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Abstract-  The ability of cells to exert forces on their 
environment and alter their shape as they move is essential 
to various biological processes such as the immune 
response, embryonic development, or tumorigenesis. For 
that we present a fast and robust approach to tracking the 
evolving shape of whole fluorescent cells in time-lapse 
series. To ensure efficiency, consistency, and completeness 
in data processing and analysis, computational tools are 
essential. The proposed tracking scheme allow simultaneous 
tracking of multiple cells over time, both frameworks have 
been integrated with a topological prior exploiting the object 
indication function. To perform simultaneous tracking two 
steps are improved. First, coherence-enhancing diffusion 
filtering is applied on each frame to reduce the amount of 
noise and enhance flow-like structures. Second, the cell 
boundaries are detected by minimizing the Chan-Vese model 
in the fast level set-like and graph cut frameworks. The 
potential, advantages and disadvantages of both frameworks 
are demonstrated on proposed tracking scheme of 2D and 
3D time-lapse series of rat adipose-derived mesenchymal 
stem cells and human lung squamous cell carcinoma cells, 
respectively. 

I. INTRODUCTION 

The important challenge in biomedical research 
understands the mechanisms of cell motility and their 
regulation. The crucial tasks are, in particular, 
segmenting, tracking, and evaluating movement tracks 
and morphological changes of cells, subcellular 
components, and other particles. 
 
The typical fluorescence microscopy time-lapse series 
contain cells with significant spatio-temporal changes in 
intensity levels due to nonhomogeneous staining, 
uneven illumination, and photo bleaching. 
 
To ensure efficiency, consistency, and completeness in 
data processing and analysis, computational tools are 
essential. Of particular importance to many modern 
live-cell imaging experiments is the ability to 
automatically track and analyze the motion of objects in 
time-lapse microscopy images. 
 
Although cell motility and intracellular flows can be 
analyzed using optic flow or image registration 
techniques, the scope of this paper aims at identifying 
the boundaries of individual cells in each frame and 
tracking their evolution over time. Approaches 
developed for this specific task can broadly be classified 
as either tracking by detection or tracking by model 
evolution. 
 

Understanding cell lineage relationships is fundamental 
to understanding development, and can shed light on 
disease etiology and progression. We present a method 
for automated construction of lineages of proliferative, 
migrating cells from a sequence of images.  

 
Cell tracking over time has been one of the most 
revealing types of study for understanding 
developmental mechanisms. Normal progenitor cells 
undergo complex processes, including cell division, 
migration, changes in morphology, and death that are 
critical for tissue formation.  
.  
In contrast, the automated method is rapid and easily 
applied, and produces a wealth of measurements 
including the precise position, shape, cell-cell contacts, 
motility and ancestry of each cell in every frame, and 
accurate timings of critical events, e.g., mitosis and cell 
death. Furthermore, it automatically produces graphical 
output that is immediately accessible.  

 
The tracking by detection approach is well-suited to 
experiments with low cell density, for which it is easy 
to determine the exact number of interacting cells in the 
current frame. Never-theless, with increasing cell 
density, the temporal association step often requires 
sophisticated strategies to deal with one-to-many and 
many-to-one matching problems effectively. 
 
The  minimization of original Chan-Vese model in the 
fast level set-like (FLS) and graph cut (GC)  
frameworks without solving any PDE, and replace 
coupling of multiple separate models with a topological 
prior that exploits the object indication function to allow 
simultaneous tracking of multiple cells over time. 

 
Furthermore, to reduce the amount of noise in the 
acquired image data, increase the contrast along the cell 
boundaries, and enhance slender fiber-like structures 
often connecting individual regions of the cell 
cytoplasm, the tracking step is preceded by coherence-
enhancing diffusion filtering (CED) 

II. CHAN-VESE MINIMIZATION MODEL 

The Chan-Vese model is a piecewise constant 
approximation to the functional formulation of image 
segmentation. This section recalls shortly the theoretical 
background and formulation of the Chan-Vese model 
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and the basic principles of the state-of-the-art 
frameworks developed for its minimization. 

Its aim is to partition an input scalar image u0: Ω→ R 
defined over d-dimensional image domain Ω →Rd into 
two possibly disconnected regions Ω1 (foreground) and 
Ω2 background) of low intra-region variance and 
separated by a smooth closed contour                            
C (Ω = Ω1 U Ω2 U C). 

