
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

94

 SEMANTIC BASED APPROACH TO SCALABLE

DISTRIBUTION

METHOD FOR LARGE SCALE RDF

Abstract- The development of Ontologies involves continuous

but relatively small modification Semantic information has

been reducing but using incremental framework with simple

machine learning algorithm. Each level of mapping and

reducing based on k-means clustering technique Clustered

values have get modification like addition at the end user

query has been retrieve with the help of grouped items.

Traditional centralized reasoning methods are not sufficient

to process large Ontologies. Distributed reasoning methods

are thus required to improve the scalability and performance

of inferences. This paper proposes an incremental and

distributed inference method for large-scale Ontologies by

using MapReduce, which realizes high-performance

reasoning and runtime searching, especially for incremental

knowledge base. By constructing transfer inference forest

and effective assertional triples, the storage is largely reduced

and the reasoning process is simplified and accelerated.

Key Terms—Big data, MapReduce, ontology reasoning, RDF,

Semantic Web

I.INTRODUCTION

Big data is a term for massive data sets having large,

more varied and complex structure with the difficulties of

storing, analyzing for further processes or results. The

process of research into massive amounts of data to reveal

hidden patterns and secret correlations named as big data

analytics. The basic idea is that, instead of making a server

large, data should be distributed among multiple

commodity hardware severs. Map Reduce allows for

distributed processing of the map and reduction operations.

Provided that each mapping operation is independent of the

others, all maps can be performed in parallel through in

practice this is limited by the number of independent data

sources and o the number of CPUs near each source

Application developers specify the computation in

terms of a map and a reduce function, and the underlying

MapReduce job scheduling system automatically

parallelizes the computation across a cluster of machines.

Hadoop is an open-source implementation of the

Google MapReduce programming model. Hadoop

consists of the Hadoop common, which provides access to

the file systems supported by Hadoop. Particularly, the

Hadoop Distributed File Systems (HDFS) provides

distributed file storage and is optimized for large

immutable blobs of data. A small Hadoop cluster will

include a single master and multiple workers nodes. The

master node runs multiple processes, including a

JobTracker and a NameNode. The JobTracker is

responsible for managing running Hadoop cluster. The

NameNode, on the other hand, manages the HDFS. The

JobTracker and the NameNode are usually collocated on

the same physical machine. Other servers in the cluster run

a TaskTracker and a DataNode processes. A MapReduce

job is divided into tasks. Tasks are managed by the

TaskTracker and the DataNode are collocated on the same

servers to provide data locality in computation.

MapReduce provides a standardized framework

for implementing large-scale distributed computation,

namely the big-data applications. There are potential

Sharmili.G
1
,Dr.A.Jebaraj RatnaKumar

2

1
PG Student, Department of Computer Science and Engineering, Karpaga Vinayaga College of Engineering and

Technology, Anna University, Chennai – 603 308, Tamil Nadu, India

2
Head of the Department, Department of Computer Science and Engineering, Karpaga Vinayaga College of Engineering

and Technology, Anna University, Chennai – 603 308,Tamil Nadu, India

sharmili.gopi@gmail.com

95

duplicate computations being performed in this process.

However, MapReduce does not have the mechanism to

identify such duplicate computations and accelerate job

execution. Motivated by this observation, we propose a

data-aware cache system for big-data applications using

the MapReduce framework. This system aims at

extending the MapReduce framework and provisioning a

cache layer for efficiently identifying and accessing cache

items in a MapReduce job

II.BACKGROUND

Since the data objects in a variety of languages

are typically trees, tree pattern matching (twig) is the

central issue. Naturally queries in the XML query

language specify the patterns of selected predicates on

multiple elements which have a tree structured

relationships. The complex query tree pattern is usually

decomposed into set of basic parent-child and ancestor-

descendant relationships. But finding all these basic

structural relationships occurrences is a complex process

in the XML query processing. There are various

techniques provides wireless XML dissemination schemes

but none of them supports twig pattern queries since they

does not have parent child relationship. Normal index

methods divides a query into several sub-queries, thereby

join the results together to provide the final answer. Twig

pattern search uses tree structures as the master unit of

query to avoid expensive join operations and the

requirement is used in preprocessing process to include in

the child relationship. Intelligent transfer process is to

manipulate the concept of the processing to evaluate the

computation

A. Hadoop Architecture

Bigdata is often describes as extremely large data

sets that have grown beyond the ability to manage and

analysis them with traditional data processing tools. The

challenges include capture, storage, search, sharing,

transfer, analysis and visualization

Bigdata represents the large and rapidly growing

volume of information that is mostly untapped by existing

analytical applications and data warehousing systems.

