
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

69

DUPLICATE FINDER: PROVIDING THE

SECURITY FOR STORING THE BIG DATA

IN CLOUD ENVIRONMENT

#1 K.Prema, *2 I.Sheeba Angeline, *3 S.Deepika

#1,2
B.E (CSE), Kings Engineering College, Chennai,India

#3 Associate Professor, Kings Engineering College, Chennai, India

AbstractCloudserviceadoptionhasincreasedinrecent
yearswiththeadoptionofcloudservice; many of the
companies are using this cloud to store and process
Big Data. Security measures provided by the service
providers might not be enough to secure the data in
the cloud. And, we
discussthepracticalsolutiononwhichweareworkingat
themomenttoprotectthedatainacloud environment
by dividing the big data into small data files. These
small files can be stored in the cloud without
completely compromising the data in cloud
effectively leading to securing the Big Data in a
cloud environment. .Along with this, we have
implemented HMAC algorithm and
chunkingtechniquetofindthededuplicationinclouden
vironmentforreducingstoragespaceand network
bandwidth. To the best of our knowledge, existing
approaches, either solely focus on
securingthedataincloud.Tosolvesuchproblem,wedev
elopanefficientalgorithmwhichreduce the storage
space and networkbandwidth.

Key words: HMAC Algorithm, Chunking technique,
Network Bandwidth

 I INTRODUCTION

Cloud Computing is a technology which storing
massive amount of data. Recent technological
advancements in cloud computing, internet of things
and social network, have led to a deluge of data from
distinctive domains over the past two decades. Cloud
data centers are awash in digital data, easily amassing

petabytes and even exabytes of information, and the
complexity of data management escalates in big data.
The goal of cloud computing is tofindingduplicate files
for increasing the storage efficiency and providing
security.

In, cloud computing providing security,
finding duplication in complex format files like
video, image, document is one of the major
problem . However, all these schemes are
oblivious to the content and format of
application files, and cannot find the redundancy
in files with complex format, like
image,videofileHence, their space efficiency can
be further improved by exploiting application
awareness. This is a codesign of storage and
application to optimize deduplication based
storage systems when the deduplicated storage
layer has extensive knowledge about the file
structures and their access characteristics in the
application layer.

As shown, the conventional deduplication
schemes always improve performance in single-
node scenario or distributed scenario without
considerations on application awareness. In the
latest research works, application aware duplicate
detection has been adopted to single-node
deduplication to improve deduplication efficiency
with low system overhead.

In this paper, we propose HMAC
algorithm, to find the duplicate files by
generating hash value, to support big data
management in cloud storage. Our solution takes
aim at large-scale distributed deduplication with

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

70

thousands of storage nodes in cloud datacenters
which would most likely fail in the traditional
distributed methods due to some of their
shortcomings in terms of global
deduplicationratio, single- node through-put, data
skew, and communication overhead.

The main idea behind HMAC is to
optimize distributed deduplication by exploiting
application awareness, data similarity and locality
in streams. Our main idea in this work is to see
the possibility of implementing a simple
Chunking mechanism and deduplication method
to store the Big Data files in a cloud environment
by splitting them into the small files. Our HMAC
algorithm can efficiently increasing the storage
efficiency by deduplication method and increased
the network efficiency, security and reducing
time while uploading and downloading files
using chunking technique.

Related Work:
 A. Nyre and M. G. Jaatun[1]proposed the

probabilistic approach to Information control. In
this paper we propose a probabilistic approach to
information control based on trust management
systems. Our solution provides the user with a
view of the amount of information that any given
entity probably has received through
redistribution, in order to determine the level of
aggregation the entity can perform. C. Rong, H.
Cheng, and M. G. Jaatun proposed

[2]Securing big data in the cloud by
protected mapping over multiple providers. In
this paper we present an alternative approach
which divides big data among multiple. It
protects the mapping of the various data elements
to each provider using a trapdoor function. Our
initial analysis indicates that this is an efficient
and secure approach forsecuring big data.
A.Bessani,M. Correia, and B. Quaresma,

[3] proposedDepsky: dependable and
secure storage in a cloud-of-clouds. In this paper
we present DepSky, a system that improves the
availability, integrity, and confidentiality of
information stored in the cloud through the
encryption, encoding, and replication of the data
on diverse clouds that form a cloud-of-
clouds.We observed that our protocols improved
the perceived availability, and in most cases, the
access latency, when compared with cloud

providers individually.
C. Wang, Q. Wang, K. Ren, N. Cao, and W.

