
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

65

 Distributed Auditing Mechanism for Data Sharing In

the Cloud
H. Tejeswini*1, and S.Sravani#2

*Student, Dept of CSE, St.Mark Educational Institution Society Group Of Institution, Affiliated to JNTUA University, Anantapur
Associate Professor, Dept of CSE, St.Mark Educational Institution Society Group Of Institution , Affiliated to JNTUA University,

Anantapur
1tejeswini09@gmail.com

2sravani2989@gmail.com

Abstract— Cloud computing has great potential of providing

robust computational power to the society at reduced cost.

It enables customers with limited computational resources to

outsource their large computation workloads to the cloud, and

economically enjoy the massive computational power,

bandwidth, storage, and even appropriate software that can

be shared in a pay-per- use manner. CIA framework provides

end- to end accountability in a highly distributed fashion. One

of the main innovative features of the CIA framework lies in its

ability of maintaining lightweight and powerful accountability

that combines aspects of access control, usage control and

authentication. By means of the CIA, data owners can track

not only whether or not the service-level agreements are

being honored, but also enforce access and usage control

rules as needed.

Keywords: Cloud Computing, CIA Frame work, Authentication,

Accountability.

I. INTRODUCTION

Cloud computing enables highly scalable services to be

easily consumed over the Internet on an as-needed basis.

A major feature of the cloud services is that users’ data are

usually processed remotely in unknown machines that

users do not own or operate. While enjoying the convenience

brought by this new emerging technology, users’ fears of

losing control of their own data (particularly, financial and

health data) can become a significant barrier to the wide

adoption of cloud services. To address this problem, here,

we propose a novel highly decentralized information

accountability framework to keep track of the actual usage

of the users’ data in the cloud. In particular, we propose an

object-centered approach that enables enclosing our logging

mechanism together with users’ data and policies. We

leverage the JAR programmable capabilities to both create a

dynamic and traveling object, and to ensure that any access to

users’ data will trigger authentication and automated logging

local to the JARs. To strengthen user’s control, we also

provide distributed auditing mechanisms. We provide

extensive experimental studies that demonstrate the efficiency

and effectiveness of the proposed approaches. First, data

handling can be outsourced by the direct cloud service

provider (CSP) to other entities in the cloud and theses

entities can also delegate the tasks to others, and so on.

Second, entities are allowed to join and leave the cloud in a

flexible manner. As a result, data handling in the cloud goes

through a complex and dynamic hierarchical service chain

which does not exist in conventional environments.

II. IMPLEMENTATION

 Cloud Information Accountability (CIA)

Framework: CIA framework lies in its ability of

maintaining lightweight and powerful accountability that

combines aspects of access control, usage control and

authentication. By means of the CIA, data owners can track

not only whether or not the service-level agreements are being

honored, but also enforce access and usage control rules as

needed.

Distinct mode for auditing:

Push mode: The push mode refers to logs being periodically

sent to the data owner or stakeholder.

Pull mode: Pull mode refers to an alternative approach

whereby the user (Or another authorized party) can retrieve

the logs as needed.

Logging and auditing Techniques:

1. The logging should be decentralized in order to adapt to

the dynamic nature of the cloud. More specifically, log files

should be tightly bounded with the corresponding data being

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

66

controlled, and require minimal infrastructural support from

any server.

2. Every access to the user’s data should be correctly and

automatically logged. This requires integrated techniques to

authenticate the entity that accesses the data, verify, and

record the actual operations on the data as well as the time that

the data have been accessed.

3. Log files should be reliable and tamper proof to avoid

illegal insertion, deletion, and modification by malicious

parties. Recovery mechanisms are also desirable to restore

damaged log files caused by technical problems.

4. Log files should be sent back to their data owners

periodically to inform them of the current usage of

their data. More importantly, log files should be

retrievable anytime by their data owners when needed

regardless the location where the files are stored,

5. The proposed technique should not intrusively monitor

data recipients’ systems, nor it should introduce heavy

communication and computation overhead, which

otherwise will hinder its feasibility and adoption in practice.

Major components of CIA:

There are two major components of the CIA, the first being

the logger, and the second being the log harmonizer. The

logger is strongly coupled with user’s data (either single or

multiple data items). Its main tasks include automatically

logging access to data items that it contains, encrypting the

log record using the public key of the content owner, and

periodically sending them to the log harmonizer. It may also

be configured to ensure that access and usage control policies

associated with the data are honored. For example, a data

owner can specify that user X is only allowed to view but not

to modify the data. The logger will control the data access

even after it is downloaded by user X. The log harmonizer

forms the central component which allows the user access

to the log files. The log harmonizer is responsible for

auditing.

