International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

DUPLICATE FINDER: PROVIDING THE
SECURITY FOR STORING THE BIG DATA
IN CLOUD ENVIRONMENT

#1

#1
#3

AbstractCloudserviceadoptionhasincreasedinrecent
yearswiththeadoptionofcloudservice; many of the
companies are using this cloud to store and process
Big Data. Security measures provided by the service
providers might not be enough to secure the data in
the cloud. And, we
discussthepracticalsolutiononwhichweareworkingat
themomenttoprotectthedatainacloud environment
by dividing the big data into small data files. Thee
small files can be stored in the cloud without
completely compromising the data in cloud
effectively leading to securing the Big Data in a
cloud environment. .Along with this, we have
implemented HMAC algorithm and
chunkingtechniquetofindthededuplicationinclouden
vironmentforreducingstoragespaceand network
bandwidth. To the best of our knowledge, existing
approaches, either solely focus on
securingthedataincloudTosolvesuchproblem,wedev
elopanefficientalgorithmwhichreduce the storage
space and networkbandwidth.

Key words: HMAC Algorithm, Chunking technique,
Network Bandwidth

| INTRODUCTION

Cloud Computing is a technology which storing
massive amount of data. Recent technological
advancements in cloud computing, internet of things
and social network, have led to a deluge of datenfr
distinctive domains over the past two decades. €lou
data centers are awash in digital data, easily simgs

69

*2 . *3 .
K.Prema, © l.Sheeba Angeline,” S.Deepika

’ZB.E (CSE), Kings Engineering College, Chennai,India
Associate Professor, Kings Engineering College, Chennai, India

petabytes and even exabytes of information, and the
complexity of data management escalates in big. data
The goal of cloud computing is tofindingduplicaties

for increasing the storage efficiency and providing

security.

In, cloud computing providing security,
finding duplication in complex format files like
video, image, document is one of the major
problem . However, all these schemes are
oblivious to the content and format of
application files, and cannot find the redundancy
in files with complex format, like
image,videofileHence, their space efficiency can
be further improved by exploiting application
awareness. This is a codesign of storage and
application to optimize deduplication based
storage systems when the deduplicated storage
layer has extensive knowledge about the file
structures and their access characteristics in the
application layer.

As shown, the conventional deduplication
schemes always improve performance in single-
node scenario or distributed scenario without
considerations on application awareness. In the
latest research works, application aware duplicate
detection has been adopted to single-node
deduplication to improve deduplication efficiency
with low system overhead.

In this paper, we propose HMAC
algorithm, to find the duplicate files by
generating hash value, to support big data
management in cloud storage. Our solution takes
aim at large-scale distributed deduplication with

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

thousands of storage nodes in cloud datacenters
which would most likely fail in the traditional
distributed methods due to some of their
shortcomings in terms of global
deduplicationratio, single- node through-put, data
skew, and communication overhead.

The main idea behind HMAC is to
optimize distributed deduplication by exploiting
application awareness, data similarity and locality
in streams. Our main idea in this work is to see
the possibility of implementing a simple
Chunking mechanism and deduplication method
to store the Big Data files in a cloud environment
by splitting them into the small files. Our HMAC
algorithm can efficiently increasing the storage
efficiency by deduplication method and increased
the network efficiency, security and reducing
time while uploading and downloading files
using chunking technique.

Related Work:

A. Nyre and M. G. Jaatun[l]proposed the
probabilistic approach to Information control. In
this paper we propose a probabilistic approach to
information control based on trust management
systems. Our solution provides the user with a
view of the amount of information that any given
entity probably has received through
redistribution, in order to determine the level of
aggregation the entity can perform. C. Rong, H.
Cheng, and M. G. Jaatun proposed

[2]Securing big data in the cloud by
protected mapping over multiple providers. In
this paper we present an alternative approach
which divides big data among multiple. It
protects the mapping of the various data elements
to each provider using a trapdoor function. Our
initial analysis indicates that this is an effidien
and secure approach forsecuring big data.
A.Bessani,M. Correia, and B. Quaresma,

[3] proposedDepsky: dependable and
secure storage in a cloud-of-clouds. In this paper
we present DepSky, a system that improves the
availability, integrity, and confidentiality of
information stored in the cloud through the
encryption, encoding, and replication of the data
on diverse clouds that form a cloud-of-
clouds.We observed that our protocols improved
the perceived availability, and in most cases, the
access latency, when compared with cloud

providers individually.