Organizations are interested in capturing and analyzing

this data because it can add significant value to the

decision making process. When big-data brings to the

business it examines different types of Bigdata and offers

suggestions on how to optimize systems infrastructure. It

is important to realize that Bigdata comes in many shapes

and sizes. It also has many different uses- real time fraud

detection, web display advertising and competitive

analysis, all centre optimization, social media and

sentiment analysis, intelligent traffic management and

smart power grids, to name just a few. All of these

analytical solutions involve significant (and growing) a

volumes of both multi-structure and structured data. Many

of these analytical solutions were not possible previously

because they were too costly to implement, or because

analytical processing technologies were not capable of

handling the large volumes of data involved in a timely

manner. In some cases, the required data simply did not

exist in an electronic form. Deriving inferences in the

large-scale RDF files, referred to as large-scale reasoning,

poses challenges in three aspects: 1) distributed data on

the web make it difficult to acquire appropriate triples for

appropriate inferences; 2) the growing amount of

information requires scalable computation capabilities for

large datasets; and 3) fast processing for inferences is

required to satisfy the requirements of online query. Due

to the performance limitation of a centralized architecture

Fig 1 Hadoop Architecture

B. Characteristic

VOLUME: Many factors contribute to the increase in data

volume. Transaction based data stored through the years.

Unstructured data streaming in form social media.

Increasing amounts of sensor and machine-to-machine

96

data being collected. In the past, excessive data volume

was a storage issue. But with decreasing storage costs,

other issues emerge, including how to determine

relevance within large data volumes and how to use

analytics to create value from relevant data

VELOCITY: Data is streaming in at unprecedented speed

and must be dealt with in a timely manner. RFID tag,

sensors and smart metering are driving the need to deals

with torrents of data in near-real time. Reacting quickly

enough to deal with data velocity is a challenge for most

organizations

VARIETY: Data today comes in all types of formats.

Information created from line-of-business applications.

Managing, merging and governing different varieties of

data are something many organizations

VARIABILITY: In addition to the increasing velocities

and varieties of data, data flows can be highly inconsistent

with periodic peals. Daily, seasonal and event-triggered

peal data loads can be challenging to manage. Even more

so with unstructured data involved

COMPLEXITY: Today’s data comes from multiple

sources and it is still an undertaking to link, match,

cleanse and transform data across systems. However, it is

necessary to connect and correlate relationships

hierarchies and multiple data linkages or your data can

quickly spiral out of control

C. TIF/EAT Computation.

 We propose a novel representation method

TIF/EAT to support incremental inference over

large-scale RDF datasets which can efficiently

reduce the storage requirement and simplify the

reasoning process

 An efficient and scalable reasoning method called

IDIM is presented based on TIF/EAT, and the

corresponding searching strategy is given to

satisfy end-users’ online query needs

 We have implemented a prototype by using the

Hadoop platform. It allows one to perform

experiments of different methods on billion

triples challenge (BTC) benchmark data. A real-

world application on healthcare domain is also

presented to validate the effectiveness of our

method

III. RELATED WORK

Semantic inference has attracted much attention from

both Academic and industry nowadays. Many inference

engines have been developed to support the reasoning over

Semantic For example, Anagnostopoulos and proposed

two fuzzy inference engines based on the knowledge-

representation model to enhance the context inference and

classification for the well-specified information in

Semantic Web introduced a novel Rule XPM approach

that consisted of a concept separation strategy and a

semantic inference engine on a multiphase forward-

chaining algorithm to solve the semantic inference

problem in heterogeneous e-marketplace activities. The

SD Type method based on statistical distribution of types

in RDF datasets to deal with noisy data presented a

temporal extension of the web ontology language (OWL)

for expressing time-dependent information. To deal with

such large base, some researchers turn to distributed

reasoning methods. Weaver and Hendler presented a

method for materializing the complete finite RDF closure

in a scalable manner and evaluated it on hundreds of

millions of triples. Urbani et al. proposed a scalable

distributed reasoning method for computing the closure of

an RDF graph based on MapReduce and implemented it

on top of Hadoop. MapReduce-based reasoning and then

introduced Map resolve method for more expressive

logics. However, these methods considered no influence of

increasing data volume, and did not answer how to process

users’ queries. The storage of RDF closure is thus not a

small amount and the query on it takes nontrivial time.

