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Abstract— Field Programmable Gate Arrays (FPGA) are 

susceptible to soft errors due to the shrinkage of feature size and 
reduction in core voltage which reduces the critical charge 
required to change the state of a circuit element. To improve the 
reliability and availability of the FPGA based designs used in 
Nuclear Power Plants special care has to be taken against these 
emerging risks. In this paper, the effects of radiation on Finite 
State Machines (FSM) is reviewed and resource utilization and 
performance penalty are analyzed by using the fault tolerant 
techniques like Triple Modular Redundancy (TMR), 
Hamming-3 encoding and safe FSM synthesis. A novel scripting 
based fault injection technique is proposed for verifying the 
fault tolerant techniques at netlist level. The PREP3 state 
machine is used as a benchmark circuit in this paper. This work 
predominantly focuses on the practical use of fault tolerant 
techniques such as TMR, Error Detection and Correction by 
using Hamming-3 encoding for state register and Safe FSM 
implementation in live designs targeted at Nuclear Power Plants 
in India. The major objective of this work is to review the 
various field proven fault tolerant techniques targeted at 
FPGAs and develop a simple scalable methodology for 
verification of the same. 
 

Index Terms— FPGA, Single Event Upset (SEU), Fault 
tolerance, Finite State Machine, TMR, Fault Injection.   

I. INTRODUCTION 

  The interest towards the use of Hardware Programmable 
Device (HPD) technologies like Field Programmable Gate 
Array (FPGA) and Complex Programmable Logic Device 
(CPLD) in Nuclear Power Plant (NPP) safety automation is 
rising internationally as the various advantages of the HPDs 
over the currently used analog or microprocessor-based 
software technology are being recognized [1]. The high 
complexity and the difficulties in demonstrating the safety of 
software-based applications are among the reasons that have 
led the nuclear power utilities and Instrumentation and 
Control (I&C) system developers to look for new 
technologies such as the HPDs for implementing the safety 
automation applications [1]. HPDs offer greater simplicity 
and less burdensome regulatory approval because the end 
product can be designed to be purely hardware, with 
independent, parallel signal paths similar to conventional 

 
 

analog electronics. As the feature sizes of FPGA technologies 
become smaller, new challenges emerge in the area of 
reliability [2]. New generation transistors are characterized 
by a reduction in core voltage, a decrease in transistor 
geometry and an increase in switching speeds. Due to these 
features, random noise and signal integrity problems 
including inductive or capacitive crosstalk can be sources of 
errors in electronic circuits, especially if such effects are not 
taken into account in the circuit design [3], [4]. Radiation 
effects are increasingly seen as a major contributor to the 
overall error rate [4]. Mitigation of radiation effects has been 
required for Military/Aerospace applications for decades 
because of the intense radiation fields in which such 
applications must function. More recently, radiation effects 
have become a concern for terrestrial applications such as 
medical, automotive and safety critical applications. This 
problem necessitates the use of fault tolerant techniques for 
radiation induced effects in HPDs consisting of FPGAs [5].  
The rest of the paper is organized as follows. Section II 
depicts the SEU mechanism and susceptibility of current 
FPGA technologies. Section III gives a survey on fault 
tolerant design techniques used for FSM designs along with 
verification methodologies based on fault injection.  The state 
machines used for analysis are illustrated in section IV. The 
proposed fault injection method is explained in section V. 
Synthesis and simulation results are depicted in section VI 
and the paper is concluded with future scope in section VII. 

II. SINGLE EVENT UPSET MECHANISM AND CURRENT FPGA 

TECHNOLOGIES SUSCEPTIBILITY TO SEU 

The current FPGA technologies can be divided into three 
major categories according to the type of routing fabric used 
in the devices. SRAM-based FPGAs takes advantage of latest 
fabrication processes and offers much higher integration and 
logic capacity when compared to flash/antifuse based 
processes which are typically two generations behind the 
pure CMOS processes. For typical reactor applications, Flash 
or antifuse based technologies are preferred over SRAM 
FPGAs and hence in this paper designs targeted at flash based 
FPGAs are discussed. 
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A. SEU Mechanism 

Chip packaging materials, in general, contain small 
amounts of radioactive contaminants that can cause soft 
errors through alpha-particle emission [6]. The positively 
charged alpha particle travels through the semiconductor and 
disturbs the distribution of electrons within the device. 
Controlling alpha particle emission rates for critical 
packaging materials to less than a level of 0.001 counts per 
hour per square centimeter (cph/cm2) is required for the 
reliable performance of most circuits. By comparison, the 
count rate of a typical sole of a shoe is between 0.1 and 
10cph/cm2 [7], [8]. Cosmic-ray flux another dominant cause 
of errors creates a shower of energetic secondary particles. 
Cosmic ray particle flux depends on altitude, the rate of 
upsets in aircraft can be more than 300 times the upset rate at 
sea level [8]. Logic circuits with a higher capacitance and 
higher logic voltage levels are less likely to suffer an error 
[3].  

