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This can not only save the users’ efforts in flitfg their

Abstract— Recent developments made in the web servicesinformation needs, but also will improve the usepearience

have applied to the Information retrieval tasks. Smantic

matching is a critical task for many applications n several
Natural Languages processing like question answeringcheme,
etc. Keyphrases is the subfield that contains metath that

summarizes and characterize the documents. Thoughrgvious
techniques were introduced a key phrase extractiomodel, still

the issues like word mismatching, misidentificatiorof the words
are not yet focused. In this paper, we have propoden efficient
keyphrase extraction model that efficiently retrieves the
relevant data in lesser time. We have constructed awhine
learning models which build an index for every keywrd.

Firstly, the keyword is allowed for stemming proces that
eliminates the stopwords in the sentences. Then, tlemmed
words is further allowed to build into normalized words that
combines with Medinet and Wordnet. By doing so, wdave
achieved faster-response time for query retrieval pcess of the
Question Answering scheme. Experimental results havg&hown
the efficiency of the proposed system.

Index Terms— Information retrieval, machine learning
model, meta data, Semantic matching and normalizedords.

I. INTRODUCTION

Semantic matching is a critical task for manylapgions
in natural language processing (NLP), such as rnmddion
retrieval [1],
identification. Taking question answering as an neple,
given a pair of question and answer, a matchingtfon is
required to determine the matching degree betwessettwo
sentences. Recently, deep neural network basedIsnoale

in applications where the output bandwidth is leditsuch as
mobile Web search and spoken search. Significagrpss
has been made at answering factoid queries [1&8] sis
“how many people live in Australia?”, as definedhie TREC
QA track. However, there are diverse Web querieghwh
cannot be answered by a short fact, ranging fromicadn
fixing a mobile phone, to requests for opinions some
public issues. Retrieving answers for these “nateid”
queries from Web documents remains a critical ehgk in
Web question answering (WebQA).

Key phrases such as named entities (person, docartid
organization names), book and movie titles, scieneaical
or military terms and other, are usually among thest
information-bearing linguistic structures. Transigt them
correctly will improve the performance of crossgiimal
information retrieval, question answering and maehi
translation systems [4]. However, these key phrase®ften
domain-specific, and people. Some name and terogyas a
single word, which could be regarded as a one-yhradse.
Instantly. We create new key phrases which arecae¢red
by existing bilingual dictionaries or parallel corp,
therefore standard data-driven or knowledge-basachme
translation systems cannot translate them corregty an
increasing amount of web information becomes abkila

guestion answering [2] and parapbarasexploiting such a huge information resource is b@ng

more attractive. searched the web for parallgbaa while
[5] extracted translation pairs from anchor tex@énping to
the same webpage. However, parallel webpages droanc
texts are quite limited, and these approaches lgreatfer

been applied in this area and achieved some importdrom the lack of data [6].

progresses. A lot of deep models follow the panadig first

The rest of the paper is organized as follows: iSedt

represent the whole sentence to a single distidbutelescribes related work; Section Il describes theppsed

representation, and then compute similarities betvtkee two

work; Section IV describes the experimental analysid

vectors to output the matching score. In generais t concludes in Section V.

paradigm is quite straightforward and easy to immaet,
however, the main disadvantage lies in that imporiacal
information is lost when compressing such a corapdid
sentence into a single vector.

A central topic in developing intelligent seargistems

is to provide answers in finer-grained text uniédher than to

simply rank lists of documents in response to Waérigs.

. RELATEDWORK

This section depicts the existing approaches achoig
in the field of key phrases extractions.

A. Préliminaries

Automatic key phrase extraction systems have been

evaluated on corpora from a variety of sourcesirgnfyom
long scientific publications to short paper abdsand email
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messages. There are at least four corpus-relatéargathat
affect the difficulty of key phrase extraction.

Length: The difficulty of the task increases with the

length of the input document as longer documeraisi ynore
candidate keyphrases. For instance, each Inspéaetbisas

» Determining which of these candidate
keyphrases are correct keyphrases using
supervised or

» Unsupervised approaches.

on average 10 annotator-assigned keyphrases and 341) Sdlecting candidateswordsor phrases

candidate keyphrases [6]. In contrast, a scien{i@per
typically has at least 10 keyphrases and hundriecsnalidate
keyphrases, vyielding a much bigger
Consequently, it is harder to extract keyphrasesmfr
scientific papers, technical reports, and meetmagscripts
than abstracts, emails, and news articles.

