
the application. Also it analyses the easy to retrieve features
and then labels the application as benign or malware.

 The author in [13] used a state machine based approach
and formally analyzes the permission based Android security
model. They also verified that the specified system satisfy the
security property. The author in [14] proposed a Security
Distance Model for mitigation of Android malware. Security
Distance Model is based on the concept that not a single
permission is enough for an application to threaten the
security of Android devices. For example an application
requesting permission READ_PHONE_STATE can access
the phone number and IMEI but it cannot move data out of the
device. There must be a combination of permissions to affect
the security model of device such as INTERNET permission
allows to concept the device with the network and will be
needed to move data to some remote server.

 Permission based detection is a quick filter for the
application scanning and identifying that whether the
application is benign or malware but it only analyses the
manifest file it do not analyze other files which contain the
malicious code. Also there is very small difference in
permissions used by the malicious and benign apps.
Permission based methods require second pass to provide
efficient malware detection.

4) Dalvik byte code analysis:
 The author in [7] developed SCANDAL, a static

analyzer that analyze the Dalvik byte code of applications and

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

3

detects the privacy leakage in applications. It determines the
data flow from information source to any remote server.
Dalvik byte code contains branch, method invocation and
jump instructions which alters the order of execution of code
and obfuscates the code. During execution, the possible paths
that an application can take can be identified by the Byte code
analysis. In [6] Authors have examined 90 applications from
Android official market and 8 malicious applications from
third party market place. They found privacy leakage in 11
Google market applications and 8 third party market
applications. There is a need of performance optimization
techniques to implement as SCANDAL consumes more time
and memory for analysis of application. Also it does not
support the applications which use reflections for data
leakage. In the SCANDAL authors have implemented
reflection semantics manually to detect the privacy leakage in
malicious apps taken from black market.

 Droid APIMiner [4], build upon Androgaurd [39],
identifies the malware by tracking the sensitive API calls,
dangerous parameters invoked and package level information
within the byte code. To classify the application as benign or
malware it implements KNN algorithm and detected up to 99
% accuracy and 2.2% false positive rate. The author in [5]
presented SC android which analyze the Android application
statically as they are installed and performs data flow analysis
to checks whether the data flow through the applications is
consistent or not. On the basis of data flows it declares the
application as safe to be run with requested permissions.
Authors use it as a security certification tool for Android apps.

 In this method analysis is performed at instruction level
and consumes more power and storage space. As the android
devices are resource poor so they limits this detection
approach.

5) Dynamic approaches
 Dynamic analysis examines the application during

execution. It may neglect some of the code sections that are
not executed but it can easily identify the malicious
behaviours that are not detected by static analysis methods.
Although static analysis methods are earlier to malware
detection but they fail against the code obfuscation and
encryption malwares.

6) Anomaly based detection
 Crow Droid is used to detect the behavior of

applications dynamically. Details of system calls invoked by
the app are collected by the Strace tool and then crowd
sourcing app, which is installed on the device, creates a log
file and sends it to remote server. Log file may include the
following information: Device information, apps installed on
device and system calls. 2-mean clustering algorithm is
applied at server side to classify the application as malware or
benign. Results are stored at server database.

 The author in [15] proposed Andromaly, a behavior
based Android malware detection system. In order to classify
the application as benign or malware it continuously monitor
the different kind and patterns that indicate the device state
such as battery level, CPU consumption etc. The machine
learning algorithms is used to discriminate between malicious
and benign apps. The solution can detect continuous attacks
and can notify the user about these attacks.

7) Taint analysis
 Taint Droid is the system-wide information flow

tracking for Android. It can simultaneously track multiple
sources of sensitive data such as camera, GPS and
microphone etc. and identify the data leakage in third party
developer apps. It labels the sensitive data and keeps track of
that data and app when tainted data leaves moves from the
device. It provides efficient tracking of sensitive information
but it does not perform control flow tracking. Also, it cannot
track information that leaves deice and returns in network
reply.

8) Emulation based detection:
 Android dynamic analysis platform Droid Scope, based

on Virtual Machine Introspection was introduced. As the
antimalware detect the presence of malwares because both of
them reside in the same execution environment so the
malwares also can detect the presence of antimalware. Droid
Scope monitors the whole operating system by staying out of
the execution environment and thus have more privileges than
the malware programs.

 Android Application Sandbox (AASandbox) which
detects the suspicious applications by performing both static
and dynamic analysis on them. It first extracts the .dex file
into human readable form and then performs static analysis on
application. Then it analyzes the low level interactions with
system by execution of application in isolated sandbox
environment. Actions of application are limited to sandbox
due to security policy and do not affect the data on device. It
uses Money tool to dynamically analyze the application
behavior which randomly generates the user events like
touches, clicks and gestures etc. It cannot detect the new
malware types.

III. PROPOSED WORK

 This section depicts general workflow of prediction and
prevention of malware in android system. A devised machine
learning systems is proposed to detect and preclude the
malware apps. The API features are extracted, learned and
stored in the android databases. The stored database contains
the API features of malware apps and normal apps. This
sensitive data path is studied for the prediction of malware
behavior. An eminent k-nearest neighbour algorithm is used
for differentiating the malicious and normal apps.

