
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

59

ARTIFICIAL BEE COLONY
ALGORITHM USING DATASET

FEATURE FILTERING FOR MALWARE
DETECTION

 R.Ramya, Ms.C.Sangeetha, Dr.T.Rajendran
Department of CSE, Assistant Professor, Professor and Head,
Chettinad College of Engg Department of CSE, Department of CSE & IT,
 and Tech, Karur. Chettinad College of Engg Chettinad College of Engg
 and Tech, Karur. and Tech, Karur.

Abstract—N-gram analysis is an approach that
investigates the structure of a program using bytes,
characters, or text strings. A key issue with N-gram
analysis is feature selection amidst the explosion of
features that occurs when N is increased. The
experiments within this paper represent programs as
operational code (opcode) density histograms gained
through dynamic analysis. The analysis of opcode
density features using supervised learning machines
performed on features obtained from run-time traces. A
support vector machine is used to create a reference
model. Proposed work we intend to expand the
detection methods by investigating N-gram size, which
will dramatically increase the number of features. . A
novel approach for feature selection is introduced using
CHABCF, (Chaotic Artificial Bee Colony), algorithm.
Combination of paradigms: (1) Chaos theory (2)
Artificial Bee Colony optimization. The system is used
for ambiguity removal while chaos is used for
generating the initial population of our bee colony
optimization algorithm.

IndexTermsKNN,metamorphismmalware,obfuscation,pac
kers,polymorphism, SVM, Bee Colony

1. INTRODUCTION
Latest years have glimpsed massive development in
malware, with signature detection and supervising
supposed cipher for renowned security vulnerabilities
evolving ineffective and troublesome. In answer,
investigators need to take up new detection advances
that outmanoeuvre the distinct strike vectors and
obfuscation procedures employed by them alware
advances to filtering out irrelevant features and
writers. Detection advances that use the host

environment’s native opcode sat run-time will
circumvent numerous of the malware writers’
endeavours to avoid detection. One such approach, as
suggested in this paper, is the analysis of opcode
density characteristics utilizing overseen learning
appliances performed on characteristics got from run-
time traces. In future study we propose to elaborate
the detection methods by enquiring N-gram size,
which N will spectacularly boost the number of
characteristics. With this anticipated blast of
characteristics we have chosen to enquire procedures
to prune irrelevant features. While standard
constituent investigation (PCA) is a well-liked
procedure to decrease features in subspace, this paper
aspires to recognise characteristic decrease in the
original dataset space.

For large datasets, or exorbitant (computation)
expanse purposes, the teaching process affiliated with
discovering appliances can become immense. Thus,
the characteristic explosion that happens with N-
grams for large standards of N needs to be addressed.
This paper investigates three starts, in Section II, with
a consideration on associated research. In part III, the
trials are placed into context with an overview of the
untested approach. partIV specifies the natural
environment used to capture the dataset and inserts
anti-analysis approaches taken by malware writers.
This is pursued, in part V, with an interpretation
of how the dataset is conceived. The Support Vector
appliance (SVM) is introduced in part VI and

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

60

describes the creation of a reference model that is
utilised to validate the successfulness of the
subsequent filter trials. Section VII investigates three
filters: Firstly, a simple hypotheses test is considered
to determine the prospect that the benign and
malicious dataset do not pertains to the identical
circulation; secondly, an in-depth look at the
circulation by assessing the locality of intersect
between the benign and malicious distributions; and
eventually, a gaze at the projection of the dataset into
a subspace utilising eigenvalues. Section VIII
summarizes the outcomes and key characteristics
recorded during these trials. Finally, part IX
concludes the paper by comparing the results with
other study and minutia future work that will be
conveyed outas part of this research.

2. RELATED WORK
Comprehensive study has been undertaken into the
detection of malicious code utilising both static and
dynamic analysis. Malware research can be
categorized, not only in periods of static and dynamic
investigation, but furthermore in how the information
is processed after it is captured. well liked research
procedures include: command Flow Graphs (CFG)
for both course and fine kernel investigation, state
appliances to form scheme demeanour, the mapping
of stack procedures and N-gram investigation.
Lakhotia et al. presented a state appliance method to
detect obfuscated calls pertaining to impel pop and
ret opcodes that are mapped to stack procedures.
although, their approach did not form positions where
the push and burst instructions are decomposed into
multiple instructions, such as exactly manipulating
the stack pointer using mov instructions.
Bilar utilised static investigation to get opcode
distributions from PE documents that could be
utilized to recognise polymorphic and metaphoric
malware. Bilar’s outcome show that numerous
common opcodes (mov, push, call, etc.) did not make
good signs of malware. although, lesser frequent
opcodes such ja, adc, sub, inc and add proved to be
better indicators of malware.
Santos et al. analyzed the likeness between families
of malware and the dissimilarity between malware
and benign software utilizing opcode-sequence
profited through static analysis of PE documents.
Santos outcome displayed that utilising (N-gram)

