
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

1

 Challenges and Areas in Operating System Research

and Development
S.Venkatesh

Assistant Professor, Dept. of MBA, KBN College, Vijayawada, A.P., India

Abstract— Computer technology have been such a

success is because of the excellent graphical operating

systems that run on these powerful machines. As the

computer hardware is becoming more and more

powerful, it is also vital to keep the software updated

in order to utilize the hardware of the system

efficiently and make it faster and smarter. This paper

highlights some core issues that if dealt with in the

operating system level would make use of the full

potential of the computer hardware and provide an

excellent user experience.

I. INTRODUCTION

Computer technology has made incredible

progress in the roughly 60 years since the first

general purpose electronic computer was created.

For the evolution of computers from being just a

scientific tool to being a necessity in every

household the operating systems that run on them

have played a very vital role. Today we don’t call a

computer system by the manufacturer names; we

Windows PC, etc. Although the operating systems

are becoming more and more dynamic and classy

yet there remains a lot of work to make them utilize
the full functionalities of the fast computer

hardware’s of today. Here we will see some of the

key issues that the operating systems face and the

unconquered challenges that still remain in the

world of operating system research and

development. We divide the rest of the paper into

four Segments In the first segment we talk about

and related issues, and finally we will shift our

focus onto the Smart devices and see the issues in

user interface designs for the same.

II. SECURITY

Security has been and still remains a major

concern for operating system developers and users

alike. Informally speaking, security is, keeping

unauthorized entities from doing things you don’t

want them to do. Operating system protection

involves protection against unauthorized users as

well as protection of file systems. File permissions

are based on user identity, which in turn are based

on user identity, which in turn are based on

authentication. doesn’t hack in along with proper

mechanism to let in genuine mechanisms have been

and are being used in operating systems, like the

old fashioned password authentication, where a
plaintext password is stored. This mechanism has

been proven to be easily hackable, so another

technique that provides an alternative is Hashed

Passwords.

General Algorithm

Store f(Pw), where f is not invertible When user

enters Pw, calculate f(Pw) and compare.

Attackers can still use passwordguessing

algorithms; therefore most operating systems use

access control mechanisms to protect the hashed

passwords. Another authentication knows Pw and

sends a random number N, both sides then
calculate f(Pw,N) where f is some encryption

algorithm. Although it must be noted that this

mechanism is not very famous with operating

systems. The reason being that, even in this case a

outand comes to know f(Pw,N) can run password

guessing algorithms, so it is not that very different

from the hashed password authentication in terms

of security. These days use of biometrics has

become a major user authentication mechanism.

Such techniques include fingerprint readers, iris

scanner, etc. Although biometrics works fine if
used locally, yet even these methods are

susceptible to spoofing attacks. Hence we can infer

that even the best and the most hi-tech

authentication has its limitations.

Trojan Horses, Login spoofing and Buggy

Software. Trojan Horses are basically programs

that are disguised programs, meant to harm the

system and its resources. Someone may be tricked

into running a program that may adversely affect

that user; his system or data. Although Linux,

UNIX and other Unix-like operating systems are

generally regarded as very protected, yet they are
not immune to computer viruses. For example,

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

2

consider a virus program written in C, which goes

on creating new files and allocating space in an

infinite loop! Will Linux be safe in that case?

Hence viruses are a threat to all operating systems.

Although it software) threat of the type that

Microsoft Windows software’s face; this is mostly

because of the following reasons:

• The user base of the Linux operating system is

smaller compared to Windows.

• The malwares’ lack root access.

• Fast updates for most Linux vulnerabilities.
Operating systems may use the following

mechanisms to avoid attacks of this type:

Sandboxes are environments where a program can

execute but should not affect the rest of the

machine.

•The trick here is, permitting limited interaction

with outside while still providing the full

functionality of the operating system. Or in other

words the file system can be kept out of

unauthorized access and 3rd Party software’s may

be allowed minimum access to file-systems.
Race conditions can also be a critical security

issue. To illustrate such a situation, consider a

privileged program that checks if a file is readable

and then tries to open it as root in the interval

between the two operations the attacker removes

the link and replaces it with a link to a protected

file. This would give him direct access to the

protected file area and into the system. So here an

attacker takes advantage of the race condition

between two operations to get access into the

protected area of the operating system. The only

way to overcome such attacks is to provide only
atomic operations to access files and strict

restrictions on their access by other users other than

root.

•There is a need for more flexible permission

model. The models present today are either too

simple or too restrictive.

•The issue here is that, no commercial operating

system is secure enough. There will always be

buggy code, but the trick is to build an application

and an operating system that will mostly restrict

attacks and will protect the important assets of the
system. the attacker may get access to the personal

data (viz. contacts, messages, etc) of the victim.

