

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

78

Abstract— Field Programmable Gate Arrays (FPGA) are

susceptible to soft errors due to the shrinkage of feature size and
reduction in core voltage which reduces the critical charge
required to change the state of a circuit element. To improve the
reliability and availability of the FPGA based designs used in
Nuclear Power Plants special care has to be taken against these
emerging risks. In this paper, the effects of radiation on Finite
State Machines (FSM) is reviewed and resource utilization and
performance penalty are analyzed by using the fault tolerant
techniques like Triple Modular Redundancy (TMR),
Hamming-3 encoding and safe FSM synthesis. A novel scripting
based fault injection technique is proposed for verifying the
fault tolerant techniques at netlist level. The PREP3 state
machine is used as a benchmark circuit in this paper. This work
predominantly focuses on the practical use of fault tolerant
techniques such as TMR, Error Detection and Correction by
using Hamming-3 encoding for state register and Safe FSM
implementation in live designs targeted at Nuclear Power Plants
in India. The major objective of this work is to review the
various field proven fault tolerant techniques targeted at
FPGAs and develop a simple scalable methodology for
verification of the same.

Index Terms— FPGA, Single Event Upset (SEU), Fault
tolerance, Finite State Machine, TMR, Fault Injection.

I. INTRODUCTION

 The interest towards the use of Hardware Programmable
Device (HPD) technologies like Field Programmable Gate
Array (FPGA) and Complex Programmable Logic Device
(CPLD) in Nuclear Power Plant (NPP) safety automation is
rising internationally as the various advantages of the HPDs
over the currently used analog or microprocessor-based
software technology are being recognized [1]. The high
complexity and the difficulties in demonstrating the safety of
software-based applications are among the reasons that have
led the nuclear power utilities and Instrumentation and
Control (I&C) system developers to look for new
technologies such as the HPDs for implementing the safety
automation applications [1]. HPDs offer greater simplicity
and less burdensome regulatory approval because the end
product can be designed to be purely hardware, with
independent, parallel signal paths similar to conventional

analog electronics. As the feature sizes of FPGA technologies
become smaller, new challenges emerge in the area of
reliability [2]. New generation transistors are characterized
by a reduction in core voltage, a decrease in transistor
geometry and an increase in switching speeds. Due to these
features, random noise and signal integrity problems
including inductive or capacitive crosstalk can be sources of
errors in electronic circuits, especially if such effects are not
taken into account in the circuit design [3], [4]. Radiation
effects are increasingly seen as a major contributor to the
overall error rate [4]. Mitigation of radiation effects has been
required for Military/Aerospace applications for decades
because of the intense radiation fields in which such
applications must function. More recently, radiation effects
have become a concern for terrestrial applications such as
medical, automotive and safety critical applications. This
problem necessitates the use of fault tolerant techniques for
radiation induced effects in HPDs consisting of FPGAs [5].
The rest of the paper is organized as follows. Section II
depicts the SEU mechanism and susceptibility of current
FPGA technologies. Section III gives a survey on fault
tolerant design techniques used for FSM designs along with
verification methodologies based on fault injection. The state
machines used for analysis are illustrated in section IV. The
proposed fault injection method is explained in section V.
Synthesis and simulation results are depicted in section VI
and the paper is concluded with future scope in section VII.

II. SINGLE EVENT UPSET MECHANISM AND CURRENT FPGA

TECHNOLOGIES SUSCEPTIBILITY TO SEU

The current FPGA technologies can be divided into three
major categories according to the type of routing fabric used
in the devices. SRAM-based FPGAs takes advantage of latest
fabrication processes and offers much higher integration and
logic capacity when compared to flash/antifuse based
processes which are typically two generations behind the
pure CMOS processes. For typical reactor applications, Flash
or antifuse based technologies are preferred over SRAM
FPGAs and hence in this paper designs targeted at flash based
FPGAs are discussed.