It can be formulated as, 

ECV ( C, c 1,  c2 )  =  µ|C| + λ 1 ∫Ω1 ( u0(x) - c 1 )
2 dx 

   + λ 1 ∫Ω2 ( u0(x) - c 2 )
2 dx 

    → equation (1) 

where c 1 and c 2 denote the unknown average intensity 
levels inside Ω1 and Ω2, respectively, and µ, λ 1 and λ 2  
are positive, user-defined weights.  

Although the first two approaches represent the contour 
C differently, they are both based on a force-driven 
evolution of an initial contour. The explicit active 
contours are generally faster than level sets due to their 
light parametric representation of the contour C. 
However, their topological rigidity rules out the 
detection of multiple isolated objects from a single 
initial contour unless special surgical routines are used. 

The minimization of the Chan-Vese model in the graph 
cut framework is more straightforward than in the 
previous ones. It is based on the fact that for fixed c 1 

and c 2 it is possible to construct a graph G in which the 
cost of every cut approximates the energy of the 
corresponding segmentation from equation (1).  

Therefore, a minimum cut of the graph G corresponds 
to a global minimum of equation (1) for fixed c 1 and c 2. 
Subsequently, these values are updated according to the 
minimum cut and the computation is repeated until they 
reach a steady state.  

In contrast to the previous frameworks, graph cuts do 
not require any initial contour to be specified. They only 
need some initial estimates of c 1 and c 2. However, 
discrete graph cuts suffer from metrication errors and 
produce angular boundaries.  

The denser the neighborhood system is when 
constructing the graph G, the smoother are the obtained 
boundaries. Unfortunately, increasing neighborhood 
density results in higher memory consumption, which 
could be critical, in particular, when processing large 
volumetric images. 

 

III. INPUT IMAGE DATA 

This section introduces two different time-lapse 
datasets of GFP-transfected cells analyzed for my 
experiments. All images were acquired using spinning-
disk confocal microscopes. A summary of the cell 
types, acquisition setups, and image data properties is 
given in Table I. Sample frames from each of the 
datasets are shown in Fig. 1. 

TABLE I 

Cell Type, Acquisition Setup, And Properties Of Two 
Time-Lapse Datasets Analyzed In My Experiments 

 

 

 

Dataset 1 

 

Dataset 2 

Cell type 

Imaging system 

Objective lens 

Frame size (vox) 

Voxel size (nm) 

Time step (min) 

No. of frames 

No. of series 

ADMSC  

Zeiss Cell Observer  

Plan-Apo 20 X/0.85  

512  X 478  

650 X  650  

5  

19  

5 

 

H157 

PerkinElmer Ultraview ERS 

Plan-Apo 63 X/1.20 Water 

580  X  540 X  60 (40; 35) 

125:7 X 125:7 X 500:0 

1 (2) 

20 

3 (4) 

 

The first dataset consisted of five 2D time-lapse series 
of rat adipose-derived mesenchymal stem cells 
suspended in Minimum Essential Medium , which was 
supplemented with 10% Fetal Calf Serum and 1% 
Penicillin/Streptomycin, and monitored in a mixture of 
1g=L collagen and 0:25% agarose poured on confocal 
Glass Bottom Microwell Dishes.  

Each 2D time-lapse series had 19 frames 
captured every five minutes. The acquired 16-bit image 
data was compensated for uneven illumination by 
applying a flat-field correction procedure. 

The second dataset consisted of seven 3D time-lapse 
series of human lung squamous cell carcinoma cells 
suspended in a 1:1 mixture of Matrigel/Collagen. 

 Each 3D time-lapse series had 20 frames that 
were captured every minute (three time-lapse series) or 
two (four time-lapse series). The acquired 16-bit image 
data contained one or two cells, 11 cells in total, having 
slightly heterogeneous cytoplasm of different intensity 
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levels.                                            

 

Fig. 1. Examples of analyzed input image data. (a)-(c) 
Three frames of different ADMSCs. (d) Maximum 
intensity projections along each axis of H157 cells 
poured on a confocal glass bottom microwell. (e) 
Maximum intensity projections along each axis of H157 
cells injected in a growth medium. 

BLOCK DIAGRAM: 
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Fig. 2. Workflow of the proposed tracking scheme. The 
dashed line indicates using of a final result for the 
current frame as an additional information for the Chan-
Vese model minimization routines when processing the 
next frame. 

IV. PROPOSED TRACKING SCHEME 

First, a coherence- enhancing diffusion filter is 
applied on each frame to reduce the amount of noise 

and enhance flow-like structures. Second, the cell 
boundaries are detected by minimizing the Chan-Vese 
model in the FLS and GC frameworks. The initial 
models established for the cells detected in the first 
frame are evolved in time to fit the corresponding cells 
in the subsequent frames. 