Lou[4] proposed toward secure and dependable
storage services in cloud
computing.Theproposeddesignallowsusers to audit
the cloud storage with very lightweight
communication and computation cost. Considering
the cloud data aredynamic in nature, the proposed
design further supports secure and efficient
dynamic operations on outsourced data, including
block modification, deletion, and append. Analysis
shows the proposed scheme is highly efficient and
resilient against Byzantine failure, malicious data
modification attack, and even server colluding
attacks. M. G. Jaatun, G. Zhao,A.
V. Vasilakos, A. Nyre, S. Alapnes, and Y. Tang[5]
proposed the design of a redundant array of independent
net-storages for
improvedconfidentialityincloudcomputing. As long as
each segment is small enough, an individual segment
discloses no meaningful information to others, and hence
RAIN is able to ensure the confidentiality of data stored
in the clouds. We describe the inter- cloud
communication protocol, and present a formal model,
security analysis, and simulationresults.

Issues in cloud:

In cloud computing redundancy of data is one
of the main issue. And also it leads to reduce the
storage space. Data deduplication is one of the hottest
technologies in storage right now because it enables
companies to save a lot of money on storage costs to
store the data and on the bandwidth costs to move the
data when replicating it offsite for DR. This is great
news for cloud providers ,because if you store less, you
need less hardware.If you can deduplicate what you
store,you can better utilize your existing storage
space,which can save money by using what you have
more efficiently . In existing approaches,
thededplication method cannot be applied in complex
format files. So it does not provide the optimal solution.
It may lead to the decrease the storage efficiency.
Therefore it increase the network bandwidth. The
amount of data storage increases quickly in open
environment. So, storage efficiency is one of the main
challenge in cloud environment. HMAC algorithm is
used for finding the duplicate files in complex format
files. It increase the storage efficiency and network
efficiency in cloud.

System architecture:

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

71

The architecture aims to provide the increased storage
efficiency and network efficiency. In our proposed
system Hash based message authentication codealgorithm
and chunking technique is used. In this HMAC algorithm
generates the unique hash valueforeachfiles store in the
cloud

.
Fig1:-Architecture

In chunking technique it divide the big data files into
small files .Join will allow us to combining all small data
files to form original big data file.HMAC algorithm solve
the storage efficiency problem effectively. The client and
director play a vital role, if client can upload their file the
hash engine generate the unique hash value by using this
hash value it identify the duplicate files. If the file
redundancy occurs it cannot be store in the cloud. While
downloading the file director sends one time password to
client mail. By using file key and one time password
client can download the file .It provides the increased
storage and network efficiency by sing HMAC algorithm
and chunking technique, and it improve the security level
by using DES algorithm.
Module description:
User Module: In this module a user has to upload its files
in a cloud server, he/she should register first. Then only
he/she can be able to do it. For that he needs to fill the
details in the registration form. These details are
maintained in a database. In this module, any of the
above mentioned person have to login, they should login
by giving their name and password.
FILE UPLOADING/DOWNLOADING PROTOCOL:
Upload: In this module user upload his file. The uploaded
file is encrypted format. In this encryption process we are
implementing BEM (Bit Exchanging Method). The
uploaded file is not stored into the cloud server. The
Director audits user file then only user files is uploaded
to the cloud server.
Download: In this module user download the files in
decrypted format. The downloaded file is encrypted

format the user enter the correct key then only it is
decrypted. Decryption process also we are using Bit
Exchanging Method algorithm only.
Secure Auditing Protocol: In this module, Director have
to login, they should login by giving their username and
password. Secure Duplication protocol is sending the
status for all files duplication status. Director is audit the
uploaded all file status. Director approves only non-

Fig 2:- HMAC algorithm

duplicate files then only it is stored in cloud.TPA audit
user file it is duplicate means Director not provide the
uploading permission to that file. Uploaded file is non-
duplication means Director give the activation for that
file.Then only that file is stored into the cloud
server.Director audits the file storage also.File Storage
auditing and Deduplication auditing are clearly shown in
an graphical format.
Block-level deduplication System: We consider block
level deduplication in that file is divided into block and
check deduplication for block. For encryption we are
going to use Bit Exchanging Algorithm.Block-level and
byte-level data deduplication methods deliver the benefit
of optimizing storage capacity. When, where and how the
processes work should be reviewed for your data backup
environment and its specific requirements before
selecting one approach over another. Data deduplication
can generally operate at the file, block or byte level thus
defining minimal data fragment that is checked by the
system for redundancy. Hash algorithm generates a
unique identifier hash number for each analyzed chunk of

data. It is then stored in an index and used forfiguring out
duplicates the duplicated fragments have the same hash
numbers.
Bit Exchanging Method: Encryption taken on the secret
message files using simple bit shifting and XOR
operation. The bit exchange method is introduced for
encrypting any file.Read one by one byte from the secret
data and convert each byte to 8 bits. Then apply one bit
right shift operation. Divide the 8 bits into to blocks and
then perform XOR operation with 4 bits on the left and 4
bits on the right side.The same thing repeated for all
bytes in the file.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