weighted opcode frequency a high degree of likeness
existed between families of malware, but the likeness
ranking between malicious and benign programs was
too high to be an productive classifier.
However, using made a larger distinction between
malicious and benign software. In a subsequent
paper, Santos examined an SVM with a single-class
discovering approach that utilised the frequency of
opcodes got from static investigation. Santos reduced
the effort of labelling that is needed for the training
stage and highlights the topic of unpacking malware.
Santos et al. assessed some learning procedures
(KNN, Bayesian mesh, SVM, etc.) and displayed that
malware can be noticed with a high degree of
correctness using opcode-sequence.
In this vein, we have chosen to focus our research on
the identification of malware utilizing opcodes.
However, we have selected to get the opcodes from
run-time program traces. Bilar illustrated that

 Figure.1. Experiment overview
opcode N-gram could be utilised to
notice malware.thus, we started with and have
demonstrated that malware can be recognised with a
decreased set of features. primary enquiries display
that for , 149 characteristics are made in the raw
dataset made 8092 characteristics (no filtering) thus,
before extending the study by expanding N, it is
prudent to set up a cornerstone on which to filter the
dataset to avert characteristic explosion. To this end,
this research focuses on finding a filter to remove
redundant features.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

61

3. SYSTEM OVERVIEW
The motivation for this study is to decrease the
computational overhead needed when N-gram
investigation is performed on low-level fine kernel
data. Thus, developing a lightweight filter that will
reduce the number of characteristics to be processed
will in turn decrease the computational overhead;
therefore making the training stage of the SVM
approach a viable answer for N-gram analysis where
large feature groups are generated. Fig. 1 shows an
overview of the untested approach taken in this
paper. The programs under enquiry are run in a check
natural environment with a debug tool supervising
the runtime opcodes. After culmination, the data is
parsed into opcode histograms and after some
conditioning the dataset is passed to the SVM to
assemble a quotation model. The quotation form is
constructed by configuring the SVM to present an
exhaustive seek by crossing through all the
characteristics, seeking for those opcodes that have a
positive influence on the classification of benign and
malicious programs. To assess the diverse filtering
algorithms, each filter processes the initial dataset in
an attempt to duplicate the identical reference model
made by the SVM.

4. DATASET CREATION

 Operational ciphers (Opcodes) are appliance dialect
directions that perform CPU operations on operands
such as arithmetic, memory/data manipulation,
ordered operations and program flow command.
There are 15 opcodes exactly mentioned to in this
paper, which are grouped as follows:
1) Arithmetic operations—add , adc (add with
convey flag), inc, sub;
2) recollection manipulation—lea (load productive
address), mov, burst, impel (retrieve and location
facts and figures up on a stack);
3) Logical operations—xor (exclusive OR);
4) Program flow control—call (jump to a function),
ret (return from function) cmp (compare data), ja, je
(jump if a condition is met); rep (a prefix that does
again the particular operation). The dataset is
assembled by representing each executable document
as a set of opcode density histograms obtained from
runtime traces. Note that the operands affiliated with
each opcode are omitted and that only the opcodes
are recorded. Classification jobs engage dividing

facts and figures into teaching and test facts and
figures. Each training-set example is allotted a goal
value/label i.e., benign or malicious. The aim of the
SVM is to assemble a form that predicts the goal
standards of the test facts and figures. There are 260
benign Windows XP documents taken from the
‘Program documents’ book or directions (training
documents 230, validation documents 30). There are
350 malware documents (training documents 310,
validation documents 40) which are malicious
windows executable documents downloaded from
available) and consists of a range of malicious

