
International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

49

DETECTION AND REMOVAL OF ANTI-BENIGN

OBJECTS IN USER SYSTEM INTERFACE

ENVIRONMENT
R. Hema

#1
, M. Sindhuja

#2

Assistant Professors (Department of CSE), K. Ramakrishnan College of Technology, Trichy, India

hemaramachandran9@gmail.com

sindhujammv@gmail.com

 Abstract--Virtual Machines are based on the specifications of a

presumptive computer. It is an independent instance and performs

the function as like the original host machine. It can be created

upon use and disposed upon the completion of the tasks or the

detection of error. One of the main demerits of virtual machine is

that if there is no malicious activity, the user has to redo all of the

work in her actual workspace since there is no easy way to commit.

So, a lightweight commitment approach called SeCom have been

proposed, which eliminates the malicious program at the end of

virtual machine termination i.e. while committing the benign data.

It consists of three steps: correlation, recognition and commitment.

Firstly, instead of manipulating huge data, it relies only on the OS

level information flow and malware behaviors, thereby it reduces

performance overhead. Secondly, it recognizes the data in cluster

by cluster manner, to ease the detection. Thirdly, it marks the

cluster as harmful if and only if it has at least two different types of

malware behavior, to reduce the false positives. When comparing

with other commercial antimalware tools, it cleans up all the

malware behavior and maintains the performance of host machine

to the desired level. Moreover, it results in lower number of false

alarms than that accomplished by behavior based approach of

antimalware tools.

Keywords: Virtual Machine, malware deeds, false positive, false

negative, benign process, secure commitment, raw behavior pair.

I. INTRODUCTION

An OS level virtual machine is a cost- effective component due

to its minimal startup/shutdown cost. Also it requires

lessresources and supports high scalability due to its sharing of

the execution environment of the host operating system and

confining state changes within the VM’s environment. It is thus

an excellent equipment for tolerating intrusions and faults, as

well as consolidating servers. A practical application is to allow

users to install and try new applications without worrying about

malware. In other words, if something abnormal happens, one

can simply throw away the infected VM. But the problem of

virtual machine is there is no malicious activity detection only

the benign updates send to the virtual machine host environment

i.e. the user has to repeat all the activities in her actual user

space since there is no commitment program. Changes within an

OS-level VM include files, directories and registry entries that

are created, modified and deleted by the processes running in

the VM. Secure commitment means merging only benign

changes into the host environment but filtering out malicious

changes when committing a VM.

There are two issues to address in order to build a

secure commitment mechanism in the framework of an OS-level

virtual machine. First, the overhead of a commitment

mechanism imposed on the host OS should be as low as possible

since the virtual machine mechanism has already incurred no

trivial overhead which leads to the performance degradation.

Second, a commitment mechanism should be able to clean up all

malicious changes rather than part of them. However, existing

technologies such as logging and analysis, host-based intrusion

detection and anti-malware can not address the two issues

simultaneously. These techniques either cannot identify all

malicious changes made by a malware program or incur a big

overhead on a system although they may be effective in

detecting intrusions. Therefore, a light-weight commitment

approach, named SeCom has been proposed for an OS-level

virtual machine to prevent malicious changes from being

merged into the host. To our best knowledge, this is the first

effort towards building a secure and practical VM commitment

mechanism. It automatically filters out malware impacts when

committing the content of a VM into the host environment.

Thus, a user does not need to manually scan the VM to be

committed using antivirus software each time. Moreover, a user

also does not need to install, manage and frequently upgrade the

anti-virus software. Therefore, this approach is useful when

building self-healing or self-protection systems based on VMs.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

50

The approach consists of three stages. First, it

correlates suspicious objects within a VM into a number of

clusters by tracking OS-level information flows and attaching a

cluster label to each object. Objects in a cluster are only possible

to be either all benign or all malicious. Second, it determines

malicious clusters using an online malware detection engine to

monitor malicious behaviors. Last, it merges benign changes in

a VM to the host environment while discarding malicious

clusters. It has three novel features. First, unlike the

commitment approaches assumed in other fields (e.g. database)

which rely on a huge volume of log data, it leverages use of OS-

level information flows and malware behaviors to perform

secure commitment. As a result, SeCom imposes a smaller

overhead on host OS, while using a conventional data-logging

method would significantly slow down the whole system.

Second, different from existing intrusion detection and recovery

systems that detect compromised OS objects one by one, it puts

correlated objects into clusters thus identifying and discarding

compromised objects cluster by cluster. Finally, different from

existing behavior-based malware detection methods, it monitors

a pair of malware behaviors and labels the sources of the

processes that launch the behaviors rather than monitors a single

behavior. SeCom approach depends only on tracing OS-level

information flows and monitoring malware behaviors without

the need of technical details of a specific virtual machine.

Therefore, although SeCom is designed for OS-level virtual

machines, with some changes it should also be applicable to

other types of virtual machines or general operating systems in

order to clean up malware impacts.

II. OVERVIEW OF SECOM APPROACH

Committing a VM overwrites files and registries on the

host with the VM’s private versions. As malware contributes to

most security problems, to protect the integrity of the host

environment, files and registries that have been attacked by

malware programs should be discarded when committing the

VM. The design of SeCom is based on results obtained from our

preliminary study o f malware behaviors. To find an approach to

identify malware objects from the contents of a VM, we have

analyzed the technical details of a large number of malware

samples from Symantec Threat Explorer [2] that stores analysis

results of thousands of malware samples by analysts. With the

study results, a novel approach, SeCom has been designed and

developed , to commit VM. It mainly leverages light-weight

techniques such as tracing OS-level information flows and

monitoring malware behaviors to ensure secure commitment,

rather than uses logging technique which often incurs significant

storage and time overhead, and even requires a backend host.