C. Wang, Q. Wang, K. Ren, N. Cao, and W.
Lou[4] proposed toward secure and dependable
storage services in cloud
computingTheproposeddesignallowsusers to audit
the cloud storage with very lightweight
communication and computation cost. Considering
the cloud data aredynamic in nature, the proposed
design further supports secure and efficient
dynamic operations on outsourced data, including
block modification, deletion, and append. Analysis
shows the proposed scheme is highly efficient and
resilient against Byzantine failure, malicious data
modification attack, and even server colluding
attacksM. G. Jaatun, G. Zhao,A.

V. Vasilakos, A. Nyre, S. Alapnes, and Y. Tang[5]
proposed the design of a redundant array of indigr@n
net-storages for
improvedconfidentialityincloudcomputingAs long as
each segment is small enough, an individual segment
discloses no meaningful information to others, badce
RAIN is able to ensure the confidentiality of datared

in the clouds. We describe the inter- cloud
communication protocol, and present a formal model,
security analysis, and simulationresults.

Issues in cloud:

In cloud computing redundancy of data is one
of the main issue. And also it leads to reduce the
storage space. Data deduplication is one of th&estot
technologies in storage right now because it esable
companies to save a lot of money on storage costs t
store the data and on the bandwidth costs to nowe t
data when replicating it offsite for DR. This isegt
news for cloud providers ,because if you store, lgss
need less hardware.If you can deduplicate what you
store,you can better utilize your existing storage
space,which can save money by using what you have
more efficiently . In existing approaches,
thededplication method cannot be applied in complex
format files. So it does not provide the optimdugon.

It may lead to the decrease the storage efficiency.
Therefore it increase the network bandwidthhe
amount of data storage increases quickly in open
environment. So, storage efficiency is one of tremm
challenge in cloud environment. HMAC algorithm is
used for finding the duplicate files in complex rfat
files. It increase the storage efficiency and nekwo
efficiency in cloud.

System architecture:

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

The architecture aims to provide the increasedagtor
efficiency and network efficiency. In our proposed
system Hash based message authentication codéahgori
and chunking technique is used. In this HMAC alioni
generates the unique hash valueforeachfiles siothe
cloud

/buckup et
v 'd Y
Stream §
— tiny files | ¥ | |Segments Parallcl
File Size Filter g Container
j=]
non-tiny: files, gﬂ FPy Store
i 7
Intelligent Chunker e WAN -~
o chunks = 3| rew
chunks & = i
_ . o O e Application-
ashimg-Application-aware Hrs |0 g aware
i Deduplicator £ Tl Global Tndex
index & few g 2 | index
=B I
entries - eririe:
enlries S = Q: Clond Storage
Application-aware Local Index f{ | | "
| .)
Lecal Storage
) Cloud

Client

Figl:-Architecture

In chunking technique it divide the big data filiego
small files .Join will allow us to combining all sthdata
files to form original big data file.HMAC algorithsolve
the storage efficiency problem effectively. Theenli and
director play a vital role, if client can uploackthfile the
hash engine generate the unique hash value by tiging
hash value it identify the duplicate files. If tHie
redundancy occurs it cannot be store in the cluvidile
downloading the file director sends one time pasdvo
client mail. By using file key and one time passwvor
client can download the file .It provides the irased
storage and network efficiency by sing HMAC aldomit
and chunking technique, and it improve the secleitgl

by using DES algorithm.

Module description:

User Module: In this module a user has to uplogdilis

in a cloud server, he/she should register firsenrbnly
he/she can be able to do it. For that he needsl tihé
details in the registration form. These details are
maintained in a database. In this module, any ef th
above mentioned person have to login, they shagih|
by giving their name and password.