Moreover, as the data volume increases and the ontology

base is updated, these methods require the computation of

the entire RDF closure every time when new data arrive. It

provide the basic element of Ontologies. To avoid such

time-consuming process, incremental reasoning methods

are proposed a scalable parallel inference method, named

WebPIE, to calculate the RDF closure based on

MapReduce for a large-scale RDF dataset. They also

adapted their algorithms to process the statements

according to their status (existing ones or newly added

ones) as incremental reasoning, but the performance of

incremental updates was highly dependent on input data.

Furthermore, the relationship between newly-arrived data

and existing data is not considered and the detailed

implementation method is not given presented an

incremental reasoning approach based on modules that can

reuse the information obtained from the previous versions

of Ontology. To speed up the updating process with

newly-arrived data and fulfill the requirements of end-

users for online queries, this paper presents a method

IDIM based on MapReduce and Hadoop, which can well

leverage the old and new data to minimize the updating

97

time and reduce the reasoning time when facing big RDF

datasets

IV.PRELIMINARIES

A. Resource Description Framework (RDF)

Semantic Web is based on RDF, which integrates

a variety of applications by using extensible markup

language (XML) for syntax and universal resource

identifier (URI) for naming.RDF is an assertional language

intended to be used to express propositions via precise

formal vocabularies. An RDF data model is similar to

classic conceptual modeling approaches, as it is based on

the idea of making statements about resources. The

fundamental unit of RDF is a triple that is used to describe

the relationship between two things. Its formal definition is

<subject, predicate, object>, in which subject denotes a

resource, and predicate denotes properties or aspects of the

resource and expresses a relationship between the resource

and the object. RDF schema (abbreviated as RDFS) is a set

of classes with certain properties in RDF. It provides basic

elements for the description of Ontologies, or called RDF

vocabularies, intended to structure RDF resources the

simple protocol and RDF query language RDF closure is a

way to realize an RDF query. If the statements in the input

Ontology satisfy the conditions in its middle column, a

new statement in its right column is added to the ontology.

Since the computation of RDF closure is an iterative

process, its generation efficiency is notoriously low. In

order to distinguish the triples that may trigger the

inference on RDFS rules, we divide them into ontological

and assertional ones used throughout this paper

Definition 1: Ontological triples are the ones from which

significant inferences can be derived, i.e., the triples with

predicate rdfs:domain , rdfs:range , rdfs:subClassOf ,

rdfs:subPropertyOf , and those with predicate rdf:type and

object rdfs:Datatype or rdfs:Class or

rdfs:ContainerMembershipProperty

Definition 2: Assertional triples are the ones that are not

Ontological triples

Table I Rule Statement

B. MapReduce

In this paper, our inference method is based on

MapReduce and Hadoop platform. MapReduce is a

programming model for parallel and distributed processing

of batch jobs. Each job contains a map and a reduce, in

which the map phase assigns a key to each element and

then partitions the input data, while the reduce phase

processes each partition in parallel and merges all

intermediate values with the same key into final results. It

provides real-time read/write access to very large tables

(billions of rows and millions of columns) on clusters of

commodity hardware. Because of its features in linear

scalability, automatic failover support

V. INCREMENTAL AND DISTRIBUTED

INFERENCE OVER

LARGE-SCALE RDF DATASET

This section presents the IDIM over large-scale

RDF datasets. Before its detailed explanation, gives an

overview of its modules and main steps. The input of the

system is incremental RDF data files. As our knowledge

increases, new RDF data continuously arrive as commonly

seen in practice. Then the dictionary encoding and triples

indexing module encodes the input triples, and for each

triple an index is built based on an inverted index method.

