Secure Degree Equitable Dominating Graph

R. Anbunathan¹, Dr. R. Rajeswari²

1Associate Professor, Department of Mathematics ,Jeppiaar Maamallan Engineering College, Research Scholar, Sathyabama Institute. of Science and Technology.

2 Professor, Dept. of Mathematics, Sathyabama Institute of Science and Technology.

Abstract:

Let G = (V, E) be a graph. Let $v \in V$: The open neighbourhood N(v) and closed neighbourhood N[v] are defined by N(v) = $\{u \in V : uv \in E\}$ and $N[v] = N(v) \cup \{v\}$

A set contains D is the secure degree equitable dominating set in G it satisfies the following conditions

- i) A vertex $u \in V$ is set to be degree equitable with a vertex $v \in V$ if $|deg(u) - deg(v)| \le 1$.
- ii) A dominating set S of G is a secure dominating set if for each $u \in V$ - S there exists $v \in N(u) \cap S$ such that $(S - \{v\}) \cup \{u\}$ is a secure dominating set.

The minimum cardinality of the secure degree equitable dominating set $D_{sde}(G)$ and is denoted by $\delta_s^{de}(G)$. This paper find the secure degree equitable domination number of $\delta_s^{de}(G)$ of cycle graphs, path graphs and complete graphs and also find the

Keywords: *Dominating graph, Secure Domination, Equitable dominating,*

I. Introduction:

Let G = (V, E) be a graph, mean a finite undirected graph with neither loops nor multiple edges.

Let G = (V, E) be a graph, it is said to be complete all the vertices of V are adjacent to each other.

Degree of a vertex $v \in V$ can be defined number of edges incident with v, it can be denoted by deg(v).

Let G = (V, E) be a graph. Let $v \in V$: The open neighbourhoodN(v) and closed neighbourhood N[v] are defined by N(v) = $\{u \in V : uv \in E\}$ and N[v] = N(v) U $\{v\}$

II. Theorem and Proof:

The set S is called a dominating set of G if every vertex in V - S is adjacent to at least one vertex in S.

A dominating set S of

G is a secure dominating set if for each $u \in V$ - S there exists

 $v \in N(u) \cap S$ such that $(S - \{v\}) \cup \{u\}$ is a dominating set.

A vertex $u \in V$ is set to be degree equitable with a vertex $v \in V$ if

 $|\deg(u) - \deg(v)| \le 1.$

A subset *D* of *V* is called an equitable dominating set if for every $v \in V - D$ there exists *a* vertex $u \in D$ such that $uv \in E(G)$ and $|\deg(u) - \deg(v)| \le 1$.

A set contains D is the secure degree equitable dominating set in G it satisfies the following conditions

- iii) A vertex $u \in V$ is set to be degree equitable with a vertex $v \in V$ if $|deg(u) - deg(v)| \le 1$.
- iv) A dominating set S of G is a secure dominating set if for each $u \in V$ - S there exists $v \in N(u) \cap S$ such that $(S - \{v\}) \cup \{u\}$ is a secure dominating set.

The minimum cardinality of the secure degree equitable dominating set is called secure degree equitable domination number and is denoted by δ_s^{de} .

Theorem 1: Let K_n be a complete graph of order $m \ge 2$, then $\delta_s^{de}(K_m) = 1$.

Proof: Given a secure degree equitable doming set D_{sde} of $K_m = \{x_1, x_2, x_3, \dots, x_m\}$, assume that $S = \{x_1\} \in D_{sde}$, Then x_1 dominates all other vertices in K_m , and since K_m is a complete graph, then for every $x_{i \neq 1} \in K_m$, x_1 and $x_{i \neq 1}$ are adjacent and

 $|\deg(\mathbf{x}_1) - \deg(\mathbf{x}_{i \neq 1})| = 0$ Hence

 $|\deg(\mathbf{x}_1) - \deg(\mathbf{x}_{i \neq 1})| \le 1$

For each

 $x_{i \neq 1} \in V - S = \{x_2, x_3, \dots, x_m\}$ there exists $x_{i \neq 1} \in N(x_1) \cap S$ such that

 $(S - \{x_{i \neq 1}\}) \cup \{x_1\}$ is a secure dominating set.

Then $D_{sde}(K_m) = \{x_1\}$ which gives $\delta_s^{de}(K_m) = 1$.

For example

 K_4 is a complete graph (in Figure 1) with V = {a, b, c, d}.

Let $S = \{a\}$ and V- $S = \{b, c, d\}$ and

 $| \ deg \ (a) \ - \ \{deg(b)or \ deg(c) \ or \ deg(d)\}|{=}0.$ Therefore K_4 is degree equitable.

For each x (say d) belongs to V- S = {b, c, d} and N (d) = {a, c, b} and N (b) \cap S = {d} and then (S-{a}) \cup {b} = {b, c, d} is a secure dominating set. δ_s^{de} (K₄) =1.

Figure 1

Proof:

For n=2,

degree equitable.

K₄ (Removing a vertex {a} from S and inserting the adjacent vertex d to S. Therefore K₄ is secure degree equitable domination. δ_s^{de} (K₄) =1.)