 A simplified data mining approach is employed for
detecting malware apps which consists of two phases, training
and identification. The training phase trains the feature of
malware and benign apps. Gently, the features of malware
apps are trained to the android systems. Contrastingly, the
identification phase identifies the unknown app whether it is
malware or benign app. In order to detect the malware apps,
the features and sensitive data transmission path are studied.
These are studied from the API which consists of two
features, a) the count of API calls from an app,b) count of API
calls from the app components like activities, content
providers task etc. The feature is extracted from the Dalvik
byte code which is known as ‘Jimple’. It supports java source
code and also Java byte code. The source codes in the android
app contain significant and critical details to describe the
behavior of an app.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

4

 The general facts of an android app are: i) most of the
malware pose high level threats to the user’s ii) 90% of the
android phones control using SMS or networks iii) without
user’s knowledge, the sms or phone calls send to other users
and iv) sensitive data is being stored on smart phones stealed.
Hence, stealing and exploiting the sensitive data stands to be
very outstanding features of the android malware. Along with
these, machines learning approach is defined over the source
and sink APIs. The source APIs associate with account,
contact, SMS, database, and calendar. The sink APIs includes
network, SMS, mails and files.

 The features from the system calls are extracted and then
associated to form call graph. It is further processed into three
steps,

A. Pre processing:

 In accord to Java, the android source code do not contain
‘main method’ and one or more components. By parsing
androidmanifest.xml, the components and reachable call
backs are obtained. Henceforth, the Jimple code can also be
used for identifying the patterns of the receiver.

a) Building the call graph:
 This method is simple and precise which scan the class

definition code. Initially, the dummy main method is
generated which contain class definition code. All the
collected call backs are registered with dummy main method.
Thus, the global graph is formed. If the broadcast receiver is
instantiated with register receiver call, then we can determine
that receiver component is dynamically registered.

B. Connect asynchronous calls:

 A handler variable is used for handling the call back
method which processes the messages via methods like send
Message and sendEmptyMessage.

 Based on the above pre processed outcomes, the
classifier model is constructed. The target of the classifier
model is to distinguish the malware and benign apps. It is
processed in two steps. The first step includes the LR
algorithm that calculates the weight values for malicious apps.
Based on obtained weight values, top k weight score is
measured. Thus, APIs list are trained and used for future
process. Mahalanob is distance is measured between two
features of unknown apps.

Fig.1. Proposed block diagram

IV. EXPERIMENTAL ANALYSIS

 This section depicts the experimental analysis carried
out to justify the proposed model.

Fig.2. Enrolment of android users

Fig.3. Login page of admin

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

5

Fig.4 File uploads by admin

Fig.5. List of android apps

Fig.6. Detection of spywares

Fig.7. Scanning the android apps to check the spam data

Fig.8. Displaying risk level of the Android phone

V. CONCLUSION

 Android OS is the most adopted operating systems by
the smart phone users. Due to its popularity, different
applications and adware’s are introduced increasingly. A
different commercial signature tools are available in the
market to prevent incursion and distribution of the malicious
applications. Numerous researches have been conducted
which claims that traditional signature based detection system
work well up to confident level and malware authors use
numerous techniques to evade these tools. In this paper, we
have proposed an efficient k-Nearest Neighbour (k-NN). The
target of the study is to distinguish the malware apps and
normal apps. Firstly, the API features are trained into android
databases. Then the unknown android app is identified with
the help of trained API features. Eventually, the weight score
between two features are used to distinguish the malware apps
from benign apps. Experimental results have shown the
effectiveness of the proposed algorithm.

 REFERENCES

[1] Andrea Saracino, Daniele Sgandurra, Gianluca Dini and Fabio
Martinelli, “MADAM: Effective and Efficient Behavior-based
Android Malware Detection and Prevention”, IEEE Transactions on
Dependable and Secure Computing, 2016.

[2] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and
evolution, in: Security and Privacy (SP), 2012 IEEE Symposium on,
2012, pp.95–109.

[3] L. Li, A. Bartel, T. F. Bissyand´e, J. Klein, Y. Le Traon, S. Arzt, S.
Rasthofer, E. Bodden, D. Octeau, P. McDaniel, Iccta: Detecting
inter-component privacy leaks in android apps, in: Proceedings of the
37th Inter-national Conference on Software Engineering - Volume 1,
ICSE ’15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 280–291.

[4] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of
mobile malware in the wild, in: Proceedings of the 1st ACM Workshop
on Security and Privacy in Smart phones and Mobile Devices, SPSM
’11, ACM, New York, USA, 2011, pp. 3–14.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android
permissions demystified, in: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, ACM, New
York, USA, 2011, pp. 627–638.

[6] P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wetherall, These aren’t
the droids you’re looking for: Retrofitting android to protect data from
imperious applications, in: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, ACM, New
York, USA, 2011, pp. 639–652.

[7] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, X. S. Wang, Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detec-tion, in: Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’13, ACM, New York,
USA, 2013, pp.1043–1054.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

6

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, P.P. McDaniel, Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps, SIGPLAN Not. 49 (6) (2014) 259–269.

[9] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,”
in Symposium On Usable Privacy and Security, SOUPS ’12,
Washington, DC, USA - July 11 - 13, 2012, 2012, p. 3.

[10] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 95–109.

[11] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp.
95109.[Online].Available:http://dx.doi.org/10.1109/SP.2012.16

[12] “Contagio mobile, mobile malware mini dump.” [Online]. Available:
http://contagiominidump.blogspot.com

[13] Google Groups, “Virustotal,” 2015. [Online]. Available: https:
//www.virustotal.com/

[14] Dr.Web, “Android malware review,” 2015. [Online]. Available:
http://news.drweb.com/show/review/?lng=en&i=9546

[15] K. S. Labs, “Kindsight security labs malware report h1 2014,” 2014.
[Online]. Available: http://resources.alcatel-lucent.com/ ?cid=180437.