III. MEMORY MANAGEMENT

Managing the system memory is a very

important function of an operating system. Hence

the success of any operating system also depends to

some extent on how well the operating system

manages the system memory. There have been

numerous mechanisms that have been researched

upon and implemented in this area of operating
system development. Today, an operating system

has to execute tasks on a huge amount of data but

in the early days the catch was that to operate on

data, it had to be present in the primary memory

and primary memory cannot be as much as the

secondary memory. So the researchers and

developers started finding alternate ways of storage

and execution of data. During this time came a

concept called paging.

In operating systems, paging is one of the

memory management schemes by which the

system can store and retrieve data from the

secondary storage for use in the main memory. In
this scheme, the operating system retrieves data

from secondary storage in same size blocks called

pages. The main function of paging is performed

when a program tries to access pages that are not

currently mapped to the RAM. This situation is

known as a page fault. When page fault occurs, an

operating system has to perform the following tasks:

•Determine the location of data in auxiliary

storage.

•Obtain an empty page frame in RAM to use as a

container for data.
•Load the requested data into the available page

frame.

•Update the page table to show the new data.

Until there is not enough RAM to store all the

data needed, the process of obtaining an empty

page frame does not involve removing another

page from RAM. If all page frames are non-empty,

obtaining an empty page frame requires choosing a

page frame containing data to empty. so it does not

need to be written back to secondary storage. If a

reference is then made to that page, a page fault

will occur, and an empty page frame must be
obtained and the This is where page file comes into

play; it’s where most pages are placed when they

are not resident inthe physical memory If they have

not been altered since they were read from the file,

windows doesn’t have to write the pages back out;

it can just discard them If it ever needs the pages

again, they can be safely reread from the files

Although paging is a very efficient mechanism yet

challenges still exist in this area, that need to be

overcome if the performance of the system has to

be increased.
systems, but the current technique present for

sharing of pages, has its limitations; major one

being that the operating system only shares

memory that corresponds to memory mapped files.

A new scheme for page sharing is going to be

implemented by vendors. Here, the system will

periodically scan memory, and when it finds two

pages that are identical, it will share them, reducing

the memory usage. If a process then tries to modify

the shared page, it will be given its own private

copy, ending the sharing. This mechanism will

have a huge effect on virtualization. When
virtualizing, the same operating system may be

running multiple times, meaning that the same

executable files are loaded several times over. So

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

3

the traditional memory-mapped file approach to

memory sharing cannot kick in here. Each virtual

operating system is loading its own files from its

own disk image. This is where memory de

duplication is useful; it can see that the pages are

all identical, and hence it can allow sharing even

between virtual machines.

This is another technique that is used by some

operating systems (Mac OSX) for memory

management. As per this method, when the

operating system needs memory it will push
something that isn’t currently being used into a

swap file for temporary storage. When it needs

access to that data again, it will read the data from

the swap file and back into memory. In a sense this

can create unlimited memory, but it is significantly

slower since it is limited by the speed of the hard

disk, versus the near immediacy of reading data

from RAM. Even this mechanism has a flaw. For

example, consider that processes A, B, C are to be

executed one after the other wherein A and C need

same resources but B needs totally different
resources. Another assumption here is that there is

no memory left in the RAM. So here once process

A is finished, process B will have to run, but since

B needs different resources and resources of A are

not required anymore for now, they are shifted into

swap file and resources for B are loaded in place of

that. Now when C is to be executed, again the

resources that had been shifted to swap file has to

be shifted back to the RAM. The following points

sum up the areas of concern for an operating

system to obtain more efficient memory

management:
•To increase responsiveness, paging systems

must employ better strategies to predict which page

will be needed soon. Such systems will attempt to

load pages into main memory pre-emptively,

before a program references them.

•Operating systems will need better methods of

page sharing, such that page sharing for regular

data and not only for memory-mapped data can be

achieved.

•If swapping mechanism is to be used for

memory management, then proper measures need
to be taken to avoid redundant sharing of data as

much as possible.

IV. MULTIPROCESSOR PROGRAMMING

Now a day’s usage of more than one processor

in a computing system has become a common
occurrence. In a multiprocessing system, all CPUs

may be equal, or some may be reserved for special

purposes. A combination of hardware and OS

software design considerations determine the

symmetry or lack of it in a given system. For

example, hardware or software considerations may

require that only one CPU respond to all hardware

interrupts, whereas all other work in the system

may be distributed equally among CPUs; or

execution of kernelmode code may be restricted to

only one processor at a time whereas user-mode

code may be executed in any Multiprocessing

systems are often easier to design if such

restrictions are imposed, but they tend to be less

efficient than systems in which all CPUs are

utilized. Systems that treat all CPUs equally are

called Symmetric Multiprocessing Systems (SMP).