Verification of Fault Tolerant Techniques in
Finite State Machines using Simulation Based

Fault Injection Targeted at FPGAs for SEU
Mitigation

T. S. Nidhin1, Anindya Bhattacharyya2, R. P. Behera3, T. Jayanthi4, K. Velusamy5

1Senior Research Fellow, 1,2,3,4,5Indira Gandhi Centre for Atomic Research, 1Homi Bhabha National Institute,

Kalpakkam, Tamilnadu-603102, India

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

79

A. SEU Mechanism

Chip packaging materials, in general, contain small
amounts of radioactive contaminants that can cause soft
errors through alpha-particle emission [6]. The positively
charged alpha particle travels through the semiconductor and
disturbs the distribution of electrons within the device.
Controlling alpha particle emission rates for critical
packaging materials to less than a level of 0.001 counts per
hour per square centimeter (cph/cm2) is required for the
reliable performance of most circuits. By comparison, the
count rate of a typical sole of a shoe is between 0.1 and
10cph/cm2 [7], [8]. Cosmic-ray flux another dominant cause
of errors creates a shower of energetic secondary particles.
Cosmic ray particle flux depends on altitude, the rate of
upsets in aircraft can be more than 300 times the upset rate at
sea level [8]. Logic circuits with a higher capacitance and
higher logic voltage levels are less likely to suffer an error
[3].

Critical charge defined as the minimum amount of induced
charge required at a circuit node to cause a voltage pulse to
propagate from that node to the output and to be of sufficient
duration and magnitude to disturb a memory element varies
greatly depending on the technology. For example, in
SRAM-based FPGAs, the SRAM cell storing the
configuration bit is typically much smaller (that is, lower
capacitance) than a normal flip-flop. Because the internal
nodes in an SRAM cell configuration have a smaller
capacitance, the critical charge required for upsetting the
configuration bits is much smaller than that of a flip-flop. As
described later in this document, this effect will influence the
strategy employed to mitigate errors due to radiation.

B. SEU on FPGA

The radiation induced soft errors are the events in which
the data is corrupted, but the device itself is not permanently
damaged [9]. Soft errors can be categorized as Single Event
Transients (SET) and Single Event Upsets (SEU). In SET, a
node in the circuit temporarily holds an incorrect value.
Normally SETs are transitory in nature where the
functionality of the circuit is unaffected. However the
transient can be captured into flip-flops or other memory
elements can lead to functional failure of the system. Systems
working on high frequencies are more susceptible to SET
captures because the probability of capture increases with
frequency. In SEUs the charge collected by the energetic
particle strike is greater than the critical charge and causes a
change of state of a memory cell, register, latch or flip-flop.
The radiation induced susceptibility matrix is given in table
1.

TABLE I. FPGA SUSCEPTIBILITY MATRIX

Resource Flash SRAM
I/O No Low
BRAM Very high Very high
Registers Medium Medium
Logic Cells No High
Routing matrix No High

III. PREVIOUS WORK

The control parts of most FPGA based designs are built by
Finite State Machines and any bit-flips due to Single Event

Effects (SEE) in FSMs can adversely affect the performance
and reliability of the overall system [10].

A. Survey of Design Techniques

 There are varieties of issues regarding the design of finite
state machine using the hardware description languages. The
areas to be focused are coding style, state encoding schemes,
decoding logic and output generation as outlined in [11].
There are multiple fault tolerant techniques available; Triple
Modular Redundancy (TMR) is the standard for system level
architectures in safety critical systems. Duplex architecture,
Explicit Error Correction (EEC) architecture, Modified EEC
and Implicit Error Correction can also be used with TMR
Architecture [12] for fault tolerance. These architectures
particularly suitable for VLSI implementation using low
power CMOS technology are identified, with single flip-flop
errors. TMR with Error Correction Codes is explained in [13]
and TMR with partial reconfiguration [14] are also
commonly used for improving the reliability. Error
Detection and Correction (EDAC) codes can be used as an
efficient fault tolerant technique for memory elements and
message passing circuits. Most popular single error
correcting code is Hamming codes [15]. Single Error
Correction (SEC) code with minimum Hamming distance of
three is used with different architectures such as Single
Independent Decoder (SID) architecture, Distributed Error
Correction (DEC) architecture, Upset-oriented SID (UPS)
and Upset-oriented DEC (UPD) to achieve fault tolerance in
FSMs [16].

