
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

81 

 

A SURVEY ON HAN-CARLSON ADDER WITH 

EFFICIENT ADDERS  
 

Kaarthik.K, PG scholar, 

Dept.of Electronics and communication engineering, 

M. Kumarasamy College of engineering, 

Karur, Tamilnadu. 

kaarthikmkce@gmail.com 

 

 

 

Dr .C.Vivek , Associate Professor, 

Dept.of Electronics and communication engineering, 

M. Kumarasamy College of engineering, 

Karur, Tamilnadu 

vivekc.phd@gmail.com

 

Abstract— Regular CSLA uses dual Ripple Carry Adder to 

perform    addition operation. Modified CSLA (M-CSLA) uses 

BEC as one circuit which reduces the area furthermore, such 

that the total gate count is reduced subsequently. From the 

architecture of Han Carlson adder it is observed that there is a 

possibility of reducing the delays further in partial addition 

components. In this research, we modify CSLA with Han Carlson 

adders to reduce propagation delay between gates. Our proposed 

adders are tree structure based and are preferred to speed up the 

binary additions. This work estimates the performance of 

proposed design will be better in terms of Logic and route delay. 

The experimental results will show that the performance of HC 

with parallel prefix adder is faster and area efficient compared to 

conventional modified CSLA. 

Keywords-component:, Carry select adder (CSLA), Carry Look-

Ahead Adder (CLA), Ripple Carry Adder (RCA), Han Carlson 

(HC), Binary to excess code  (BEC)  

I.  INTRODUCTION 

 Addition is a fundamental operation for any digital 

system, digital signal processing (DSP) or control system. A 

fast and accurate operation of a digital system is greatly 

influenced by the performance of the residential adders.  

Adders are also very important component in digital systems 

because of their extensive use in basic digital operations such 

as subtraction, multiplication and division.  Hence, improving 

performance of digital adder would highly advance the 

execution of binary operations inside a circuit contained those 

blocks. The performance of a digital circuit block is gauged by 

analyzing its power dissipation, layout area and its operating 

speed.  

The Carry Select Adder (CSA) provides a 

compromise between small areas but longer delay Ripple 

Carry Adder (RCA) and a large area with short delay Carry 

Look-Ahead Adder (CLA) [1]. In mobile electronics, reducing 

the area and power consumption are key factors in increasing 

portability and battery life. Even in the servers and desktop 

computers, power consumption is an major design constraint. 

Design of area- and power-efficient high-speed data path logic 

system are the most substantial areas of research in VLSI 

system design. In digital adders, the speed of addition is 

limited by the time requirement to propagate a carry through 

the adder. The sum for each bit position in  elementary adder 

is generated sequentially after the previous bit position has 

been summed and a carry propagated into the next position 

[3]. Among  different types of adders, the CSA is intermediate 

regarding speed and area [2]. 

VLSI Integer adders find the applications in Arithmetic 

and Logic Units (ALU’s), microprocessors and memory 

addressing units. Speed of the adder frequently decides the 

minimum clock time in a microprocessor. The need for a 

Parallel Prefix adder is that it is primarily fast on comparison 

with ripple carry adders. Parallel Prefix adders (PPA) are 

family of adders derived from the common carry look ahead 

adders.  

These adders are well suited for adders with wider word 

lengths. PPA circuits uses a tree network to reduce the latency 

to be O(log2 n) where ‘n’ represents the number of bits. A 

three stage process is generally involved in the construction of  

PPA. The first step involves the creation of generate, 

complementary skill and propagate signals for all the input 

operand bits. 

iii
BAG                             (1) 

iiiii
BABAK          (2) 

i i i
P A B                          (3) 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

82 

 

 

                         Second step involves the generation of 

carry signals. In Parallel Prefix Adders, the dot operator ‘ 

’ and the semi-dot operator ‘  ’ are introduced. The dot 

operator ‘  ’ is defined by the equation (4) and the semi-

dot operator ‘  ’ is defined by the equation (5) 

        1 1 1 1
( , ) ( , ) ( , , )

i i i i i i i i i
g k g k g k g k k

   
                 (4) 

1 1 1
( , ) ( , ) ( , )

i i i i i i i
g k g k g k g

  
                 (5) 

   In the above equation, ‘  ’ operator is applied on 

two pair of bits
 ,

( )i
i

g k  and
1 1

( , )
i i

g K
 

. These bits 

represent, generate and propagate signals used by addition. 