undertakingssuchas:backdoor,downloaders,schemestr

ike,forgeryalert/warnings,Ad-Aware,datastealer.
To ensure that Ollydbg rightly unpacked and ran the
malware, trials were constrained to programs that
ollydbg rightly recognised as crammed or encrypted.
The malware samples were run for 3 minutes
ensuring that not only the loading and unpacking
stages were noted but further more that malicious
undertaking appeared, i.e., pop-up, composing to the
disk or registry files. While there are 344 Intel
opcodes, only 149 distinct opcodes are noted
throughout the apprehended datasets for all programs
traced throughout this trial. The dataset is normalized
by assessing the percentage density of opcodes
rather than the unconditional opcode count to
eliminate time variance introduced by distinct run
extents of the various programs. The dataset is
arranged into most routinely happening opcodes.
An primary evaluation of the data displays two key
properties a) The circulation of the various opcodes
does not conform to any reliable distribution form;
rather opcode distribution varies substantially as
showed by the distinction between the mov and ret
opcodes, recounted later in VII: ’Area of Intersect’.
Therefore, no one data form could be presumed and
hence a nonparametric procedure should be utilised.
b) The facts and figures standards are a percentage of
the opcodes inside a particular program. For
demonstration, 0 means that the opcode does not
occur inside that program find or 0.25 means that
25% of the program find comprises of that opcode.
To advance the performance of the SVM the facts
and figures is linearly leveled (0,+1).

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

62

5. SUPPORT VECTOR MACHINE
 Support Vector appliance (SVM) is a technique
utilised for facts and figures classification and was
presented by Boser et al. in 1992 and is categorized
as a kernel procedure. The kernel procedure
algorithm depends on dot-products function, which
can be replaced by other kernel functions that map
the facts and figures into a higher dimensional feature
space. This has two benefits: foremost, the ability to
develop a nonlinear decision plane and secondly,
permits the user to request a classification to data that
does not have an intuitive approach i.e., SVM
training when the facts and figures has a non regular
or unidentified circulation.
The facts and figures set comprises of 149 different
opcodes, each having their own exclusive distribution
characteristics and therefore a SVM is an befitting
alternative. As cited earlier, the facts and figures is
linearly levelled to advance the performance of the
SVM. The major advantages of scaling are a) it
avoids attributes with larger numeric varieties
overriding those with lesser numeric varieties and b)
it avoids numerical adversities throughout the
calculation as kernel values usually count on the
inner products of characteristic vectors, for example,
in the case of the linear kernel and the polynomial
kernel, large ascribe values might origin numerical
difficulties.
SVM is used to conceive a quotation form to validate
the filter trials that are presented in the subsequence
parts. The SVM is configured to cross through the
dataset seeking for opcodes that have a affirmative
influence on the classification of benign
and malicious programs. The search begins with six
opcodes scanning over the complete facts and figures
sequence for all exclusive permutations for that
number of opcodes. The seek is recurring for five
opcodes and then four opcodes.
Keypointstonoteare:
1) The 6 opcodes ja, adc, sub, inc, add and rep, each
having an significance ranking of more than 20% of
the top detection rate, are chosen as the most
important indicators for classifying benign and
maliciousprograms.
2) mov has a negative influence on the classification
and identification of software. i.e., when mov is part
of the analysis facts and figures the

output/classification is always incorrect. The mov has
a high density (30% and 40% in the presented
dataset) in both benign and malicious programs.

6. PROPOSED OPCODEPREFILTERING

APPROACH
 N-gram analysis presents a dimensionality
difficulty in terms of the number of raw
characteristics produced and if left unfiltered
would outcome in a high computation cost during the
SVM teaching stage. To reduce this effort and
slender the locality of search, this study aims to
recognise filters that can choose the optimum features
former to feeding them to a SVM.
This part investigates two advances to filtering
irrelevant opcodes. Starting with an enquiry into the
’area of intersect’ between benign and malicious
distributions using Linear programming methods and
then concludes with an enquiry into subspace
investigation utilising Principle constituent
investigation (PCA) and Eigenvectors.

A.Area of Intersect
Secondly, consider the simplistic characteristics of
benign and malicious percentage of a given program
that is made up of a specific opcodes with a usual
circulation as shown in Fig. 4. The plots are grouped
into density bends for benign and malicious software
of a lone opcode. The level axis relates to the opcode
and the upright axis shows the number of programs
with that percentage of opcode. The key
characteristic to note is the overlapping area of the
two density bends. The larger the distinction between
the signify of the curves and narrower the standard
deviation decreases the overlapping locality and thus
decreases the interference and corresponding
misclassification of the benign and malicious
software.
Constraints—The data is in the pattern of a

probability density curve. The level axis comprises
the makeup of a program i.e., the opcode percentage
that makes up a program and the upright axis,
comprising the number of programs that have that
percentage of opcodes. The likelihood density is
founded on a percentage of opcode counts obtained
from traces throughout the execution of a program.
The minimum worth is 0 and the greatest is the

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

63

percentage of the most happening opcode within the
apprehended dataset (mov). therefore the maximum
value is 0.4 (40%).