Critical charge defined as the minimum amount of induced 
charge required at a circuit node to cause a voltage pulse to 
propagate from that node to the output and to be of sufficient 
duration and magnitude to disturb a memory element varies 
greatly depending on the technology. For example, in 
SRAM-based FPGAs, the SRAM cell storing the 
configuration bit is typically much smaller (that is, lower 
capacitance) than a normal flip-flop. Because the internal 
nodes in an SRAM cell configuration have a smaller 
capacitance, the critical charge required for upsetting the 
configuration bits is much smaller than that of a flip-flop. As 
described later in this document, this effect will influence the 
strategy employed to mitigate errors due to radiation.   

B. SEU on FPGA 

The radiation induced soft errors are the events in which 
the data is corrupted, but the device itself is not permanently 
damaged [9]. Soft errors can be categorized as Single Event 
Transients (SET) and Single Event Upsets (SEU). In SET, a 
node in the circuit temporarily holds an incorrect value. 
Normally SETs are transitory in nature where the 
functionality of the circuit is unaffected. However the 
transient can be captured into flip-flops or other memory 
elements can lead to functional failure of the system. Systems 
working on high frequencies are more susceptible to SET 
captures because the probability of capture increases with 
frequency. In SEUs the charge collected by the energetic 
particle strike is greater than the critical charge and causes a 
change of state of a memory cell, register, latch or flip-flop. 
The radiation induced susceptibility matrix is given in table 
1. 

TABLE I.  FPGA SUSCEPTIBILITY MATRIX 

Resource Flash SRAM 
I/O No Low 
BRAM Very high Very high 
Registers Medium Medium 
Logic Cells No High 
Routing matrix No High 

 

III.  PREVIOUS WORK 

The control parts of most FPGA based designs are built by 
Finite State Machines and any bit-flips due to Single Event 

Effects (SEE) in FSMs can adversely affect the performance 
and reliability of the overall system [10].  

A. Survey of Design Techniques 

 There are varieties of issues regarding the design of finite 
state machine using the hardware description languages. The 
areas to be focused are coding style, state encoding schemes, 
decoding logic and output generation as outlined in [11]. 
There are multiple fault tolerant techniques available; Triple 
Modular Redundancy (TMR) is the standard for system level 
architectures in safety critical systems. Duplex architecture, 
Explicit Error Correction (EEC) architecture, Modified EEC 
and Implicit Error Correction can also be used with TMR 
Architecture [12] for fault tolerance. These architectures 
particularly suitable for VLSI implementation using low 
power CMOS technology are identified, with single flip-flop 
errors. TMR with Error Correction Codes is explained in [13] 
and TMR with partial reconfiguration [14] are also 
commonly used for improving the reliability.  Error 
Detection and Correction (EDAC) codes can be used as an 
efficient fault tolerant technique for memory elements and 
message passing circuits. Most popular single error 
correcting code is Hamming codes [15]. Single Error 
Correction (SEC) code with minimum Hamming distance of 
three is used with different architectures such as Single 
Independent Decoder (SID) architecture, Distributed Error 
Correction (DEC) architecture, Upset-oriented SID (UPS) 
and Upset-oriented DEC (UPD) to achieve fault tolerance in 
FSMs [16]. 