The output of the operator is a new pair of bits which is 

once again combined using a dot operator ‘  ’ or semi-dot 

operator ‘  ’ with another pairs of bits. This procedural use 

of dot operator ‘  ’ and semi-dot operator ‘  ’ creates a 

prefix tree network which ultimately ends in  generation of 

all carry signals. In the final step, the sum bits of the adders 

are generated with the propagate signals of operand bits 

and the preceding stage carry bit using a xor gate. The 

semi-dot operator ‘  ’  will be obtained as last computation 

node in each column of the prefix graph structures, where 

it is essential to compute only generate term, whose value 

is the carry generated from that bit to the succeeding bit. 

II.  REQUIREMENTS 

A.  Design 

We  propose a high speed Carry Select Adder  by  
replacing  Ripple  Carry  Adder  with  parallel  prefix adder. 
Adders are  the basic building blocks  in digital  integrated 
circuit  based  designs.  Ripple  Carry  Adder  (RCA)  is  
usually preferred  for  addition  of  two multi-bit  numbers  as  
these  RCA offer  fast design  time among all  types of adders. 
However RCAs are  slowest adder as every  full adder must 
wait  until  the carry  is generated  from  previous  full  adder.  
On  the  other  hand,  Carry Look Ahead  (CLA)  adder  are  
faster  adder,  but  they  required more area. The Carry Select 
Adder  is a compromise on between the RCA and CLA  in  
terms of area and delay. CSLA  is designed by using dual 
RCA: due  to  this arrangement  the area and delay are 
concerned  factors.  It   clears  that  there  is  a  scope  for 
reducing delay in such arrangement. In this research, we have 
implemented  CSLA  with  parallel prefix  adders.  

 Parallel prefix  adders  are  tree  based  structure and  are  
preferred  to  speed  up  the  binary additions.  This  process  
estimates  the  performance  of  proposed design  in  terms  of  
logic  and  route  delay.  The  experimental results  show   the 
performance of CSLA with parallel prefix adder  is  fast  and  
area  efficient  compared  to  conventional modified CSLA. 

B.  Functionality 

 In addition to the final deadline, each section of the 
project was given separate deadlines to ensure each design 
group was making sufficient progress throughout the semester. 
The first deadline required us to turn in the ADD, OR, PASS 
A, 8:1 MUX functions, as well as an arbitrary function that we 
chose on our own, and the second design review required the 
ADD, SUB, SHIFT, ALU, in/out connectivity, and registers 
working. Since we had already finished those parts previously, 
the final report does not cover those individual components, 
but it does require that our ALU be able to complete each 
function and demonstrate its correctness.  

The total list of functions that our ALU must complete is 
listed in Table 1.  

Table 1.  Required ALU functions 

 

C. Metric 

A single full-adder is capable to add two one-bit numbers 
and an input carry. In order to add binary numbers which is 
more than one bit, the full-adders must be employed in 
addition. A n-bit parallel can be constructed using number of  
full adder circuits connected in parallel. 

The parallel adder is ripple carry adder in which the carry 
output of each full-adder stage is connected with the carry 
input of the next higher-order stage. Therefore the sum and 
carry output of any stage cannot be produced until the input 
carry occurs; this leads to time delay in the addition process. 
The delay is known as carry propagation delay.  

The ripple carry adder is constructed by cascading full 
adders (FA) blocks in series.  One full adder is responsible for 
the addition of two binary digits at any stage of the ripple carry.  
The carryout of one stage is fed directly to the carry-in of the 
next stage.  Even though this is a simple adder and can be used 
to add unrestricted bit length numbers, it is however not very 
efficient when large bit numbers are used. One of the most 
serious drawbacks of this adder is that the delay increases 
linearly with the bit length. 