Conclusion Variable—this is the worth discovered

throughout the search for the greatest or minimum
issue. It is the percentage of a particular opcode that
yields the utmost locality of benign and malicious
density that lies either side of the decision plane.

Target function—is the numerical sign used to

characterize the aim of the task. The mathematical
input to the LP is the cumulative likelihood as the
conclusion variable is incremented across the variety.
thus the greatest classification would be
accomplished when the two density bends do not
intersect and their whole locality lies on their
respective edge of the conclusion
plane.

B. Subspace
An alternative approach to work out the significance
of the one-by-one opcodes, thereby grading their
usefulness as classification characteristics, is to
investigate the eigenvalues and eigenvectors in
subspace. Principal constituent Analysis (PCA) is a
transformation of the covariance matrix and it is
defined as [21]:

���=
�

���
∑ ��

	
� ��	 - ��) (��	 - ��).

Where

C Covariance matrix of PCA transformation;
X dataset value;

� dataset mean;
n and m data length;

This is a method utiliused to compress facts and
figures by mapping the facts and figures into a
subspace while retaining most of the data/variation in
the data. It reduces the dimensionality by mapping
the data into a subspace and finding a new set of
variables (fewer variables) that represent the original
facts and figures. These new variables are called
primary constituents (PCs).
As PCA is an algorithm that operates on variance of
facts and figures i.e., a covariance matrix of the
teaching facts and figures set, which is calculated in
Matlab as follows:

C = con(trainingData)
[V,λ] = eig(C)
d =diag.

assessing the important standards by multiplying the
important eigenvector Column by the respective
eigenvalues and then summing each row
�
 = ∑ � .�

� �

Where

R Sum of the matrix variance;
C Covariance
V eigenvector
λ EigenValue matrix;
d EigenValue scalar;

Given that the six SVM selected opcodes have been
grouped into the peak twelve opcodes i.e., peak 8%
thereby eliminating the 92% irrelevant opcodes
makes this an productive filtering means to decrease
features former to the SVM training phase.

7. FEATURE SELECTION BASED METHOD

FOR MALWARE DETECTION
 Novel approach is introduced for feature selection
based on the popular artificial bee colony algorithm.
A better diversity in the population has been obtained
using chaos theory with has been employed for
ranking bees in the bee colony algorithm. Chaos
theory has been incorporated for three main purposes:
(1) increasing diversity in the initial population, (2)
finding the neighbourhood a food source and (3)
generating random numbers. Firstly, the initial
population is generated for each source using the
features of dataset with the around aim of selecting
the best possible ones. For this purpose, a random
number should be produced between 1 and the total
number of features in dataset. This number specifies
the number of features which will be used after
feature selection.

CONCLUSION
 This paper, suggests the use of SVM as a means of
identifying malware. It shows that malware, that is
packed/encrypted, can be noticed utilising SVMs and
by utilising the opcodes chosen by the SVM as a
standard, recognised a prefilter stage using
eigenvectors that can decrease the characteristic set

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

64

and thus decrease the teaching effort. Foremost, the
identification of a high population opcode: mov that
is not only is a poor sign of benign/malicious
programs, but inhibits the ability to rightly classify
programs when utilised with other opcodes such as
ja, adc, sub, inc, add and rep.
Secondly, a subset of opcodes can be utilised to
notice malware. although, the SVM analysis
demonstrates that ja, adc and sub are powerful signs
of malware as they are four times more expected to
be used in the correct classification of malware than
the next most important opcodes (inc). Enhanced
work proposed a novel approach for feature selection
by artificial bee colony algorithm. A chaotic function
has been used in this method for generating a
population with more diversity, and the fuzzy logic is
used for fitness based ranking of each food source
and also allocating bees to these sources.

ACKNOWLEDGMENT
 The authors thank anonymous reviewers for their
valuable comments. The research was supported in
part by projects.

REFERENCES
[1] A. Lakhotia, E.U. Kumar, and M. Venable, “A
procedure for noticing obfuscated calls in malicious
binaries,” IEEE Trans. Software Eng., vol. 31, no. 11,
pp. 955–968, Nov. 2005.

[2] D. Bilar, “Opcodes as predictor for malware,” Int.
J. Electron. Security Digital Forensics, vol. 1, no. 2,
pp. 156–168, 2007.