FILE UPLOADING/DOWNLOADING PROTOCOL:
Upload: In this module user upload his file. The uploaded
file is encrypted format. In this encryption prosege are
implementing BEM (Bit Exchanging Method). The
uploaded file is not stored into the cloud servEhe
Director audits user file then only user files {@aaded

to the cloud server.

Download: In this module user download the files in
decrypted format. The downloaded file is encrypted

71

format the user enter the correct key then onlysit
decrypted. Decryption process also we are using Bit
Exchanging Method algorithm only.

Secure Auditing Protocol: In this module, Direct@ve

to login, they should login by giving their userramnd
password. Secure Duplication protocol is sending th
status for all files duplication status. Directsraudit the
uploaded all file status. Director approves onlp-no

| |
B = N
3 | @ umm“mi@ Message _O

Create MAC Verify MAC Recipient

Sama koy is used 1o
croate and verity MAC

N

Shared Secret Koy

Fig 2:- HMAC algorithm

Client Server

duplicate files then only it is stored in cloud.TRAdIt
user file it is duplicate means Director not pravithe
uploading permission to that file. Uploaded filenisn-
duplication means Director give the activation fbat
file.Then only that file is stored into the cloud
server.Director audits the file storage also.Fiter&e
auditing and Deduplication auditing are clearlywshdn

an graphical format.

Block-level deduplication System: We consider block
level deduplication in that file is divided intodask and
check deduplication for block. For encryption wee ar
going to use Bit Exchanging Algorithm.Block-levaich
byte-level data deduplication methods deliver thadfit

of optimizing storage capacity. When, where and tosv
processes work should be reviewed for your dat&ugac
environment and its specific requirements before
selecting one approach over another. Data dedtiplica
can generally operate at the file, block or byteléhus
defining minimal data fragment that is checked bg t
system for redundancy. Hash algorithm generates a
unique identifier hash number for each analyzedkhof

data. It is then stored in an index and used foriigy out
duplicates the duplicated fragments have the saamsé h
numbers.

Bit Exchanging Method: Encryption taken on the secret
message files using simple bit shifting and XOR
operation. The bit exchange method is introduced fo
encrypting any file.Read one by one byte from therat
data and convert each byte to 8 bits. Then appéykon
right shift operation. Divide the 8 bits into tcobks and
then perform XOR operation with 4 bits on the kfd 4
bits on the right side.The same thing repeatedafbr
bytes in the file.

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

Director Module: Director module is used to audie t
file. Director can login with username and password
After login, Director can view all files uploaded Ihe
user. And then checks the duplicate file. Finallglitor,
activate the file.

Algorithm:

Hash based message authentication code
algorithm:In cryptography, an HMAC (abbreviated as
either keyed-hash message authentication code sir- ha
based message authentication code) is a speqifec df/
message authentication code (MAC) invavin
cryptographic hash function and a secret
cryptographic key. It may be used to simultaneously
verify both the data integrity and the authentiwaof a
message, as with any MAC. Any cryptographic hash
function, such as MD5 or SHA-1, may be used in the
calculation of an HMAC; the resulting MAC algorithis
termed HMAC- X, where X is the hash function used
(e.9. HMAC-MD5 or HMAC-SHA1). The
cryptographic strength of the HMAC
depends upon the cryptographic strength of the
underlying hash function, the size of its hash ottand
the size and quality of the key.

HMAC generation uses two passes of hash computation
The secret key is first used to derive two keysnrer and
outer. The first pass of the algorithm producesgernal
hash derived from the message and the inner keg. Th
second pass produces the final HMAC code deriveh fr
the inner hash result and the outer key. Thus the
algorithm provides better immunity against length
extension attacks.

An iterative hash function breaks up a message
into blocks of a fixed size and iterates over theith a
compression function. For example, MD5 and SHA-1
operate on 512-bit blocks. The size of the output o
HMAC is the same as that of the underlying hash
function (e.g., 128 or 160 bits in the case of MBS
SHA-1, respectively), although it can be truncatéd
desired.