One method of speeding up the process by eliminating the 
inter stage carry delay is called carry look-ahead addition. 
This method utilizes logic gates to look at the lower order bits 
of the augends and addends to see if a higher-order carry is to 
be generated. 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

83 

 

The use of one half-adder or one full-adder are great for 
add up two binary numbers with a length of one bit each, but 
when the computer needs to add up two binary numbers with a 
longer length, there are several ways of doing this. The fastest 
way is to use the Parallel Binary Adder. The Parallel Binary 
Adder uses one half-adder, along with one or more full adder.  

The total number of adder needed depends on the length of 
the largest of the two binary numbers that are to be added. For 
example, if we need to add up the binary numbers 1011 and 1, 
we would need four adder in total, because the length of the 
larger number is four, by keeping this in mind, here is a 
demonstration of how a four-bit parallel binary adder works, 
by 1101 and 1011 as the two numbers to add: 

 

Fig 1. Ripple-Carry Adder 

When we add with the computer, it adds from right to left. 

Just like when we add without the computer, in the parallel 

binary adder is a step by step list, Fig.1 showing you what 

happens in the parallel Binary Adder. 

D.  Specification 

Each of the three metrics have been specifically stated how 

they will be evaluated. Active power is measured for one 

computation per cycle at the highest frequency achievable 

by the design for a specific series of inputs, which PICo 

will supply at the second design review. The delay is the 

worst case access delay. The area is the sum of the widths 

of transistors used in the design.” 

In addition, our design is assumed to interface 

with pads that connect to the outside world with all inputs 

valid .5 FO4 delay before the rising edge of the clock, and 

hold for 1 FO4 delay after the rising edge of the clock. 

Therefore, we assumed that the clock is an ideal signal 

driven through a static CMOS buffer. 

III. DESIGN 

During our design process, we encountered several design 
decisions that we had to make to reduce our overall metric. 

We made our original designs for each sub-circuit when they 
were due for the design reviews, however, we did not take into 
account metric decisions then.  

When it came time to reduce the overall delay, power, and 
cost of our design, we went to each individual sub circuit and 
evaluated how we could reduce the specifications for that sub 
circuit, in an effort to reduce the overall sub circuit. For many 
part of our processor, we chose to use new designs, such as 
new Adders, reduced the number of gates where we could, and 
sized our transistors proportionally in order to be the most 
efficient.  

Images of our designs can be found attached as 
Appendices to this document 

A.  Adder 

The most important decision in our Digital Signal 
Processor was choosing the adder, as its delay would be 
significantly greater than any other function, and so would be 
the determining factor in our maximum speed. In all cases, the 
adder was converted to an adder/ subtractor by adding an 
inverter, a 2:1 multiplexer, and a select line. This line was 
determined to be 0 for add, and 1 for subtract. This line also 
was the carry in for the entire adder, which gave a 2’s 
complement version of B when subtract was selected. 

1) Ripple Carry Adder : Originally we used a ripple-carry 

adder, which gave us a large delay of 11ns, but was simple 

to implement by chaining together full Adders. The full 

adders were designed using the mirror adder pattern as Fig. 

3rather than the full static CMOS design. The large delay 

was a result of each full adder having to wait for the carry 

bit to be calculated from the previous full adder, and as a 

result, a large number with 16 bits would take a long time 

to fully calculate. Because of the large delay, we searched 

for faster adders to increase speed as in Fig.2.   

 

Fig 2. Ripple-Carry Adder 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

84 

 

 

Fig 3. Mirror Full Adder 

2 ) Carry Look-Ahead Adder: Carry Look-Ahead adders 

were designed to reduce overall computational time by 

using propagate and generate signals for each bit position, 

based on whether a carry is propagated through to the next 

bit.  

 The carry lookahead adder (CLA) solves the carry 

delay problem by calculating the carry signals in advance, 

based on the input signals. It is based on the fact that a 

carry signal will be generated in two cases: (1) when both 

bits           and  ai are bi 1, or (2) when one of the two bits 

is 1  and the carry-in is 1. 