A. Coherence-Enhancing Diffusion Filtering 

The completion of interrupted lines or the 
enhancement of flow-like structures is a challenging 
task in computer vision, human vision, and image 
processing. We address this problem by presenting a 
multiscale method in which a nonlinear diffusion filter 
is steered by the so-called interest operator (second-
moment matrix, structure tensor).  

An m-dimensional formulation of this method is 
analysed with respect to its well-posedness and scale-
space properties. An efficient scheme is presented 
which uses a stabilization by a semi-implicit additive 
operator splitting (AOS), and the scale-space behaviour 
of this method is illustrated by applying it to both 2-D 
and 3-D images. 

B. First Frame Segmentation 

The FLS framework takes the final contour 
provided by the clustering, whereas graph cuts start 
with the corresponding foreground and background 
statistics. Once a steady state is reached, small 
components enclosing foreign particles such as dust are 
discarded from the final binary mask. 

C. Capturing Entering Cells 

New cells entering the field of view must be paid 
special attention. They have not been detected in the 
previous frames and are, therefore, considered part of 
the image background.This can affect significantly the 
background statistics and lead to incorrect segmentation 
of a particular frame. 

F. Stopping Criterion 

Specifically, the stopping criterion for the FLS 
framework is based on the detection of an oscillatory 
cycle. Let ∆i  denote the sum | c1

i+1 - c1
i  |  + | c2

i+2 – c2
i  | 

for two successive iterations i and i+1, i �0. Let the 
counter C approach a cell boundary(i.e., a local 
minimum) in iteration k � 0. The counter C oscillates 
iff  

| ∆k+1  -  ∆k   |  =  0               →  equation (2) 

For simplicity, let µ = 0 and  λ1  = λ2  =  1, thus an 
interface point  x ϵ Ω  is locally propagated inside or 
outside the contour C depending on the sign of the 
speed function  F : Ω → R, given as 

F(x) = ( f(x) – c2 )
2 – ( f(x) –  c1 )

2
    → equation (3)    

 

Input Time-Lapse Series (Frames 

Coherence-Enhancing Diffusion Filtering 

Capture 
Entering 
Cells 

Weighted 
2-Means 
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Chan-Vese Model 
Integrated with the 
Object Indication 
Function 

Chan-Vese Model 
without Any  
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Discard Small 
Components 

Deal with 
Overlapping Cells 
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V. EXPERIMENTAL RESULTS 

The experimental evaluation of the proposed 
tracking scheme conducted on a common workstation. 
We focus first on the optimal parameter settings for 
each framework. Then, we compare thoroughly their 
accuracy, execution time, and memory consumption. 

A. Parameter Settings 

The proposed tracking scheme has nine 
parameters that influence its overall performance. They 
can be divided into three groups according to their 
meaning and purpose. First, the parameters sr and wo 
reflect quantitative properties of tracked cells. They can 
be easily derived from the visual inspection of analyzed 
time-lapse series. 

The parameter sr was fixed at 400 and 24 000 grid 
points in 2D and 3D, respectively. These values 
corresponded roughly to 20% of the minimum average 
size of a complete cell (i.e., a cell not touching the 
image border in the first frame) and allowed us to detect 
and track cells that appear only partly in the field of 
view. 

B. Accuracy 

In order to quantify the difference between the results of 
the tested methods, the Hausdorff distance H, given as 

H(X, Y) = max �max min de (x, y), max min de (y, x) 

xϵ X        yϵY                   Y  xϵ X}      

→ equation (4) 

Generalizing the Euclidean distance de on two 
sets of grid points (segmentation results) X and Y was 
measured for each pair of them. Note that the 
measurements were no longer restricted only to 140 
randomly chosen slices in 3D, but performed on 
complete 3D stacks. 

V1. CONCLUSION 

The proposed tracking scheme combines CED 
filtering with the FLS and GC frameworks that 
minimize the Chan-Vese model. It allows simultaneous 
tracking of multiple cells over time by applying a 
topological prior that exploits the object indication 
function. The experimental evaluation was performed 
on 2D and 3D time-lapse series of rat adipose-derived 
mesenchymal stem cells and human squamous cell 
carcinoma cells, respectively. This complicates the use 
of the proposed tracking scheme in experiments with 
high density of tightly packed cells. Furthermore, 
coherence-enhancing diffusion filtering takes up to 
about 85% of the total execution time. Therefore, a 
different choice of the filtering technique would make 
the proposed tracking scheme significantly faster and 
more suitable for high-throughput applications. 
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