In the fault tolerant and fail safe designs the selection of 
encoding style play a significant role on the dependability of 
the state when a soft error or SEU occurs. The most 
commonly used encoding techniques are Sequential or 
Binary code, One-Hot code and Gray code. One-Hot 
encoding provides an optimal design in terms of area, 
performance and reliability for most of the FSM 
implementations [17]. A simple parity calculation on the state 
register can detect the onset of SEU and mitigative action can 
be taken. Safe state machines are critical in high-reliability 
designs. Synthesis tools, by default, perform reachability 
analysis and optimize unused states and logic. Designers get 
lulled into a sense of false security by writing the 
“default/others” clause in HDL codes which during synthesis 
is optimized away rendering the state machine unsafe. 
Other techniques as reported in the literature are Mapping of 
FSM into Synchronous Embedded Memory Block (SEMB) 
enhances the runtime reliability without a significant increase 
in power consumption [18]. A functional decomposition 
concept for implementing FSM into embedded memory can 
also be used [19]. Duplication with Comparison (DWC) and 
Concurrent Error Detection (CED) are the other popular 
methods [20], [21]. DWC is targeted only at SRAM devices 
and is used as a trigger for partial reconfiguration or memory 
scrubbing. The reliability of sequential circuits can be 
improved by adding redundant equivalent states to the states 
with a high probability of occurrence [22]. Temporal Data 
Sampling and Majority voting have also been explained as a 
mitigation technique for SEUs [23]. The Single event upset 
mitigation techniques for configuration memory of SRAM 
based FPGAs are explained detail in [24]. 
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register can detect the onset of SEU and mitigative action can 
be taken. Safe state machines are critical in high-reliability 
designs. Synthesis tools, by default, perform reachability 
analysis and optimize unused states and logic. Designers get 
lulled into a sense of false security by writing the 
“default/others” clause in HDL codes which during synthesis 
is optimized away rendering the state machine unsafe. 
Other techniques as reported in the literature are Mapping of 
FSM into Synchronous Embedded Memory Block (SEMB) 
enhances the runtime reliability without a significant increase 
in power consumption [18]. A functional decomposition 
concept for implementing FSM into embedded memory can 
also be used [19]. Duplication with Comparison (DWC) and 
Concurrent Error Detection (CED) are the other popular 
methods [20], [21]. DWC is targeted only at SRAM devices 
and is used as a trigger for partial reconfiguration or memory 
scrubbing. The reliability of sequential circuits can be 
improved by adding redundant equivalent states to the states 
with a high probability of occurrence [22]. Temporal Data 
Sampling and Majority voting have also been explained as a 
mitigation technique for SEUs [23]. 

A. Survey of Fault Injection Techniques 

To evaluate the sensitivity of a design to soft errors the design 
has to be verified thoroughly either at simulation level or 
validated at FPGA level on the test board. This entails the use 

of fault injection methodology. Fault injection is well 
documented in the literature as a verification/validation 
technique for characterizing the reliability of HPDs. 
VHDL-based Evaluation of Reliability by Injecting Faults 
efficientlY (VERIFY) introduces a new way for defining the 
behavior of hardware components in case of faults by 
extending the VHDL language with fault injection signals 
together with their rate of occurrence [25]. Autonomous 
Multilevel emulation-based fault injection for Soft Error 
Evaluation (AMUSE) is a method that can inject SET faults 
by integrating both Register Transfer Level (RTL) and netlist 
level [26]. An easy to develop and flexible FPGA fault 
injection technique which utilizes the debugging facilities of 
Altera  FPGA in order to inject SEU and MBU fault models 
in flip-flops and other memory units is presented in [27]. 
Another technique based on simulator commands, saboteurs 
and mutants are presented in [28]. There are many other 
simulation/emulation or hybrid fault-injection tools and 
methods available which include a method/tool called NETFI 
(NETlist Fault Injection) it can inject fault in any HDL 
model, VHDL, Verilog etc. [29]. In addition, to the speed and 
automation, NETFI can target the block RAMs of a given 
circuit.  

IV.  BENCHMARK FSM FOR ANALYSIS 

PREP3 benchmark was taken up as a primary benchmark 
for initial analysis followed by PREP4 and two other general 
designs. The PREP3 is a mealy state machine with eight 
inputs and eight outputs, which has eight states and twelve 
transitions. PREP4 is a large mealy FSM with 16 states and 
43 transitions. All the FSMs are implemented using VHDL 
coding and synthesized for a flash based FPGA for indication 
purpose. 

V. DEVELOPMENT OF SCRIPT BASED FAULT INJECTION 

TECHNIQUE 

The major challenge in any fault tolerant design technique 
is the methodology used for verification or validation for 
quality assurance of the final product. The methodology used 
is often too complex and customized to be used across a 
substantially big project with multiple designs with different 
specifications. We propose a simple TCL script based 
automated fault injection methodology built around the target 
simulator which can take designs in both RTL and netlist 
level of abstraction. The proposed methodology parses a 
design in a guided or automated manner selecting sensitive 
nodes where the fault is to be injected and generating a TCL 
script for the same. The “force –freeze” command is used to 
change the value of any signal/wire. The value can be made 
stuck or frozen at either ‘1’ or ‘0’ for any particular period of 
time. For example; “force -freeze 
sim:/test_prep3/I1/CURRENT_STATE(7) 1 {200 ns} 
-cancel {250 ns}” stuck the value of 7th bit of  register 
CURRENT_STATE as ‘1’ for a duration of 50 nanoseconds. 
The process of generating the TCL file containing the fault 
injection is automated and can be coded in Perl/Python/.net 
or any other suitable language. The algorithm proposed here 
parses and finds the nodes with maximum fanouts so a single 
injected fault caused maximum damage to the functionality 
of the design. 
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        As shown in fig. 1 the verification setup consists of a 
self checking assertion based test bench which is used for 
generating the stimulus and counting the number of errors. If 
there is any mismatch in the values than the expected, fault 
counter counts an error.  