72

Director Module: Director module is used to audit the
file. Director can login with username and password.
After login, Director can view all files uploaded by the
user. And then checks the duplicate file. Finally auditor,
activate the file.
Algorithm:

Hash based message authentication code
algorithm:In cryptography, an HMAC (abbreviated as
either keyed-hash message authentication code or hash-
based message authentication code) is a specific type of
message authentication code (MAC) involving a
cryptographic hash function and a secret
cryptographic key. It may be used to simultaneously
verify both the data integrity and the authentication of a
message, as with any MAC. Any cryptographic hash
function, such as MD5 or SHA-1, may be used in the
calculation of an HMAC; the resulting MAC algorithm is
termed HMAC- X, where X is the hash function used
(e.g. HMAC-MD5 or HMAC-SHA1). The
cryptographic strength of the HMAC
depends upon the cryptographic strength of the
underlying hash function, the size of its hash output, and
the size and quality of the key.
HMAC generation uses two passes of hash computation.
The secret key is first used to derive two keys – inner and
outer. The first pass of the algorithm produces an internal
hash derived from the message and the inner key. The
second pass produces the final HMAC code derived from
the inner hash result and the outer key. Thus the
algorithm provides better immunity against length
extension attacks.

An iterative hash function breaks up a message
into blocks of a fixed size and iterates over them with a
compression function. For example, MD5 and SHA-1
operate on 512-bit blocks. The size of the output of
HMAC is the same as that of the underlying hash
function (e.g., 128 or 160 bits in the case of MD5 or
SHA-1, respectively), although it can be truncated if
desired.

Algorithm

functionhmac (key,message)
if (length(key) >blocksize) then

//keys longer than blocksize are shortened key=hash
(key)

end if

if (length (key) <blocksize) then
//keys shorter than blocksizeare zero- padded

key=key //zeros (blocksize-length (key)) end if
//where blocksize is that of the underlying hash

function
o_key_pad=[0x5c * blocksize] ⊕ key i_key_pad=[0x36
* blocksize] ⊕ key

//where // is concatenation

returnhash(o_key_pad //hash(i_key_pad
//message)) end
function

Chunking Technique:
Data de-duplication is an emerging technology

that introduces reduction of storage utilization and an
efficient way of handling data replication in the backup
environment. In cloud data storage, the de- duplication
technology plays a major role in the virtual machine
framework, data sharing network, and structured and
unstructured data handling by social media and, also,
disaster recovery. In the deduplication technology, data
are broken down into multiple pieces called “chunks”
and every chunk is identified with a unique hash
identifier. These identifiers are used to compare the
chunks with previously stored
chunksandverifiedforduplication.Sincethe chunking
algorithm is the first step involved in getting
efficientdata de-duplication ratio
andthroughput,itisveryimportantinthede- duplication
scenario. In this paper, we discuss different chunking
models and algorithms with a comparison of their
performances.

Algorithm

fill (queue, pointInStream)
pointsProcessed = 0
root = allocRoot()
buildRecurse(queue, root)
free(root)

return

defshouldRefine(node, queue): a
= contains(node, back(queue)) b =
size(queue) >leafMax
c = isSubdivisible(node)
return a and b and c
defbuildRecurse(queue, node): if
isEmpty(queue) then

return
if !contains(node, front(queue))then
return
ifshouldRefine(node, queue) then for
octant = 0...7 do node.child[octant] =
allocNode(node, octant)
buildRecurse(queue, node.child[octant]) end

finalizeInner(node)

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

73

node.idx = tell(nodeOutStream)
write(nodeOutStream, node) else
while contains(node, next(pointInStream)) do
push(queue, next(pointInStream))
advance(pointInStream)

end
finalizeLeaf(queue, node, pointsProcessed) node.idx =
tell(nodeOutStream

write(nodeOutStream, node) fill(queue, pointInStream)
end

DES algorithm:

The Data Encryption Standard is an outdated
symmetric key method of data encryption.DES woks by
using the same key to encrypt and decrypt a message,so
both the sender and the receiver must know and use the
same private key. Once the go to symmetric key
algorithm for the encryption of electronic data. To
accomplish encryption, most secret key algorithms use
two main techniques known as substitution and
permutation. Substitution is simply a mapping of one
value to another whereas permutation is a reordering of
the bit positions for each of the inputs. These techniques
are used a number of times in iterations called rounds.
Generally, the more rounds there are, the more secure
the algorithm. A non-linearity is also introduced into the
encryption so that decryption will be computationally
infeasible without the secret key. This is achieved with
the use of S-boxes which are basically non-linear
substitution tables where either the output is smaller
than the input.