Algorithm

functionhmac (key,message)

if (length(key) >blocksize) then

/lkeys longer than blocksize are shortened key=hash
(key)
end if
if (length (key) <blocksize) then

/lkeys shorter than blocksizeare zero- padded
key=key //zeros (blocksize-length (key)) end if

/lwhere blocksize is that of the underlying hash
function
o_key pad=[0x5c * blocksiz&p key i_key pad=[0x36
* blocksize] @ key

72

/lwhere // is concatenation
returnhash(o_key_pad /lhash(i_key pad
/Imessage)) end
function
Chunking Technique:

Data de-duplication is an emerging technology
that introduces reduction of storage utilization am
efficient way of handling data replication in thadiup
environment. In cloud data storage, the de- dugitina
technology plays a major role in the virtual maehin
framework, data sharing network, and structured and
unstructured data handling by social media anag, als
disaster recovery. In the deduplication technolagya
are broken down into multiple pieces called “chunks
and every chunk is identified with a unique hash
identifier. These identifiers are used to comphee t
chunks with previously stored
chunksandverifiedforduplication.Sincethe chunking
algorithm is the first step involved in getting
efficientdata de-duplication ratio
andthroughput,itisveryimportantinthede- duplication
scenario. In this paper, we discuss different cimmk
models and algorithms with a comparison of their
performances.

Algorithm

fill (queue, pointinStream)

pointsProcessed = 0
root = allocRoot()
buildRecurse(queue, root)
free(root)
return
defshouldRefine(node, queue): a
= contains(node, back(queue)) b =
size(queue) >leafMax
¢ = isSubdivisible(node)
return aand b and ¢
defbuildRecurse(queue, node): if
isEmpty(queue) then
return
if lcontains(node, front(queue))then
return
ifshouldRefine(node, queue) then for
octant = 0...7 do node.child[octant] =
allocNode(node, octant)
buildRecurse(queue, node.child[octant]) end

finalizelnner(node)

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

node.idx = tell(nodeOutStream)
write(nodeOutStream, node) else
while contains(node, next(pointinStream)) do
push(queue, next(pointinStream))
advance(pointinStream)
end
finalizeLeaf(queue, node, pointsProcessed) node.idx
tell(nodeOutStream
write(nodeOutStream, node) fill(queue, pointinStn¢a
end
DES algorithm:

The Data Encryption Standard is an outdated

symmetric key method of data encryption.DES woks by

using the same key to encrypt and decrypt a message
both the sender and the receiver must know anthese
same private key. Once the go to symmetric key
algorithm for the encryption of electronic data. To
accomplish encryption, most secret key algorithse u
two main techniques known as substitution and
permutation. Substitution is simply a mapping oéon
value to another whereas permutation is a reorgefn
the bit positions for each of the inputs. Thesahagues
are used a number of times in iterations calledidsu
Generally, the more rounds there are, the morersecu
the algorithm. A non-linearity is also introducexda the
encryption so that decryption will be computatidyal
infeasible without the secret key. This is achiewgth
the use of S-boxes which are basically non-linear
substitution tables where either the output is tamal
than the input.
Algorithm
Cipher (plainBlock[64], RoundKeys[16, 48],
cipherBlock[64])
permute (64, 64, plainBlock, inBlock,
InitialPermutationTable)

split (64, 32, inBlock, leftBlock, rightBlock)

for (round = 1 to 16)

mixer (leftBlock, rightBlock, RoundKeys[round)])
if (round!=16) swapper (leftBlock, rightBlock)

combine (32, 64, leftBlock, rightBlock, outBlock)

permute (64, 64, outBlock, cipherBlock,
FinalPermutationTable)

mixer (leftBlock[48], rightBlock[48], RoundKey[48])
copy (32, rightBlock, T1) function (T1, RoundKey2)T

exclusiveOr (32, leftBlock, T2, T3) copy (32, T3,
rightBlock)