After that the incremental triples are separated into the

incremental ontological triples and incremental assertional

ones. At the first time that we run the system, the TIF/EAT

Construction Module generates the TIF based on the

ontological and assertional triples. For the second time and

thereafter, the TIF/EAT Update Module only updates

98

relative TIF and EAT. The created or updated ones are

stored in TIF and EAT storages, respectively. The query

processing module takes users’ queries as input, and

reasons over the TIF and EAT to obtain the query results.

Each module is introduced next

A. Dictionary Encoding and Triples Indexing

Since RDF data usually contain many statements

made of terms that are either URIs or literals, i.e., long

sequences of characters, their processing and storage have

low performance. Therefore, we use an effective

compression method to reduce the data size and increase

the application performance. The dictionary encoding and

triples indexing module encodes all the triples into a

unique and small identifier to reduce the physical size of

input data. Then the ontological and assertional triples are

extracted from the original RDF data. To efficiently

compress a large amount of RDF data in parallel, we run a

MapReduce algorithm on input datasets to scan all the

URIs line by line, and for each URI, a unique numeric ID

is generated by the hash code method which is

implemented in RDF dataset that contain in incremental

mapping

B. Reasoning over TIF

In this section, a reasoning method based on TIF

is introduced. The forward and reverse paths are first

defined in the TIF concept to updated in the map phase

design in organization

Definition 3: Forward Path of Edge/Node: In each forest,

the forward path of node n or edge r is a route starting

from

 Fig. 2 PTIF Construction

Algorithm 1 Reasoning over PTIF

 begin

For each node p in PTIF,

 Q ← forward path of p

 For each node q in Q,

 Add triple <s, q, o> to R // generate the derived

 triple

 Return R

 end

Algorithm 2 Reasoning over DRTF

 begin

 For each node p in DRTF,

 If p has a domain edge linked to node c

 Add triple <s, rdf: type , c> to R

 If p has a range edge linked to node c

 Add triple <o, rdf: type , c> to R

 Return R

 end

Algorithm 3 Reasoning over CTIF

 begin

 For each node o in CTIF,

 C ← forward path of o

 For each node c in C,

 Add triple <s, rdf: type, c> to R

 Return R

 end

VI. SYSTEM IMPLEMENTATION AND

COMPARISON

A. System Architecture

To validate our proposed approaches, a prototype

is implemented on the Hadoop platform that is widely

used to enable the MapReduce technology. The reasoning

by a set of MapReduce programs, with HBase for storing

or reading the intermediate results, and return the query

results to end-users. We have designed six HBase tables to

store the encoded ID, PTIF, CTIF, DRTF, PEAT, and

CEAT. The Hadoop framework is an open source Java

implementation of MapReduce that allows for the

distributed processing of large datasets across clusters of

computers via simple programming models. It can scale up

from single servers to thousands of machines, each

offering local

99

 Fig. 3 System Architecture

Table II- Data Sets used in the experiment

TABLE II

BASIC INFORMATION OF BTC DATASET

B. Performance Evaluation

The dataset for our experiment is from the BTC

dataset was built to be a realistic representation of the

Semantic Web and therefore can be used to infer statistics

that are valid for the entire Web of data. BTC consists of

five large datasets, Datahub, DBpedia, Freebase, Rest, and

Timbl, and each dataset contains several smaller ones.

Their overview is shown in Table II. In order to show the

performance of our method, we compare IDIM with

WebPIE, which is the state-of-the-art for RDF reasoning.

As the purpose of this paper is to speed up the query for

users, we use WebPIE to generate the RDF closure and

then search the related triples as the output for the query.

The Hadoop configurations are identical to that in IDIM.

We run three times of the two methods on each dataset and

then calculate the number of the output triples and the time

needed for the reasoning. For IDIM, the output triples are

the ones in TIF and EAT, and the time for generating

TIF/EAT is recorded. For WebPIE, the output triples are

the ones in RDF closure, and the time for computing RDF

closure is recorded. The result is shown in Table III. From

it, we can conclude that the reasoning time for our method

is less than WebPIE (76.7% of WebPIE in total time) and

the output triples for our method is much fewer than

WebPIE (only 61.9% of WebPIE)

.

TABLE III

RESULT FOR THE REASONING (EIGHT NODES)

Fig. 4 Processing time on different nodes (Datahub dataset).