In the fault tolerant and fail safe designs the selection of
encoding style play a significant role on the dependability of
the state when a soft error or SEU occurs. The most
commonly used encoding techniques are Sequential or
Binary code, One-Hot code and Gray code. One-Hot
encoding provides an optimal design in terms of area,
performance and reliability for most of the FSM
implementations [17]. A simple parity calculation on the state
register can detect the onset of SEU and mitigative action can
be taken. Safe state machines are critical in high-reliability
designs. Synthesis tools, by default, perform reachability
analysis and optimize unused states and logic. Designers get
lulled into a sense of false security by writing the
“default/others” clause in HDL codes which during synthesis
is optimized away rendering the state machine unsafe.
Other techniques as reported in the literature are Mapping of
FSM into Synchronous Embedded Memory Block (SEMB)
enhances the runtime reliability without a significant increase
in power consumption [18]. A functional decomposition
concept for implementing FSM into embedded memory can
also be used [19]. Duplication with Comparison (DWC) and
Concurrent Error Detection (CED) are the other popular
methods [20], [21]. DWC is targeted only at SRAM devices
and is used as a trigger for partial reconfiguration or memory
scrubbing. The reliability of sequential circuits can be
improved by adding redundant equivalent states to the states
with a high probability of occurrence [22]. Temporal Data
Sampling and Majority voting have also been explained as a
mitigation technique for SEUs [23]. The Single event upset
mitigation techniques for configuration memory of SRAM
based FPGAs are explained detail in [24].

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

80

B. Survey of Design Techniques

There are varieties of issues regarding the design of finite
state machine using the hardware description languages. The
areas to be focused are coding style, state encoding schemes,
decoding logic and output generation as outlined in [11].
There are multiple fault tolerant techniques available; Triple
Modular Redundancy (TMR) is the standard for system level
architectures in safety critical systems. Duplex architecture,
Explicit Error Correction (EEC) architecture, Modified EEC
and Implicit Error Correction can also be used with TMR
Architecture [12] for fault tolerance. These architectures
particularly suitable for VLSI implementation using low
power CMOS technology are identified, with single flip-flop
errors. TMR with Error Correction Codes is explained in [13]
and TMR with partial reconfiguration [14] are also
commonly used for improving the reliability. Error
Detection and Correction (EDAC) codes can be used as an
efficient fault tolerant technique for memory elements and
message passing circuits. Most popular single error
correcting code is Hamming codes [15]. Single Error
Correction (SEC) code with minimum Hamming distance of
three is used with different architectures such as Single
Independent Decoder (SID) architecture, Distributed Error
Correction (DEC) architecture, Upset-oriented SID (UPS)
and Upset-oriented DEC (UPD) to achieve fault tolerance in
FSMs [16].

In the fault tolerant and fail safe designs the selection of
encoding style play a significant role on the dependability of
the state when a soft error or SEU occurs. The most
commonly used encoding techniques are Sequential or
Binary code, One-Hot code and Gray code. One-Hot
encoding provides an optimal design in terms of area,
performance and reliability for most of the FSM
implementations [17]. A simple parity calculation on the state
register can detect the onset of SEU and mitigative action can
be taken. Safe state machines are critical in high-reliability
designs. Synthesis tools, by default, perform reachability
analysis and optimize unused states and logic. Designers get
lulled into a sense of false security by writing the
“default/others” clause in HDL codes which during synthesis
is optimized away rendering the state machine unsafe.
Other techniques as reported in the literature are Mapping of
FSM into Synchronous Embedded Memory Block (SEMB)
enhances the runtime reliability without a significant increase
in power consumption [18]. A functional decomposition
concept for implementing FSM into embedded memory can
also be used [19]. Duplication with Comparison (DWC) and
Concurrent Error Detection (CED) are the other popular
methods [20], [21]. DWC is targeted only at SRAM devices
and is used as a trigger for partial reconfiguration or memory
scrubbing. The reliability of sequential circuits can be
improved by adding redundant equivalent states to the states
with a high probability of occurrence [22]. Temporal Data
Sampling and Majority voting have also been explained as a
mitigation technique for SEUs [23].