 For indication purposes only, in this paper the
injected at the netlist level, particularly focused on state 
registers of the FSM as the target FPGA is only sensitive to 
SEUs at the register level. For the change in the technology of 
target to SRAM, the methodology is flexible can be easily 
modified to inject fault at combinational circuits which are 
implemented in look-up tables (LUT). Simple designs have 
been taken up for proving the effectiveness of the 
methodology.  

 

Fig. 1. Verification setup block diagram

VI.  SYNTHESIS AND SIMULATION 

PREP3, PREP4, and two more simple FSM designs are 
considered for analyzing the resource utilization and timing 
characteristics. The increase in the percentage of resource 
utilization and the decrease in timing performance is 
compared to the normal design is shown in Fig. 2 and Fig. 3. 
The increased area for Hamming code, when compared to 
TMR is attributed to the fact that TMR for flash FPGAs are 
implemented for the state registers only, not the 
combinational logic part of the design. Combinational logic 
in flash based FPGAs are implemented using multiplexers 
which are immune to SEUs, whereas for SRAM
FPGAs the entire logic has to be triplicated giving a 
substantial rise in the resource utilization. Safe FSMs also 
shows a marked increase in resource utilizati
reason why synthesizing tools remove the excess logic 
associated unless the ‘safe’ attribute for FSM is used. The 
reduction in frequency is maximum for Hamming
implementation. So it is noted that TMR method for flash 
based FPGAs are superior when compared to the other two in 
terms of resource utilization and timing while Hamming will 
have an advantage of indicating and correcting single bit 
error in state register which can be used to take the FSM to a 
safe state. 
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Fig. 2. Resource utilization increase in percentage.

Fig. 3. Maximum frequency reduction in percentage

The value of the state register is changed from ‘1’ to ‘0’ or 
‘0’ to ‘1’ for particular time periods and the number of errors 
generated due to the injected fault is measured by the self 
checking assertion based test bench simulating the netlist file. 
This is repeated for all the netlist files which are generated 
after implementing the fault tolerant techniques and the 
results are analyzed. The technique developed can be suitably 
modified to parse the netlist files and pick up random 
signals/nets for fault injection and checking.
Fig. 4 shows the simulation waveform of PREP3 FSM after 
injecting fault in the state and output registers randomly. 
Total of 24 faults injected into the signals 
CURRENT_STATE(7) to CURRENT_STATE(0) and 
OUTT_I_C(7) to OUTT_I_C(0) in random time intervals and 
it has generated 20 errors.  
Fig. 5 shows the waveform for TMR. Faults are injected to 
the state and output registers of one of the TMR logic blocks. 
It uses 2 out of 3 voting logic so it has corrected all the faults 
injected in one TMR block. The fault injected in more than 
one TMR logic block and voting logic cannot be corrected by 
TMR method, this was analyzed and verified by injecting 
fault in these blocks. 

By injecting fault in one of the state registers, 
CURRENT_STATE_DUP(7) values is forced to high from 
100ns to 150ns has generated an unreachable state. The safe 
FSM implementation forced the state machine into a reset 
state is shown in fig. 6. Hamming distan
mitigation technique for single bit errors only. Two errors are 
injected into CURRENT_STATE(6) has generated 3 errors; 
because Hamming distance 3 code cannot correct more than 
one error is shown in fig. 7.   

 

 

Fig. 4. The Waveform of  fault injection without using any 
fault tolerant methods. 
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FSM implementation forced the state machine into a reset 
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Fig. 5. The Waveform of  fault injection in one of the TMR 
logic. 

 
 

Fig. 6. The Waveform of  fault injection after implementing 
safe FSM. 

 
 

Fig. 7. The Waveform of  2 errors injected after Hamming 3 
implementation. 

VII.  CONCLUSION 

Most of the simulation based fault injection techniques are 
developed using VHDL/Verilog coding, TCL scripting based 
technique makes it simpler. This technique is the best 
alternative for other state of the art simulation based fault 
injection techniques in terms of ease of development and 
implementation. It provides better platform independency, 
controllability and observability. 

Various fault tolerant FSM design techniques and fault 
injection techniques were discussed for different target 
FPGA architectures like SRAM and Flash.  A Flash based 
FPGA was used as a notational target device and results were 
presented in terms of resource utilization and timing. It is 
found that the TCL scripting based fault injection tool could 
able to inject any number of faults at netlist level efficiently. 
From the data presented it is concluded that TMR gives the 
best performance in terms of area and timing. Hamming-3 
encoding shall only be used when the probability of single bit 

upset exists and safe FSM implementation takes the FSM to a 
fail-safe state when an invalid state occurs. Future work 
involves the development of an efficient fault tolerant design 
technique and validation of the designs through irradiation 
experiments with neutrons and heavy ion beams.  
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