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Abstract— In the current competitive business scenario, the
is a need to analyze the competitive features anddtors of an
item that most affect its competitiveness. The evadtion of
competitiveness always uses the customer opinions terms of
reviews, ratings and abundant source of informatiots from the
web and other sources. This paper develops an augnted
competitor mining using product reviews. The itemset are
analyzed for selecting the relevant features. Usinthe c-miner,
the frequent items are discovered and then represesd by
skyline operators. However, if all customer data isnserted into
a database, the resulting records will provide a dailed profile
of these customers and their interactions with onanother, and
will be an important resource for businesses that ish to probe
customer data, customer needs, and customer satisfin levels.
Experimental analysis has shown the efficiency of éhproposed
algorithm.

Index Terms— Competitive, relevant features, C-miner,
skyline and frequent items

I. INTRODUCTION

The strategic importance of detecting and obegrvid
inevitable research,chwhi

business competitors is an
motivated by several business challenges. Mongoend
identifying firm’s competitors have studied in tlearlier

work. Data mining is the optimal way of handlingckthuge
information’s for mining competitors. Item reviewierm

online offer rich information about customers' opis and
interest to get a general idea regarding compstitéowever,
it is generally difficult to understand all reviewvsdifferent
websites for competitive products and obtain ingigh
suggestions manually [1].

In the earlier works in the literatures, many haus
analyzed such big customer data intelligently affidiently
[2]. For example, a lot of studies about onlineieais were
stated to gather item opinion analysis from onfiexd&ews in
different levels. However, most researchers in fidd
ignore how to make their findings be seamlesslizetl to the
competitor mining process. Recently, a limited nembf
researches were noted to utilize the latest devwedop in
artificial intelligence (Al) and data mining in tleecommerce
applications [3]. These studies help designersittetstand a
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large amount of customer requirements in onlinéeres for
product improvements. But, these discussions ardrdan
sufficient and some potential problems. These metéeen
fully investigated such as, with product onlineiesys, how to
conduct a thorough competitor analysis. Actuatlya itypical
scenario of a customer-driven new product desigPi{)\ the
strengths and weakness are often analyzed exhalystor
probable opportunities to succeed in the fierce ketar
competition.

The data collected from the web are sometimes

semi-structured or unstructured. The semi-strudtwtata’s
are in the format of XML, JSON etc., the unstruetudata
sources are in a different format, which is not fmider any

predefined category [4]. When managing thousands of

customers, business will have difficulty sustainihg rising
costs created by interactions among people. Howdfvel

customer data is inserted into a database, th#ingstecords
will provide a detailed profile of these customarsd their
interactions with one another, and will be an intpor
resource for businesses that wish to probe custatats,
customer needs, and customer satisfaction levels.

The rest of the paper is organized as followstiSed|

escribes related work; Section Il presents theppsed
work; Section IV presents the experimental analysis
results and Section V presents the conclusion.

. RELATEDWORK

This section presents the prior work suggested
competitor mining. Authors in [5] developed an auo&tic
system that discovers competing companies from igubl
information sources. In this system data is cravileth text
and it uses transformation oriented learning toaiobt
appropriate data normalization, combines structuaed
unstructured information sources, uses probaltilistideling

to represent models of linked data, and succeeds in

autonomously discovering competitors. Bayesian agtfor
competitor identification technique is used. Théhats also
introduced the iterative graph reconstruction psscéor
inference in relational data [6], and shown thale#ds to
improvements in performance. To find the compeditdhe
authors used machine learning algorithms and piititad
approaches. They also validate system resultsgpldylit on
the web as a powerful analytic tool for individuahd
institutional investors. However, the technique Mmaany
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problems like finding alliances and market demaurgisg the interests using C-miner. C-miner falls under thassl of
machine learning approach. frequent sequence mining. It operates on discogerin
In the paper [7], authors presented a formal digimiof the correlations in data blocks. Each data item is redpgith the
competitiveness between two items. Authors usedymablocks. In similar way, the search operation iscpssed in
domains and handled many shortcomings of previaugksy sequence to sequence mapping. By doing so, thadntlg