A. Survey of Fault Injection Techniques

To evaluate the sensitivity of a design to soft errors the design
has to be verified thoroughly either at simulation level or
validated at FPGA level on the test board. This entails the use

of fault injection methodology. Fault injection is well
documented in the literature as a verification/validation
technique for characterizing the reliability of HPDs.
VHDL-based Evaluation of Reliability by Injecting Faults
efficientlY (VERIFY) introduces a new way for defining the
behavior of hardware components in case of faults by
extending the VHDL language with fault injection signals
together with their rate of occurrence [25]. Autonomous
Multilevel emulation-based fault injection for Soft Error
Evaluation (AMUSE) is a method that can inject SET faults
by integrating both Register Transfer Level (RTL) and netlist
level [26]. An easy to develop and flexible FPGA fault
injection technique which utilizes the debugging facilities of
Altera FPGA in order to inject SEU and MBU fault models
in flip-flops and other memory units is presented in [27].
Another technique based on simulator commands, saboteurs
and mutants are presented in [28]. There are many other
simulation/emulation or hybrid fault-injection tools and
methods available which include a method/tool called NETFI
(NETlist Fault Injection) it can inject fault in any HDL
model, VHDL, Verilog etc. [29]. In addition, to the speed and
automation, NETFI can target the block RAMs of a given
circuit.

IV. BENCHMARK FSM FOR ANALYSIS

PREP3 benchmark was taken up as a primary benchmark
for initial analysis followed by PREP4 and two other general
designs. The PREP3 is a mealy state machine with eight
inputs and eight outputs, which has eight states and twelve
transitions. PREP4 is a large mealy FSM with 16 states and
43 transitions. All the FSMs are implemented using VHDL
coding and synthesized for a flash based FPGA for indication
purpose.

V. DEVELOPMENT OF SCRIPT BASED FAULT INJECTION

TECHNIQUE

The major challenge in any fault tolerant design technique
is the methodology used for verification or validation for
quality assurance of the final product. The methodology used
is often too complex and customized to be used across a
substantially big project with multiple designs with different
specifications. We propose a simple TCL script based
automated fault injection methodology built around the target
simulator which can take designs in both RTL and netlist
level of abstraction. The proposed methodology parses a
design in a guided or automated manner selecting sensitive
nodes where the fault is to be injected and generating a TCL
script for the same. The “force –freeze” command is used to
change the value of any signal/wire. The value can be made
stuck or frozen at either ‘1’ or ‘0’ for any particular period of
time. For example; “force -freeze
sim:/test_prep3/I1/CURRENT_STATE(7) 1 {200 ns}
-cancel {250 ns}” stuck the value of 7th bit of register
CURRENT_STATE as ‘1’ for a duration of 50 nanoseconds.
The process of generating the TCL file containing the fault
injection is automated and can be coded in Perl/Python/.net
or any other suitable language. The algorithm proposed here
parses and finds the nodes with maximum fanouts so a single
injected fault caused maximum damage to the functionality
of the design.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976

 As shown in fig. 1 the verification setup consists of a
self checking assertion based test bench which is used for
generating the stimulus and counting the number of errors. If
there is any mismatch in the values than the expected, fault
counter counts an error.

 For indication purposes only, in this paper the
injected at the netlist level, particularly focused on state
registers of the FSM as the target FPGA is only sensitive to
SEUs at the register level. For the change in the technology of
target to SRAM, the methodology is flexible can be easily
modified to inject fault at combinational circuits which are
implemented in look-up tables (LUT). Simple designs have
been taken up for proving the effectiveness of the
methodology.

Fig. 1. Verification setup block diagram

VI. SYNTHESIS AND SIMULATION

PREP3, PREP4, and two more simple FSM designs are
considered for analyzing the resource utilization and timing
characteristics. The increase in the percentage of resource
utilization and the decrease in timing performance is
compared to the normal design is shown in Fig. 2 and Fig. 3.
The increased area for Hamming code, when compared to
TMR is attributed to the fact that TMR for flash FPGAs are
implemented for the state registers only, not the
combinational logic part of the design. Combinational logic
in flash based FPGAs are implemented using multiplexers
which are immune to SEUs, whereas for SRAM
FPGAs the entire logic has to be triplicated giving a
substantial rise in the resource utilization. Safe FSMs also
shows a marked increase in resource utilizati
reason why synthesizing tools remove the excess logic
associated unless the ‘safe’ attribute for FSM is used. The
reduction in frequency is maximum for Hamming
implementation. So it is noted that TMR method for flash
based FPGAs are superior when compared to the other two in
terms of resource utilization and timing while Hamming will
have an advantage of indicating and correcting single bit
error in state register which can be used to take the FSM to a
safe state.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