III. CLOUD INFORMATION ACCOUNTABILITY

 In this section, we present an overview of the Cloud

Information Accountability framework and discuss how the

CIA framework meets the design requirements discussed in

the previous section. The Cloud Information Accountability

framework proposed in this work conducts automated logging

and distributed auditing of relevant access performed by any

entity, carried out at any point of time at any cloud

service provider. It has two major components: logger and

log harmonizer.

Major Components:

There are two major components of the CIA, the first

being the logger, and the second being the log

harmonizer. The logger is the component which is strongly

coupled with the user’s data, so that it is downloaded when the

data are accessed, and is copied whenever the data are

copied. It handles a particular instance or copy of the user’s

data and is responsible for logging access to that instance or

copy. The log harmonizer forms the central component

which allows the user access to the log files. The logger

is strongly coupled with user’s data (either single or multiple

data items). Its main tasks include automatically logging

access to data items that it contains, encrypting the log record

using the public key of the content owner, and periodically

sending them to the log harmonizer. It may also be

configured to ensure that access and usage control

policies associated with the data are honored. For example, a

data owner can specify that user X is only allowed to view but

not to modify the data. The logger will control the data access

even after it is downloaded by user X.

The log harmonizer is also responsible for handling log file

corruption. In addition, the log harmonizer can itself carry out

logging in addition to auditing. Separating the logging and

auditing functions improves the performance. The logger and

the log harmonizer are both implemented as lightweight and

portable JAR files. The JAR file implementation provides

automatic logging functions, which meets the second design

requirement.

Data Flow

The overall CIA framework, combining data, users,

logger and harmonizer is sketched in Fig. 1. At the

beginning, each user creates a pair of public and private

keys based on Identity-Based Encryption [4] (step 1 in Fig.

1). This IBE scheme is a Weil- attack to our architecture as

described below. Using the generated key, the user will create

a logger component which is a JAR file, to store its data items.

The JAR file includes a set of simple access control rules

specifying whether and how the cloud servers, and

possibly other data stakeholders (users, companies) are

authorized to access the content itself. Then, he sends the

JAR file to the cloud service provider that he subscribes

to. To authenticate the CSP to the JAR (steps 3-5 in Fig. 1),

we use Open SSL based certificates, wherein a trusted

certificate authority certifies the CSP. In the event that the

access is requested by a user, we employ SAML-based

authentication [8], wherein a trusted identity provider issues

certificates verifying the user’s identity based on his

username.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

67

Fig. 1. Overview of the cloud information accountability framework

IV. AUTOMATED LOGGING MECHANISM

 In this section, we first elaborate on the automated logging

mechanism and then present techniques to guarantee

dependability.

The Logger Structure:

We leverage the programmable capability of JARs to

conduct automated logging. A logger component is a nested

Java JAR file which stores a user’s data items and

corresponding log files. The main responsibility of the outer

JAR is to handle authentication of entities which want to

access the data stored in the JAR file. In our context, the data

owners may not know the exact CSPs that are going to handle

the data. Hence, authentication is specified according to the

servers’ functionality (which we assume to be known

through a lookup service), rather than the server’s URL

or identity. For example, a policy may state that Server X is

allowed to download the data if it is a storage server. As

discussed below, the outer JAR may also have the

access control functionality to enforce the data owner’s

requirements, specified as Java policies, on the usage of the

data. A Java policy specifies which permissions are

available for a particular piece of code in a Java application

environment. The permissions expressed in the Java policy are

in terms of File System Permissions. However, the data owner

can specify the permissions in user-centric terms as opposed

to the usual code-centric security offered by Java, using Java

Authentication and Authorization Services. Moreover, the

outer JAR is also in charge of selecting the correct inner JAR

according to the identity of the entity who requests the data.

V. CONCLUSION AND FUTURE RESEARCH

We proposed innovative approaches for automatically logging

any access to the data in the cloud together with an auditing

mechanism. Our approach allows the data owner to not only

audit his content but also enforce strong back-end protection if

needed. Moreover, one of the main features of our work is

that it enables the data owner to audit even those copies of its

data that were made without his knowledge.

In the future, we plan to refine our approach to verify the

integrity of the JRE and the authentication of JARs. For

example, we will investigate whether it is possible to leverage

the notion of a secure JVM being developed by IBM. This

research is aimed at providing software tamper resistance to

Java applications. In the long term, we plan to design a

comprehensive and more generic object- oriented approach to

facilitate autonomous protection of traveling content. We

would like to support a variety of security policies,

like indexing policies for text files, usage control for

executables, and generic accountability and provenance

controls

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 9 Issue 3 –SEPTEMBER 2014.

68