In this paper, the author considered the positfdheitems in  searched item are extracted and sorted to topriséts.

the multi-dimensional feature space, and the peefars and B. Customer phase:
opinions of the users. However, the technique edewck ) " _

many problems like finding the top-k competitorsaofiven ~ Customer phase is the second step which operates o
item and handling structured data. Authors in [@]qpsed a requirements of customers. Based on the querien iy the
new online metrics for competitor relationship petidg.  customers, the results will be displayed. For e, the
This is based on the content, firm links and webkig to database is created. Relied upon the customerresaents,
measure the presence of online isomorphism, heee t#e requested data item is displayed.

Competitive isomorphism, which is a phenomenon of ¢ c.miner algorithm:

competing firms becoming similar as they mimic eatter
under common market services [9]. Through differené_
analysis they find that predictive models for cotiipe
identification based on online metrics are largalperior to

This step depicts how the top k itemsets areenetd.
miner algorithm is used to discover the top k petitors
for given item. It iterates like skyline pyramid ieh reduces

those using offline data. The technique is combthecbnline the dlmen§|onal|ty. Each _|tem is - mapped \.N'th its
corresponding blocks. The items are selected ors lus

and offline metrics to boost the predictive perfanoe. The ) . L
system also performed the ranking process with tHe rrelation _score. Therefqre, durmg. competitor ingn
considerations of likelihood. process, unstructyred datg is not taken into ac@nthmuch
Several works in the same strategy in literatusefthscussed valuable service information is lost. Structur_e d;tems_qre .
the need for accurate identification of competit@sd those whgre the ~data ar_1d the computing activity is
provided theoretical frameworks for that. Given éxpected predetermined and weII-defm(_ad. Unstructured systeme
isomorphism between competing firms, the process g?ose that have no predetermined form or strucanc are
competitor identification through pair-wise anaty$10] of usually full of textual data.

similarities between focal and target firms is welinded. D. Skyline operator:

The unit of analysis is a pair of firms since cotitpe The skyline operator is performed for the coortérgoints
relationship is seen as a unique interaction betwee pair. ¢ 4ata items. It helps to determine the subsebifts which
Authors in [11] have suggested frameworks for manuggominates the other set of points. Generally, thgire
identification of competitors. The manual nature tbése_ function is given as sky (1). Given the skyline SKyof a set
frameworks makes them very costly for competitoptiiems | and anitem I, let Y contain the k items from Sky
|dent|f|cat|9n over a large number of focal andg&rfirms, (I) that are most competitive with i. Then, an item | can
and over time [12]. _ only be in the top-k competitors of i, if¢ Y or if j is
In the paper[13], authors attempts to accomplisb\el task 4o minated by one of the items in Y.

of mining competitive information with respect to antity ,
the entity such as a company, product or person fhe web.
The authors proposed an algorithm called “CoMinettiich
first extracts a set of comparative candidateshef input
entity and then ranks them according to the contyilitsa
and finally extracts the competitive fields. Buet@oMiner
[14] specifically developed to support for specifiomain.
However the effort for the further domains is sthilllenging.
Authors in [15] have proposed ranking methods i@ dghe
competitor in a ranked way. They have used daten fro
location based social media. Authors proposed e af
Page-Rank model and it's variant to obtain the Gafitipe
Rank of firms. However mining competitors from thecial
media developed many privacy related issues.

[ll. PROPOSEDNVORK

This section presents the working of our proposedeh nithed _
iy Fig.1 Proposed architecture
The proposed model composes of four phases and it's
explained as follows:

IV. EXPERIMENTALRESULTSAND ANALYSIS

A. Administrator phase: This section presents the experimental analysisioproposed
Administrator phase is the first step who takes thwork.

responsibility of the administering the user’s atitts and

upload the items like hotels, recipes and cinentasTdey

also check the profile details, customer queried toeir
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