VII.CONCLUSION

In the big data era, reasoning on a Web scale

becomes increasing challenging because of the large

volume of data involved and the complexity of the task.

Full reasoning over the entire dataset at every update is too

time-consuming to be practical. The Hadoop

configurations are identical to that in IDIM. This paper for

the first time proposes an IDIM to deal with large-scale

incremental RDF datasets to our best knowledge. The

result is scalable and the output triples are the onces in TIF

and EAT. The construction of TIF and EAT significantly

reduces the computation time for the incremental inference

as well as the storage for RDF triples. Meanwhile, users

100

can execute their query more efficiently without

computing and searching over the entire RDF closure used

in the prior work. We have evaluated our system on the

BTC benchmark and the results show that our method

outperforms related ones in nearly all aspects

REFERENCE

[1] G.Antoniou and A. Bikakis ―DR-Prolog: A system for

 defensible reasoning with rules and Ontologies on the
 Semantic Web‖ IEEE Trans Know Data Eng., vol.

 19, no. 2, pp. 233–245, Feb. 2007.
[2] J. Cheng, C. Liu, M. C. Zhou, Q. Zeng, and A. Ylä-

 ―Automatic Composition of Semantic Web services

 based on fuzzy predicate Petrinets,‖ IEEE Trans.
 Autom Science Eng., Nov. 2013, to be published.

[3] J. Dean and S. Ghemawat, ―MapReduce: Simplified

 data processing on large clusters,‖ Commun. ACM,
 2008.

[4] IEEE TRANSACTIONS ON CYBERNETICS,VOL

 45, NO . 1, JANUARY 2015
[5] J. Guo, L. Xu, Z. Gong, C.-P. Che, and S. S.

 Chaudhry,‖Semantic Inference on heterogeneous e-

 Marketplace activities,‖ IEEE Trans. Syst., Man,
 Cybern. A, Syst,Humans, vol. 42, no. 2, pp. 316–

 Mar. 2012.

[6] M. J. Iba nez, J. Fabra, P. Álvarez, and J. Ezpeleta,
 ―Model checking analysis of semantically annotated

 business processes,‖ IEEE Trans. Syst.,Man,

 Cybern. A, Syst., Humans, vol. 42, no. 4, pp. 854–
 867, Jul. 2012.

[7] D. Kourtesis, J. M. Alvarez-Rodriguez, and I.

 Paraskakis, ―Semantic based QoS management in
 systems: Current status and future

 challenges,‖Future Gener. Comput. Syst., vol. 32,

 pp. 307–323, Mar.2014.
[8] M.S. Marshall, ―Emerging practices for mapping and

 linking life science data using RDF—A case series,‖

 Jul. 2012.
[9] M. Nagy and M. Vargas-Vera, ―Multiagent

 Ontology mapping framework for the Semantic

 Web,‖ IEEE Trans. Syst., Man, Cybern. A, Syst.,
 Humans, vol. 41, no. 4, pp. 693–704, Jul. 2011.

[10] H. Paulheim and C. Bizer, ―Type inference on noisy

 RDF data,‖ in Proc.ISWC, Sydney, NSW, Australia,
 2013, pp. 510–525.

[11] V. R. L. Shen, ―Correctness in hierarchical

 knowledge-based requirements,‖IEEE Trans. Syst.,
 Man, Cyber. B, Cybern., vol. 30, no. 4,pp. 625–631,

 Aug. 2000

[12] J. Urbani, S. Kotoulas, E. Oren, and F.
 Harmelen ―Scalable distributed reasoning using

 MapReduce ,‖ in Proc. 8th Int. Semantic Web

 Conf.,Chantilly, VA, USA, Oct. 2009, pp. 634–649
[13] J. Urbani, S. Kotoulas, J. Maassen , F. V. Harmelen,

 and H. Bal,―WebPIE : A web-scale parallel inference

 engine using‖
[14] J. Web Semantics, vol. 10, pp. 59–75, Jan. 2012.

[15] J. Weaver and J. Hendler, ―Parallel materialization of

 the finite RDF Closure for hundreds of millions of
 triples,‖ in Proc. ISWC, Chantilly,VA , USA, 2009,

 pp. 682–697