As noted before, a set of phrases and words isaljy
extracted as candidate keyphrases using heurnidtis. These

search spaaeiles are designed to avoid spurious instanceskeed the

number of candidates to a minimum. Typical heussti
include (1) using a stop word list to remove stapdg, (2)
allowing words with certain partof-speech tags .(enguns,

Structural consistency: In a structured document, thereadjectives, verbs) to be candidate keywords ()watig

are certain locations where a keyphrase is mostyliko

appear. For instance, most of a scientific pagexigphrases
should appear in the abstract and the introductivhile

structural
keyphrases from scientific papers (e.g., title, tisac
information), web pages (e.g., metadata), and cfats,
dialogue acts), it is most useful when the documé&oim a
source exhibit structural similarity. For this reasstructural
information is likely to facilitate keyphrase extton from
scientific papers and technical reports becausethefr

standard format (i.e., standard sections such atraah,
introduction, conclusion, etc.). In contrast, thaeck of
structural consistency in other types of structuteduments
(e.g., web pages, which can be blogs, forums,\dewe) may
render structural information less useful.

Topic change: An observation commonly exploited in

keyphrase extraction from scientific articles aertvs articles
is that keyphrases typically appear not only atkteéginning
[8] but also at the end of a document. This obgeEmwaloes
not necessarily hold for conversational text (engeetings,
chats), however. The reason is simple: in a coatiers, the
topics (i.e., its talking points) change as therattion moves
forward in time, and so do the keyphrases assatiatih a
topic. One way to address this complication isdtedt a topic
change in conversational text [9]. However, topiamge
detection is not always easy: while the topicgtish the form
of an agenda at the beginning of formal meetingsitepts

information has been exploited to eitrac

n-grams that appear in Wikipedia article titles hbe
candidates and (4) extracting n-grams or noun phrathat
satisfy pre-defined lexico-syntactic pattern(s)][11

Many of these heuristics have proven effectivé wieir
high recall in extracting gold keyphrases from eoas
sources. However, for a long document, the regulist of
candidates can be long [12]. Consequently, diffepenning
heuristics have been designed to prune candidastsate
unlikely to be keyphrases.

a) Supervised approaches:

Research on supervised approaches to keyphrase

extraction has focused on two issues: task refaton and
feature design.

b) Task reformulation:

Early supervised approaches to keyphrase extractio
recast this task as a binary classification prob]&&}. The
goal is to train a classifier on documents anndtatéth
keyphrases to determine whether a candidate phisase
keyphrase. Keyphrases and non-keyphrases are wsed t
generate positive and negative examples, respsctive
Different learning algorithms have been used tintthis
classifier, including naive Bayes [14]

) Feature selection
Structural features encode how different instarafes

can be exploited, such clues are absent in casy@lndidate keyphrase are located in different paftsa

conversations (e.g., chats).

document. A phrase is more likely to be a keyphifse

Topic correlation: Another observation commonly gppears in the abstract or introduction of a papein the

exploited in keyphrase extraction from scientifiticies and
news articles is that the keyphrases in a docuraget
typically related to each other [10]. However, Wiliservation
does not necessarily hold for informal text (eegaails, chats,
informal meetings, personal blogs), where peopie tedk
about any number of potentially uncorrelated topitbe
presence of uncorrelated topics implies that it mayonger
be possible to exploit relatedness and therefaneases the
difficulty of keyphrase extraction.

B. Existing approaches

Generally, the keyphrase extraction executes & tI‘

following steps:
» Extracting a list of words/phrases that serve
candidate  keyphrases
heuristics.

using som

metadata section of a web page. In fact, featinatsencode
how frequently a candidate keyphrase occurs inowari
sections of a scientific paper (e.g., introductioanclusion)
and those that encode the location of a candidgtetkase in
a web page (e.g., whether it appears in the tlitd)pave been
shown to be useful for the task.

Syntactic features encode the syntactic patternsa of
candidate keyphrase. For example, a candidate kayplnas
been encoded as (1) a PoS tag sequence, whichedehet
sequence of part-of-speech tag(s) assigned tmitd(a); and
2) a suffix sequence, which is the sequence ophalogical
suffixes of its words. However, ablation studiesaacted on
web pages and scientific articles reveal that symtéeatures

as

are not useful for keyphrase extraction in thegmes of other
eature types.
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2) Unsupervised approaches A. Qand A application:

) The previous web applications posted the questods

3) Graph based ranking it's answered by other users. This kind of actieads to
Intuitively, keyphrase extraction is about finditige greater redundancy and non-trusted system. Ingteppctive
important words and phrases from a document. Tiomdilly, of medical practitioners, this system imposes mosted
the importance of a candidate has often been defm®rms  environment. In order to resolve this, we have tbai
of how related it is to other candidates in the wioent. efficient Q and A scheme that presents faster mm the