In systems where CPUs are not equal, system
resources may be divided in a number of ways

including Asymmetric Multiprocessing Systems

(ASMP), Non-Uniform Memory Access (NUMA)

multiprocessing systems and Clustered

Multiprocessing Systems.

In computing, SMP involves a multiprocessor

computer architecture where two or more identical

processors can connect to a single shared main

memory. Most common multiprocessor systems

today use SMP architecture. In case of multi-core

processors, the SMP architecture applies to the
cores, treating them as separate processors. SMP

systems allow any processor to work on any task

no matter where the data for that task is located in

the memory. With proper OS support SMP systems

can easily move tasks between processes to balance

the workload efficiently.

Asymmetric multiprocessing varies greatly from

the standard processing model that we see in the

personal computers today. Modern CPUs operate

considerably faster than the main memory they use.

In the early days of computing and data processing

the CPU generally ran slower than its memory. The
performance lines crossed in the 1960s with the

advent of high speed computing. Since then, CPUs

increasingly “starved for data”, have had to stall

while they wait for memory accesses to complete.

Limiting the amount of memory access provides

the key to extracting high performance from a

modern day computer. For commodity processors

this means installing an ever increasing amount of

high speed cache memory and very sophisticated

algorithm to avoid cache misses. But dramatic

increases in size of the operating systems make the
problem considerably worse. Now a system can

starve several processors at the same time, notably

because only one processor can access memory at a

time. NUMA attempts to address this problem by

providing separate memory for each processor,

avoiding performance hit when several processors

attempt to address the same memory. Of course not

all data ends up confined to a single task, which

means that more than one processor may require

the same data. This architecture can substantially

increase the performance but for that there has to

be proper hardware and the operating system must
provide some mechanism to efficiently schedule

the access to multiple processor memory. If

NUMA architecture is implemented successfully

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

4

both in the hardware and in the OS level then it

could go a long way in speeding up processing with

multiple processors.

The following points highlight the areas of

research and development for efficient

multiprocessor programming by modern day

operating systems:

•Operating Systems can implement a hybrid of

SMP and ASMP architectures wherein, while all

the tasks can be delegated using SMP architecture,

the tasks that make use of system files can make
use of ASMP architecture to implement that part.

•NUMA architecture can be seriously looked

upon during future operating system design such

that a way to integrate this architecture into the

system is reached. If this happens, it could go a

long way in speeding up the processing with

multiple processors.

There are applications for which WIMP is not

well suited, they argue, and the lack of technical

support increases difficulty for development of

interfaces not based on WIMP style. This includes
any application requiring devices that provide

continuous input signals, showing 3D models or

simply portraying an interaction for which there are

no defined standard widgets. WIMPs are usually

pixel-hungry. So given limited screen real-estate,

they can distract attention from the task at hand.

Thus custom interfaces can better encapsulate

workspaces, action and other objects from specific

complex tasks. The following points highlight the

issues of WIMP from a touch-GUI perspective:

•Pointers: We cannot have any sort of pointer

indicators when touching the screen.
•Windows- From a touch perspective, Windows

are almost completely useless. Moving, resizing,

minimizing, maximizing, closing are all things that

are just plain too hard to do and only create extra

overhead on the small display screen.

•Menus- Traditional window menus are super

useful things to have in computers. But that said,

they are tiny and hard to manage with fingers and if

one bumps up the size of the fonts more, he might

as

In short, there are just too many fundamental
issues with the WIMP to just tweak. It’s not a

matter of size, weight, power or probability of the

devices that matter- the core under- printing of

WIMP developers now are talking about one

operating system for all the devices, hence this

transition from the traditional WIMP will soon be

needed for all major operating systems. The

challenges in development of the user interface for

operating systems:

•Since the devices are getting smaller and

smaller, a way has to be found to port the

traditional WIMP applications for these smaller
devices.

V. CONCLUSION

As the user awareness of technology is

increasing so is there expectations. Hence although

operating systems have progressed a lot, yet still

there is a lot of ground to cover in this field.
Operating systems research is a very vast field and

the reason for this is mostly because the hardware

is becoming stronger and faster by the day and

hence there is a race for the operating systems to

keep up. The key issues pointed out in this paper if

addressed,

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 11 Issue 2 –NOVEMBER 2014.

5

VI. REFERENCES

[1] Galen C. Hunt, James R. Larus, David Tarditi and Ted Wobber.

Brand New OS Research: Challenges and Opportunities, UNISEX.

[2] Schneider, F.B. Enforceable Security Policies. ACM Transactions on

InformationandSystemSecurity(TISSEC)Abraham Silberschatz, Peter

Bear Galvin and Gary Gagne.Operating System Concepts.

[3] C. Kaner and D.L. Pels. Bad Software: What To Do When Software F

http://www.wikipedia.org/Types as Models: Model Checking Message

Passing Programs.