 This sequence of adding from the least significant 

bit and propagating the carry bit ahead reduces the overall 

delay, but is more complex than the Ripple-Carry adder, 

and also uses more transistors overall. Due to its 

complexity and size, as well as the possibility of a 

Manchester adder see Fig.4, we decided not to use a carry 

look-ahead adder. 

 

Fig 4. Carry Look Ahead Adder 

3) Carry Select Adder: In the carry select adder, there are 
two full adders, each of which takes a different preset carry-in 
bit. The sums and carry-out bits that are produced are then 
selected by the carry-out from the previous stage. 

 One of the earliest logarithmic time adder designs 

is based on the conditional - sum addition algorithm. In this 

scheme, blocks of bits are added in two ways: assuming an 

incoming carry of 0 or of 1, with the correct outputs 

selected later as the block’s true carry-in becomes known. 

This is one of the speed-up techniques that is used in order 

to reduce the latency of carry propagation as seen with the 

ripple-carry adder.  

  Basically, the adder will add the sum with and 

without a carry from the previous stage, and will then use a 

multiplexer to determine which sum is the correct one, 

depending on whether or not there was a carry. The basic 

design for the carry select adder is shown in Fig.5.  

 

Fig 5. Carry Select Adder 

The Carry Select adder was more efficient than the Ripple-

Carry Adder, with a delay of 8ns. It was more difficult to 

implement, but since we had already finished our 2:1 

multiplexers, it wasn’t too difficult. The major problem 

with the carry select adder was the size, well over double 

that of the ripple carry adder. This was too large a price to 

pay in cost to get only a 3ns increase in speed. 

4) Manchester Carry Adder : The Manchester Carry Chain 

is a variation of the Carry Look-Ahead adder, but instead 

uses shared transistor logic to lower the overall transistor 

count. The Manchester Carry Adder consists of cascading 

chains of Manchester Carry chains, which is broken down 

in order to reduce the number of series-propagate 

transistors, resulting a great reduction in delay as the 

number of transistors in series is reduced. As with the 

Carry Look-Ahead adder, it was too complex to be used in 

this design is shown in Fig.6. 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

85 

 

 

Fig 6. Manchester Carry Adder 

B. Transmission Gates 

 Some sub-circuits of our design also make use of 

transmission and pass gates, depending on the situation. 

We decided to use pass gates in certain instances because it 

reduced our overall number of transistors required, which 

meant less power and cost. Their was also a slight 

reduction when we used pass gates in most cases, though 

we could only use these gates when the next input was 

buffered, in order to restore the signal to its full power is 

shown in Fig.7.   

 

Fig 7. Transmission Gate 

C.   8:1 Multiplexer 

 For our 8:1 Multiplexer, we originally used four 

2:1 multiplexers combined with a 4:1 multiplexer, which 

worked well. Our 4:1 multiplexers were created out of two 

2:1 multiplexers, combined with another 2:1 multiplexer to 

selected between all 4 inputs, as shown in Fig.8. 

 

Fig 8.   4:1 Multiplexer 

However, we realized that we could implement the same 

function using two 4:1 multiplexers combined with a 2:1 

multiplexer to meet the requirement as well, and it would 

also offer a better delay, with fewer transistors. 

D. Parallel Prefix Adder 

 Parallel Prefix Adder (PPA) is very useful in 

today’s world of technology because of its implementation 

in Very Large Scale Integration (VLSI) chips. The VLSI 

chips rely heavily on fast and reliable arithmetic 

computation. These contributions can be provided by PPA. 

There are many types of  PPA such as Brent Kung , Kogge 

Stone , Ladner Fisher , Hans Carlson  and Knowles.   

For the purpose of this research, only Han Carlson adder 

will be investigated with the other types of adders. 

 
Fig 9: PPA Structured Diagram  

 The design file has to be analyzed from Fig.9, 

synthesis and compile before it can be simulated. Simulation 

results in this project come in the form of Register Transfer 

Level (RTL) diagram, functional vector waveform outcome 

and classic timing analysis. The RTL design can be obtained 

by using the RTL viewer based on the Netlist viewer. 