Informally, a candidate is important if it is redatto (1) & answered questions and makes the user-friendlyamient.
large number of candidates and (2) candidates dhat

important. Researchers have computed relatednesgdre - K€y concept detection:

candidates using co-occurrence counts and semantic The reason behind this fast-answering system es th

relatedness and represented the relatedness inionmadeployment of Natural Language Processing (NLP)e Th

collected from a document as a graph [14]. objective of the NLP system is to efficiently retuthe
This instantiation of a graph-based approach oekd answers from the relevant key terms. It specifjcddlals with

an important aspect of keyphrase extraction, howeveset the Parts of Speech Tagging (POST) that analyeegitrases

of keyphrases for a document should ideally cokerrhain  and nouns of the given terms. Before processimgnising

topics discussed in it, but this instantiation doesguarantee Process is involved to eliminate the stopwords.sTstep

that all the main topics will be represented by éhtracted investigates on the specific keywords from the gitase

keyphrases [17]. Despite this weakness, a grapédbagvords.

representation of text was adopted by many appesatitat

propose different ways of computing the similatigtween

two candidates.

C. Bridging the answers:

Based on the given base words, the proper meaviihg
be analyzed with the help of English dictionary amedical
terms. Normalization is the process executes adtfier
completion of stemming process. A domain specific
knowledge is given in the normalization process.he T
relevant answers are obtained from the Local Mining
Database using the normalized words.

b) Topic based clustering

Another unsupervised approach to keyphrase eiiract
involves grouping the candidate keyphrases in aigheat
into topics, such that each topic is composed ladirad only
those candidate keyphrases that are related ttwfbiat There
are several motivations behind this topic-basedtehing D. Machine learning and Language trandation:

approach. First, a keyphrase should ideally beaeleto one Machine learning process operates from the usacaf
or more main topic(s) discussed in a document. iBBche mining and global learning techniques. Eventudhg, local
extracted keyphrases should be comprehensive isehse mining database is updated for every given new bases.
that they should cover all the main topics in awtoent. The global learning system contains a vast amdumegdical
Below we examine three representative systemsatiapt related queries and terms. This will acts as batkystem to
this approach. retrieve the related resource to the query. An xnde

KeyCluster: The author in [15] adopts aconstructed for every keyword, so as to retrieve words

clustering-based approach (henceforth KeyClustért t easily and at less time. If the resource is unakgl the query
clusters semantically similar candidates using Yékia and will be answered later.

co-occurrence-based statistics. The underlying tigsis is

User

that each of these clusters corresponds to a tmpiered in Questions

the document, and selecting the candidates clostheo l

centroid of each cluster as keyphrases ensures thieat - e SropA ARG
resulting set of keyphrases covers all the topitsthe Translatian NP

document. T , | J' Lexical

—|N_|‘— Noun Phrase
. PROPOSEDNVORK Exractor inter-Bxpert
This section depicts the working of the enhanced “E'T'”"S““’

search

KeyConcept

semantic architecture of the keyphrase extracgistem. The Local entfier
thought of this proposed system arise from thesges

» Recognition of key terms
* Misidentification of the words Normalization

* Lack of artificial intelligence
* Lack of machine learning
 Time delay for answers
To overcome from the above mentioned issues, we haf'9-1 Proposed architecture diagram
proposed ranking based relevant answering systeensaye
build keyphrase extraction technique that effidiestipport
the multiple languages. The proposed keyphraseidn
process consists of following modules:
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Fig.7 Extracting the data into structural form.
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V. CONCLUSION

[4]
(5]

(6]

(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Automatic keyphrase extractions have been widely8]
studied by the research communities. The statehefart
reveals that still the performance of the keyphegeaction
is not yet achieved successfully, in accord to ’'sser
requirements. An automatic mining of data from blevant
document is known as keyphrase extraction systanthis
paper, we have proposed intelligent keyphrase idra
techniques that automatically extract the relevaywords
from the given set of documents. We have builtféoient Q
and A scheme that posts and answers the questi@sapid
time. It combines with Medinet and Wordnet corpusitder
and retrieve the data in a stipulate period of tibecument
keyphrases have enabled fast and accurate searfchirzg

exhibited their potential in improving many natul@hguage

processing (NLP) and information retrieval (IR) kas
Experimental results have shown the efficiency off o

proposed system.
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