Algorithm

Cipher (plainBlock[64], RoundKeys[16, 48],
cipherBlock[64])

permute (64, 64, plainBlock, inBlock,
InitialPermutationTable)

split (64, 32, inBlock, leftBlock, rightBlock)

for (round = 1 to 16)

mixer (leftBlock, rightBlock, RoundKeys[round])

if (round!=16) swapper (leftBlock, rightBlock)

combine (32, 64, leftBlock, rightBlock, outBlock)

permute (64, 64, outBlock, cipherBlock,
FinalPermutationTable)

mixer (leftBlock[48], rightBlock[48], RoundKey[48])

copy (32, rightBlock, T1) function (T1, RoundKey, T2)

exclusiveOr (32, leftBlock, T2, T3) copy (32, T3,
rightBlock)

swapper (leftBlock[32], rigthBlock[32]) copy (32,
leftBlock, T)

copy (32, rightBlock, leftBlock) copy (32, T,
rightBlock)

function (inBlock[32], RoundKey[48], outBlock[32])

permute (32, 48, inBlock, T1,
ExpansionPermutationTable) exclusiveOr (48, T1,
RoundKey, T2) substitute (T2, T3, SubstituteTables)
permute (32, 32, T3, outBlock,
StraightPermutationTable)

substitute (inBlock[32], outBlock[48],
SubstitutionTables[8, 4, 16])

for (i = 1 to 8)

row ¨ 2 \ inBlock[i \ 6 + 1] + inBlock [i \ 6 + 6]

col ¨ 8 \ inBlock[i \ 6 + 2] + 4 \ inBlock[i \ 6

+ 3] +

2 \ inBlock[i \ 6 + 4] + inBlock[i \ 6 + 5] value =
SubstitutionTables [i][row][col] outBlock[[i \ 4 + 1] ¨
value / 8; value ¨ value mod 8

outBlock[[i \ 4 + 2] ¨ value / 4; value ¨ value mod 4

outBlock[[i \ 4 + 3] ¨ value / 2; value ¨ value mod 2

outBlock[[i \ 4 + 4] ¨ value

CONCLUSION

Nowadays Cloud computing is the trending and
emerging technology. The one of the main issue in cloud
computing is security related issue and storage efficiency.
Cloud computing stores the data and resources in open
environment. The amount of data storage increases
quickly in open environment. So, storage efficiency and
providing security is one of the main challenge in cloud
environment. HMAC algorithm and chunking technique
is used to find the duplicate files by generating hash
value, to support big data management in cloud storage.
It also improve the storage and network efficiency and
providing high security . A number of techniques have
been proposed by researchers for deduplication. However
there are many gaps to be filled by making these
techniques more effective. More work is required in the
area of cloud computing to make it acceptable by the
cloud service consumers. This paper presents increased
storage efficiency and network efficiency in cloud
environment using deduplication method.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 25 Issue 5 – APRIL 2018 (SPECIAL ISSUE).

74

REFERENCES

[1]A. Nyre and M. G. Jaatun, “A probabilistic approach to information
control,” Internet Technology Journal, vol. 11, no. 3, pp. 407–416,
2010.

[2]C. Rong, H. Cheng, and M. G. Jaatun, “Securing big data in the
cloud by protected mapping over multiple providers,” in Digital
Media Industry & Academic Forum (DMIAF). IEEE, 2016, pp. 166–
171.

[3]A. Bessani, M. Correia, B. Quaresma, F. Andr´e, and P. Sousa,
“Depsky: dependable and secure storage in a cloud-of-clouds,” ACM
Transactions on Storage (TOS), vol. 9, no. 4, p. 12, 2013.

[4]C. Wang, Q. Wang, K. Ren, N. Cao, and

W. Lou, “Toward secure and dependable storage services in cloud
computing,” IEEE transactions on Services Computing, vol. 5, no. 2,
pp. 220–232, 2012.

[5]J. Singh, B. Kumar, and A. Khatri, “Improving stored data security
in cloud using rc5 algorithm,” in Engineering (NUiCONE), 2012
Nirma University International Conference on. IEEE, 2012.

[6]H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “Racs: a
case for cloud storage diversity,” in Proceedings of the 1st ACM
symposium on Cloud computing. ACM, 2010, pp. 229–240.

[7]J. Surbiryala, “A framework for improving security in cloud
computing,” in 2nd IEEE International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA 2017). IEEE, 2017.

[8]M. G. Jaatun, , “The design of a redundant array of independent
net-storages for improved confidentiality in cloud computing,” Journal
of Cloud Computing: Advances, Systems and Applications, vol. 1, no.
1, p. 13, 2012.