81

fig. 1 the verification setup consists of a
self checking assertion based test bench which is used for
generating the stimulus and counting the number of errors. If
there is any mismatch in the values than the expected, fault

For indication purposes only, in this paper the fault is
injected at the netlist level, particularly focused on state
registers of the FSM as the target FPGA is only sensitive to
SEUs at the register level. For the change in the technology of
target to SRAM, the methodology is flexible can be easily

dified to inject fault at combinational circuits which are
up tables (LUT). Simple designs have

been taken up for proving the effectiveness of the

Verification setup block diagram

ULATION RESULTS

PREP4, and two more simple FSM designs are
considered for analyzing the resource utilization and timing
characteristics. The increase in the percentage of resource
utilization and the decrease in timing performance is

n in Fig. 2 and Fig. 3.
The increased area for Hamming code, when compared to
TMR is attributed to the fact that TMR for flash FPGAs are
implemented for the state registers only, not the
combinational logic part of the design. Combinational logic

based FPGAs are implemented using multiplexers
which are immune to SEUs, whereas for SRAM-based
FPGAs the entire logic has to be triplicated giving a
substantial rise in the resource utilization. Safe FSMs also
shows a marked increase in resource utilization and is a major
reason why synthesizing tools remove the excess logic
associated unless the ‘safe’ attribute for FSM is used. The
reduction in frequency is maximum for Hamming-3
implementation. So it is noted that TMR method for flash

erior when compared to the other two in
terms of resource utilization and timing while Hamming will
have an advantage of indicating and correcting single bit
error in state register which can be used to take the FSM to a

Fig. 2. Resource utilization increase in percentage.

Fig. 3. Maximum frequency reduction in percentage

The value of the state register is changed from ‘1’ to ‘0’ or
‘0’ to ‘1’ for particular time periods and the number of errors
generated due to the injected fault is measured by the self
checking assertion based test bench simulating the netlist file.
This is repeated for all the netlist files which are generated
after implementing the fault tolerant techniques and the
results are analyzed. The technique developed can be suitably
modified to parse the netlist files and pick up random
signals/nets for fault injection and checking.
Fig. 4 shows the simulation waveform of PREP3 FSM after
injecting fault in the state and output registers randomly.
Total of 24 faults injected into the signals
CURRENT_STATE(7) to CURRENT_STATE(0) and
OUTT_I_C(7) to OUTT_I_C(0) in random time intervals and
it has generated 20 errors.
Fig. 5 shows the waveform for TMR. Faults are injected to
the state and output registers of one of the TMR logic blocks.
It uses 2 out of 3 voting logic so it has corrected all the faults
injected in one TMR block. The fault injected in more than
one TMR logic block and voting logic cannot be corrected by
TMR method, this was analyzed and verified by injecting
fault in these blocks.

By injecting fault in one of the state registers,
CURRENT_STATE_DUP(7) values is forced to high from
100ns to 150ns has generated an unreachable state. The safe
FSM implementation forced the state machine into a reset
state is shown in fig. 6. Hamming distan
mitigation technique for single bit errors only. Two errors are
injected into CURRENT_STATE(6) has generated 3 errors;
because Hamming distance 3 code cannot correct more than
one error is shown in fig. 7.

Fig. 4. The Waveform of fault injection without using any
fault tolerant methods.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

increase in percentage.

Maximum frequency reduction in percentage.