[3] D. Bilar, “Callgraph properties of executables and
generative mechanisms,” AI Commun., exceptional
topic on Network Anal. in Natural Sci. and Eng., vol.
20, no. 4, pp. 231–243, 2007

[4] I. Santos, Y. K. Penya, J. Devesa, and P. G.
Garcia, “N-grams-based document signatures for
malware detection,” S3Lab, Deusto Technological
Found., 2009.

[5] R. Sekar, M. Bendre, D. Bollineni, and Bollineni,
R. Needham and M. Abadi, Eds., “A fast automaton-
based procedure for noticing anomalous program
behaviors,” in Proc. 2001 IEEE Symp.Security and

Privacy, IEEE Comput. Soc., Los Alamitos, CA,
USA, 2001, pp. 144–155

[6] W. L. K. Wang, S. Stolfo, and B. Herzog,
“Fileprints: Identifying document types by n-gram
analysis,” in Proc. 6th IEEE announce. promise
Workshop, Jun. 2005, pp. : 64–71.

[7] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B.
Sanz, C. Laorden, and P. G. Bringas, “Opcode-
sequence-based malwaredetection,” in Proc.2nd Int.
Symp. Eng. Secure programs and Syst.(ESSoS),Pisa,
Italy, Feb. 3–4, 2010, vol. LNCS 5965, pp. 35–43.
[8] I. Santos, F. Brezo, B. Sanz, C. Laorden, and Y.
P. G. Bringas, “Using opcode sequences in single-
class learning to notice unknown malware,” IET
announce. Security, vol. 5, no. 4, pp. 220–227, 2011.

[9] I. Santos, F. Brezo, X. Ugarte-Pedrero, and Y. P.
G. Bringas, “Opcode sequences as representation of
executables for data-mining-based unidentified
malware detection,” Inform. Sci., 2011.

[10] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev,
and Y. Elovici, “Detecting unidentified malicious
cipher by applying classification techniques on
opcode patterns,” Security Informatics, vol. 1, pp. 1–
22, 2012.

[11] R. Moskovitch, C. Feher, N. Tzachar, E.
Berger,M.Gitelman, S.Dolev, and Y. Elovici,
“Unknown malcode detection using opcode
representation,”in Proc. 1st Eur Conf. Intell. and
Security Informatics (EuroISI08), 2008, pp. 204–215.

[12] Y. Song, M. Locasto, and A. Stavro, “On the
infeasibility of modeling polymorphic shellcode,” in
Proc. ACM Conf. Computer and Commun.Security,
2007, pp. 541–551.

[13] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E.
Kirda, X. Zhou, and X.Wang, “Effective and efficient
malware detection at the end host,” in Proc. 18th
Usenix Security Symp., 2009, pp. 351–366.

[14] P. Ferrie, The ultimate anti debugge reference
May2011.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 8 Issue 1 –APRIL 2014.

65

[Online].Available:http://pferrie.host22.com/papers/a
ntidebug.pdf.

[15] X. Chen, “Towards an understanding of anti-
virtualization and antidebuggingbehavior in modern
malware,” ICDSN Proc., pp. 177–186, 2008.

[16] Philip O’Kane, SakirSezer, Kieran McLaughlin,
and EulGyuIm, “SVM Training Phase Reduction
Using Dataset Feature Filtering for Malware
Detection” IEEE Trans. Security., March 2013.

[17] B. E. Bernhard, G. M. Isabelle, and V. N.
Vladimir, H. Haussler, Ed., “A training algorithm for
optimal margin classifiers,” in Proc. 5th Ann.ACM
Workshop on COLT ACM Press, Pittsburgh, PA,
USA, 1992, pp. 144–152.

[18] C. Ko, M. Ruschitzka, and K. Levitt, “Execution
monitoring of security- critical programs in
distributed systems: A specification-based approach,”
in Proc. 1997 IEEE Symp. Security and Privacy,
Oakland, CA, USA, May 1997, p. 175-1 87.

[19] C.-W. Hsu, C.-C.Chang, and C.-J. Lin, A
Practical Guide to Support Vector Classification,
Department of Computer Science National Taiwan
University, Taipei, Taiwan, Apr. 15, 2010 [Online].
Available: http://www.csie.ntu.edu.tw/.

[20] R. Vanderbei, Linear Programming:
Foundations and Extensions Pub. New York, NY,
USA: Springer, 2000, ISBN: 0792373421.