Functional vector waveform outcome are produced by 

selecting random bit  values and add up to produce the sum 

and carry bits. Timing analysis can be obtained by viewing the 

summary of the classic timing analysis after compiling the 

whole project. The   

simulations are done by using the functions. 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

86 

 

 Simulation analysis is prepared by viewing the results 

from the simulated VHDL source code. Analysis of the 

simulation is performed once the desired simulation outcome 

is obtained. Simulation results show the classic timing 

analysis, RTL schematic diagram and also vector waveform 

outcome of the simulated designs. The analysis of the PPA is 

conducted by viewing the time delay produced by Han 

Carlson adders in performing bits addition as displayed in 

Fig.11. 

Finally, the PPA comparison will be made once all six  
simulation results are analyzed. Han Carlson adder and the 

various efficient adders  will be compared at this stage and 

will be conducted in its bit category. The comparisons will be 

based on the computational speed or also known as time 

propagation delay and area (cost) from Fig.10.  

 
Fig 10.   Han Carlson adder 

 

 
Fig 11.   System design Flow chart 

IV. SURVEY RESULTS 

 We tested all of our components using simulation 

through the modelsim 6.2, the area, power and delay of the 

various adders are been compared and obtained the outputs 

in the form of chart. In this obtained output the power 

distribution of the Han Carlson adder is higher when 

compared with the all other adders which could be highly 

efficient for an IC chip to provide the results. The delay is 

also an major term to be concerned while the execution of 

results, if the delay is higher, then the processing speed will 

be  noticed as less even it is an efficient adder the delay is 

higher it is not been considered by anybody for their work. 

The delay is also be a major factor , in Han Carlson adder it 

lower when compared with the other types of adders which 

could be a major advantage for our adder. 

 The area of an IC chip is been decided by the 

number of gates used in our project to obtain the expected 

result. In the Han Carlson adder the number of gates used 

is less , if the number of gates is reduced the area will also 

been gets reduced in chip. It can able use the special 

technique called as the folding transformation technique 

which could be highly useful to obtain the result with less 

number of gates where in the other type of adders this 

technique is not applicable, So in area wise also the Han 

Carlson adder is highly efficient and produce the results 



International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) 

ISSN: 0976-1353 Volume 20 Issue 2 – FEBRUARY 2016. 
 

87 

 

without speculation see the Performance analysis from 

Fig.12. 

 

 

Fig 12. Performance Analysis of Adders 

V.  ACKNOWLEDGEMENTS 

Our thanks to M.Kumarasamy college of Engineering for 

offering us the opportunity to do this wonderful  project, 

and to Dr. V. Kavitha for her Guidance to do the survey. 

VI. REFERENCES 

[1] Bender, Ryan (April 17, 2000).  A Simulator for Digital Circuits. 
Massachusetts Institute of Technology. Retrieved on April 28, 2008 
from http://mitpress.mit.edu/sicp/full_text/sicp/book/node64.html  

[2] Alan, Elay (2007). Hierarchal Schematics and Simulation Within 
Cadence. University of California at Berkley. Retrieved on April 28, 
2008 from 
http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f07/CadenceLab
s/hierarchy/hierarchy.htm  

[3] Lin, Charles (2003). Half Adders, Full Adders, Ripple Carry Adders. 
University of Maryland. Retrieved April 28, 2008 from 
http://www.cs.umd.edu/class/sum2003/cmsc311/Note/Comb/adder.html  

[4] Mlynek, D. Design of VLSI Systems. EPFL. Retrieved on April 28, 
2008  from 
http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch06/ch06.html 

[5] Lie, Sean. (2002). Carry Select Adder Details. Retrieved April 28, 2008 
from http://www.slie.ca/projects/6.371/webpage/cryseladderdetails.html 

 

 

http://mitpress.mit.edu/sicp/full-text/sicp/book/node64.html
http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f07/CadenceLabs/hierarchy/hierarchy.htm
http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f07/CadenceLabs/hierarchy/hierarchy.htm
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Comb/adder.html
http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch06/ch06.html
http://www.slie.ca/projects/6.371/webpage/cryseladderdetails.html