The value of the state register is changed from ‘1’ to ‘0’ or
‘0’ to ‘1’ for particular time periods and the number of errors
generated due to the injected fault is measured by the self
checking assertion based test bench simulating the netlist file.
This is repeated for all the netlist files which are generated
after implementing the fault tolerant techniques and the
results are analyzed. The technique developed can be suitably

to parse the netlist files and pick up random
signals/nets for fault injection and checking.
Fig. 4 shows the simulation waveform of PREP3 FSM after
injecting fault in the state and output registers randomly.
Total of 24 faults injected into the signals

RRENT_STATE(7) to CURRENT_STATE(0) and
OUTT_I_C(7) to OUTT_I_C(0) in random time intervals and

Fig. 5 shows the waveform for TMR. Faults are injected to
the state and output registers of one of the TMR logic blocks.

ut of 3 voting logic so it has corrected all the faults
injected in one TMR block. The fault injected in more than
one TMR logic block and voting logic cannot be corrected by
TMR method, this was analyzed and verified by injecting

injecting fault in one of the state registers,
CURRENT_STATE_DUP(7) values is forced to high from
100ns to 150ns has generated an unreachable state. The safe
FSM implementation forced the state machine into a reset

fig. 6. Hamming distance 3 code is used as a
mitigation technique for single bit errors only. Two errors are
injected into CURRENT_STATE(6) has generated 3 errors;
because Hamming distance 3 code cannot correct more than

t injection without using any

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

82

Fig. 5. The Waveform of fault injection in one of the TMR
logic.

Fig. 6. The Waveform of fault injection after implementing
safe FSM.

Fig. 7. The Waveform of 2 errors injected after Hamming 3
implementation.

VII. CONCLUSION

Most of the simulation based fault injection techniques are
developed using VHDL/Verilog coding, TCL scripting based
technique makes it simpler. This technique is the best
alternative for other state of the art simulation based fault
injection techniques in terms of ease of development and
implementation. It provides better platform independency,
controllability and observability.

Various fault tolerant FSM design techniques and fault
injection techniques were discussed for different target
FPGA architectures like SRAM and Flash. A Flash based
FPGA was used as a notational target device and results were
presented in terms of resource utilization and timing. It is
found that the TCL scripting based fault injection tool could
able to inject any number of faults at netlist level efficiently.
From the data presented it is concluded that TMR gives the
best performance in terms of area and timing. Hamming-3
encoding shall only be used when the probability of single bit

upset exists and safe FSM implementation takes the FSM to a
fail-safe state when an invalid state occurs. Future work
involves the development of an efficient fault tolerant design
technique and validation of the designs through irradiation
experiments with neutrons and heavy ion beams.

ACKNOWLEDGMENT

The first author gratefully acknowledges the grant of the
research fellowship from the Department of Atomic Energy,
Government of India.

 REFERENCES

[1] Jukka Ranta “The current state of FPGA technology in the nuclear
domain” published by VTT Technical Research centre of Finland,
March 2012.

[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic,” Proc. of the Intl. Conf. on Dependable Systems
andNetworks (DSN’02), Washington D.C., June 2002.

[3] A.H Johnson “Radiation effects in Advanced Microelectronic
Technologies” IEEE TRANSACTIONS ON NUCLEAR
SCIENCE,VOL.45,NO.3,JUNE 1998.

[4] Raoul Velazo, Pascal Fouillat, Ricardo Reis “Radiation effects on
Embedded Systems” book published by Springer, 2007.

[5] Frank Hall Schmidt, Jr. “Fault Tolerant Design Implementation on
Radiation Hardened By Design SRAM-Based FPGAs” thesis
submitted at the “MASSACHUSETTS INSTITUTE OF
TECHNOLOGY”.

[6] Robert C. Baumann “Radiation-Induced Soft Errors in Advanced
Semiconductor Technologies” IEEE TRANSACTIONS ON DEVICE
AND MATERIALS RELIABILITY, VOL 5, NO.3, SEPTEMBER
2005.

[7] Santosh kumar, Shalu Agarwal and Jae Pil Jung “ Soft Error issue and
importance of low alpha solders for Microelectronics packaging” Rev.
Adv. Mater. Sci. 34 (2013) 185-202.

[8] Jiri Kvasnicka “Reliability Analysis of SRAM-based Field
Programmable Gate Arrays” Ph.D. Thesis submitted to Chech
technical University in Prague, August 2013.

[9] Michael Nicolaidis “ Soft errors in modern electronic systems”
Springer; 2011 edition.

[10] Chu, pong P, “RTL hardware design using VHDL”, A Wiley
InterScience Publication, USA, ISBN: 978-0-471-72092-8,
pp.313-373,2006.

[11] Iuliana Chiuchisan. Alin Dan Potorac, Adrian Graur, “Finite State
Machine Design and VHDL Coding Techniques”, 10th international
conference on development and application systems, Suceava,
Romania, May 27-29, 2010.