73

swapper (leftBlock[32], rigthBlock[32]) copy (32,
leftBlock, T)

copy (32, rightBlock, leftBlock) copy (32, T,
rightBlock)

function (inBlock[32], RoundKey[48], outBlock[32])
permute (32, 48, inBlock, T1,
ExpansionPermutationTable) exclusiveOr (48, T1,
RoundKey, T2) substitute (T2, T3, SubstituteTables)
permute (32, 32, T3, outBlock,
StraightPermutationTable)

substitute (inBlock[32], outBlock[48],
SubstitutionTables[8, 4, 16])

for (i=1to 8)

row " 2 \inBlock[i\ 6 + 1] + inBlock [i \ 6 + 6]

col " 8\inBlock[i\ 6 + 2] + 4\ inBlock[i\ 6

+ 3]+

2 \inBlock]i \ 6 + 4] + inBlock[i \ 6 + 5] value =
SubstitutionTables [i][row][col] outBlock[[i\ 4 4]~
value / 8; value " value mod 8

outBlock[[i \ 4 + 2] " value / 4; value " value mdd
outBlock[[i \ 4 + 3] " value / 2; value " value m@d
outBlock[[i \ 4 + 4] " value

CONCLUSION

Nowadays Cloud computing is the trending and
emerging technology. The one of the main issudauact
computing is security related issue and storageieficy.
Cloud computing stores the data and resourcesdan op
environment. The amount of data storage increases
quickly in open environment. So, storage efficieaogd
providing security is one of the main challengeloud
environment. HMAC algorithm and chunking technique
is used to find the duplicate files by generatiagh
value, to support big data management in cloudhgtar
It also improve the storage and network efficieany
providing high security . A number of techniqueséda
been proposed by researchers for deduplication.edemw
there are many gaps to be filled by making these
techniques more effective. More work is requirethi&
area of cloud computing to make it acceptable by th
cloud service consumers. This paper presents isetdea
storage efficiency and network efficiency in cloud
environment using deduplication method.

International Journal of Emerging Technology in Conputer Science & Electronics (IJETCSE)
ISSN: 0976-1353Volume 25 Issue 5 — APRIL 2018 (SPECIAL ISSUE).

REFERENCES

[1]A. Nyre and M. G. Jaatun, “A probabilistic appah to information
control,” Internet Technology Journal, vol. 11, B8ppp. 407-416,
2010.

[2]C. Rong, H. Cheng, and M. G. Jaatun, “Securiggdata in the
cloud by protected mapping over multiple provideirs Digital
Media Industry & Academic Forum (DMIAF). IEEE, 201fp. 166—
171.

[3]A. Bessani, M. Correia, B. Quaresma, F. Andared P. Sousa,
“Depsky: dependable and secure storage in a clbatbods,” ACM
Transactions on Storage (TOS), vol. 9, no. 4, p2023.

[4]C. Wang, Q. Wang, K. Ren, N. Cao, and
W. Lou, “Toward secure and dependable storagecssm cloud

computing,” IEEE transactions on Services Computiad 5, no. 2,
pp. 220-232, 2012.

74

[5]J. Singh, B. Kumar, and A. Khatri, “Improvingosed data security
in cloud using rc5 algorithm,” in Engineering (NWGIE), 2012
Nirma University International Conference on. IERB]12.

[6]H. Abu-Libdeh, L. Princehouse, and H. WeathemspdRacs: a
case for cloud storage diversity,” in Proceedinghe 1st ACM
symposium on Cloud computing. ACM, 2010, pp. 22%-24

[7]3. Surbiryala, “A framework for improving sectyrin cloud
computing,” in 2nd IEEE International ConferenceGioud
Computing and Big Data Analysis (ICCCBDA 2017). ER017.

[8]M. G. Jaatun, , “The design of a redundant aofayndependent
net-storages for improved confidentiality in cloe@mputing,” Journal
of Cloud Computing: Advances, Systems and Applicej vol. 1, no.
1, p. 13, 2012.