Theorem 2: Let P_n be a path graph of order $n \ (n \ge 2)$, then δ_s^{de} (P_n) is greatest integer function of $(\frac{n}{2})$.

a

Figure 2 In P₂ (In Figure 2), $S = \{a\}$.Removing a vertex $\{a\}$ from S and inserting the adjacent vertex $\{b\}$ to S. Then $S = \{b\}$ is a secure dominating

с

b

P₃

set. Therefore δ_s^{de} (P₂) is greatest integer function of $\left(\frac{2}{2}\right) = 1$.

Every vertex in P_n degree is either 2(between

vertices) or 1(endvertex). Therefore clearly P_n is

Figure 3 In $P_3($ in Figure 3), $S = \{a, b\}$. Removing a vertex $\{b\}$ from S and inserting the adjacent

For n = 4,

vertex {c} to S. Then S={c, b} is a secure dominating set. Therefore δ_s^{de} (P₃) is greatest integer function of $\left(\frac{3}{2}\right) = 2$.

Figure 4

In P_4 (Figure 4), $S = \{a, c\}$. Removing a vertex $\{a\}$ from S and inserting the adjacent vertex $\{b\}$ to S. Then $S=\{c, b\}$ is a secure dominating set.

Therefore δ_s^{de} (P₄) is greatest integer function of $\left(\frac{4}{2}\right) = 2$.

Figure 5

In P_5 (in Figure 5), $S = \{a, c, f\}$. Removing a vertex $\{f\}$ from S and inserting the adjacent vertex $\{d\}$ to S. Then $S=\{a, c, d\}$ is a secure

dominating set. Therefore δ_s^{de} (P₅) is greatest integer function of $\left(\frac{5}{2}\right) = 3$.

For n = 6,

Figure 6

In P₆, (in Figure 6) S = {a, c, f}. Removing a vertex {f} from S and inserting the adjacent vertex {g} to S. Then S={a, c, g} is a secure dominating set.Therefore δ_s^{de} (P₆) is greatest integer function of $\left(\frac{6}{2}\right) = 3$.

Therefore in general P_n be a path graph of order n, then δ_s^{de} (P_n) is greatest integer function of $(\frac{n}{2})$.

Proof:

Theorem 3: Let C_n be a complete graph of order $n \ge 3$, then $\delta_s^{de}(C_n)$ is greatest integer function $of(\frac{n}{2})$.

•

Every vertex in C_n is degree of 2. Therefore clearly C_n is degree equitable. For n = 3,

In C₃ (In Figure 7) , S = {a, c}. Removing a vertex {a} from S and inserting the adjacent vertex {b} to S. Then

S={c, b} is a secure dominating set. Therefore δ_s^{de} (C₃) is greatest integer function of $\left(\frac{3}{2}\right) = 2$. For n = 4,

Figure 8

In C₄ (In Figure 8) , S = $\{a, c\}$. Removing a vertex $\{a\}$ from S and inserting the adjacent vertex $\{b\}$ to S. Then

S={c, b} is a secure dominating set. Therefore δ_s^{de} (C₄) is greatest integer function of $\left(\frac{4}{2}\right) = 2$. For n = 5,

Figure 9

In P₅ (In Figure 9)

, S = {a, c, e}. Removing a vertex {e} from S and inserting the adjacent vertex {d} to S. Then S={a, c, d} is a secure dominating set. Therefore δ_s^{de} (P₅) is greatest integer function of $\left(\frac{5}{2}\right) = 3$.

For n = 6,

Figure 10

In C₆ (In Figure 10)

, S = {a, c, f}. Removing a vertex {f} from S and inserting the adjacent vertex {e} to S. Then S={a, c, e} is a secure dominating set. Therefore δ_s^{de} (C₆) is greatest integer function of $\left(\frac{6}{2}\right) = 3$.

III. Conclusion:

From this paper we can able to find the $\delta_s^{de}(G)$ of cycle graphs, path graphs and complete graphs and also find the secure degree equitable domination number.

IV. References:

[1] K. B.Murthy and Puttaswamy, "The End Equitable Domination in Graph" Journal of Computer and Mathematical Sciences, Vol.6 No-10, Pg. No -552-563, October 20150976-5727

[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1969).

[3] T. W. Haynes, S. T. Hedetniemi and P. J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).

[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs- Advanced Topics, Marcel Dekker, Inc., New York, (1998).

[5] V. R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga, India (2010).

[6] V. R. Kulli, B. Janakiram andRadha R. Iyer, "The Cototal Domination Number of a Graph", Journal of Discrete Mathematical Sciences and Cryptography, 2(2, 3), 179-184 (1999).

[7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ 38, Providence, 1962,

[8] V. Swaminathan and K. M. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevak Journal of Mathematics, Vol-35, No-1, Pg-No 191-197 (2011).

[9] B. Basavanagoud, Vijay V. Teli, "Equitable Cototal Domination in Graphs", IJSR -International Journal of Scientific Research, Vol-3, No-7, July 2014, ISSN No 2277 - 8179