[12] Shailesh Niranjan , James F. Frenze l “A Simplified Approach to Fault
Tolerant State Machine Design for Single Event Upsets” IEEE
TRANSACTIONS ON RELIABILITY, VOL. 45. NO. 1, 1996
MARCH.

[13] Fernanda Gusmao de Lima,Thesis on “Designing single event upset
mitigation techniques for large SRAM-based FPGA devices” Porto
Alegre, February 11th, 2002.

[14] Carl Carmichael “Triple Module Redundancy Design Techniques for
Virtex FPGAs”, Xilinx application note (virtex series).

[15] R. W. Hamming, “Error detecting and correcting codes,” Bell
Syst.Tech. J., vol. 29, pp. 147–160, Apr. 1950.

[16] R. Rochet, R. Leveugle, G. Saucier “Analysis and Comparison of Fault
Tolerant FSM architectures based on SEC codes” International
Workshop on Defect and Fault Tolerance in VLSI Systems, IEEE,
1993.

[17] Maico Cassel, Fernanda Lima Kastensmidt “Evaluating One-Hot
Encoding Finite State Machines for SEU Reliability in SRAM-based
FPGAs” Proceedings of the 12th IEEE International On-Line Testing
Symposium (IOLTS'06).

[18] Anurag Tiwari, Karen A. Tomko, “Enhanced Reliability of Finite-State
Machines in FPGA through Efficient Fault Detection and Correction”
IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 3,
SEPTEMBER 2005.

[19] Henry Selvaraj, Mariusz Rawski, Tadeusz Łuba “FSM Implementation
in embedded memory blocks of programmable logic devices using
functional decomposition” Proc. Int. Conf. on Information
Technology: Coding and Computing, pp. 355-360, 2002.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 5 – APRIL 2017.

83

[20] Fernanda Lima, Luigi Carro, Ricardo Reis “Designing Fault Tolerant
Systems into SRAM-based FPGAs”, DAC’03, June 2-6, 2003,
Anaheim, California, USA.

[21] Andrzej Krasniewski “Concurrent Error Detection for FSMs Designed
for Implementation with Embedded Memory Blocks of FPGAs” 10th
Euromicro Conference on Digital System Design
Architectures,IEEE,2007.

[22] Aiman H. El-Maleh, Ayed S. Al-Qahtani “A finite state machine based
fault tolerance technique for sequential Circuits” Microelectronics
Reliability-54 (2014) 654-661, Elsevier.

[23] S. Baloch, T. Arslan, A. Stoica 2,3 “Design of a Single Event Upset
(SEU) Mitigation Technique for Programmable Devices” Proceedings
of the 7th International Symposium on Quality Electronic Design
(ISQED’06), IEEE-2006.

[24] T. S. Nidhin, Anindya Bhattacharyya, R. P. Behera, and T. Jayanthi,”
A Review on SEU Mitigation Techniques for FPGA Configuration
Memory”, IETE Technical Review, 23 January 2017.
doi:10.1080/02564602.2016.1265905

[25] V. Sieh, O et al., “VERIFY: evaluation of reliability using
VHDLmodels with embedded fault description”, Proc. of the
International Symposium on Fault-Tolerant Computing, Jun. 1997, pp.
32-36.

[26] L. Entrena et al., “Soft Error Sensitivity Evaluation of Microprocessors
by Multilevel Emulation-Based Fault Injection, Trans. On
Computers, pp.313-322, 2012.

[27] Mojtaba Ebrahimia, Abbas Mohammadi, Alireza Ejlali, Seyed
Ghassem Miremadi, “A fast, flexible, and easy-to-develop
FPGA-based fault injection technique” Microelectronics Reliability 54
(2014) 1000–1008,Elsevier.

[28] D. Gil, J. Gracia, J.C. Baraza, P.J. Gi,” Study, comparison and
application of different VHDL-based fault injection techniques for the
experimental validation of a fault-tolerant system” Microelectronics
Journal 34 (2003) 41–51,Elsevier.

[29] Wassim Mansour, Raoul Velazco, “An automated SEU fault-injection
method and tool for HDL-based designs”.