SeCom consists of three steps, i.e. “correlate”, “recognize” and

“commit”, which can be conceptually depicted in Fig. 1. The

first step correlates suspicious OS objects within a VM that are

potentially malicious into different clusters. The second step

recognizes real malicious clusters and marks them. The third

step commits all OS objects in a VM to the host except the ones

in malicious clusters or changes made on write-protected files.

Fig. 1. SeCom Approach

A VM can only be committed when it has completed all the

tasks and is at the stage of being shut down, because many

objects and processes within a running VM cannot be merged

into the host environment. For example, some objects (e.g.,

files) are often locked when accessed by some processes. In

addition, the running of most processes often depends on some

kernel objects, interprocess communication objects or process

properties that are tied with a specific VM. Moreover,

committing a running VM may result in a partial merge of

results from a task still being performed. Therefore, the

“correlate” and “recognize” steps are executed when a VM is

running, while the “commit” step is only executed after a VM is

stopped. In the rest of this section, we describe the three steps

involved in securely committing a VM.

A. Correlating Suspicious Objects

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

51

One novel feature of our VM commitment approach is to

identify malicious OS objects in a cluster fashion for a more

efficient commitment, rather than one by one as done in

traditional malware detection and analysis methods. Moreover,

it is also able to remove malicious objects more completely,

because malware programs generate or modify a non-trivial

number of files or registry entries on a single OS and only

removing part of the malware program thoroughly. To identify

malicious objects in a cluster fashion, first of all, we have to

address the challenge of correlating suspicious objects into

clusters. Since objects of a malware program often have various

types and are scattered all over the system, it is difficult to

associate them together. We observe that objects of a malware

program can be correlated together by tracing information

flows, and at the same time the malicious objects can be clearly

separated from the other objects through a proper way of

attaching cluster labels to them. Accordingly, we devise a novel

approach to correlate suspicious objects into clusters, which

includes tracing and labeling suspicious objects.

1) Tracing Suspicious Objects:

 As all malware programs come from either the network or

removable drives, we treat the following objects as start-points

to trace suspicious objects, calling them start-point objects.

 Processes conducting remote communication

 Executables (i.e. executable file) located at removable

drives.

An executable represents an executable file with a specific

extension, such as .EXE, .COM, .DLL, .SYS, .VBS, .JS, BAT,

etc, or a special type of data file that can contain macro codes,

say a semi-executable, such as .DOC, .PPT, .XLS, .DOT, etc.

SeCom does not allow a suspicious process to change the

extension of a file in order to prevent its potential evasion of

tracing. With these two rules, all malware programs that attempt

to enter the system can be tracked as there are only two ways for

them to break into system, either through network

communications or through a removable drive. To track OS

level information flow, BackTracker [1], is a successful

approach. However, the major challenge is how to make sure

that the entire system does not get marked as suspicious and at

the same time malware programs cannot evade being traced.

This actually requires a trade-off between reducing the number

of marked objects and reducing the risk of malware evasion.

Our principle to achieve the trade-off is to trace preferentially

the information flows with a high risk of propagating malware

programs while not tracing the information flows with a low

risk. Based on this principle, we mark the following objects as

suspicious.

 Files, directories and registry entries created or

modified by a suspicious process

 Processes spawned by a suspicious process;

 Processes loading a suspicious executable file or

 reading a suspicious semi-executable or script file.

 The first rule records all permanent changes in a VM made

by suspicious processes so that maliciously changed application

data, executable files, system configurations, directories,

registry entries and so on can be filtered out thoroughly when

committing a VM. To track the information flows with a high

risk of propagating malware programs, the last two rules focus

on tracing executables and processes. As an executable

represents an inactive malware while a process represents an

active malware, the information flows presented in these three

rules have a high possibility of propagating malware programs.

In the third rule, semi-executable and script file possibly contain

malware programs (e.g., macro virus in MS Word), and thus the

processes reading them need to be marked. Although the macro

virus protection in Office software can reduce the chances of

macro virus infection, relying on it is very dangerous as crafted

macro codes are able to subvert it and cause destructive

damages.

2) Labeling Suspicious Objects

In this section, the dependency graph has been employed to

describe how to attach cluster labels to suspicious objects.

Actually, for each start-point object, its descendent objects are

connected to each other by information flows and form an

existent but invisible dependency graph, which had been

disclosed by the literature work [1]. The graph is a directed

graph and has the start-point object as its root node. Its nodes

represent OS objects, e.g. file, process. Its edges represent

information flow related operations, e.g. creating a process,

modifying a file. Figure 2 (a) and (c) show two dependency

graphs which are derived from a networking process and an

executable file respectively. Note that, we do not intend to really

generate dependency graphs to help label objects since this

would not be applicable to an online approach. Instead, the

labeling methods are implemented together with the starting and

tracing rules as follows: when an object is determined as

suspicious by starting or tracing rules, a proper cluster label, i.e.

a number and a time stamp, will be attached to it at the same

time in order to denote that it is a suspicious object and belongs

to the cluster identified by the label. In other words, the labeling

methods are enforced along with the starting and tracing rules in

real-time, rather than generating a dependency graph and then

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

52

analyzing it. When a start-point object is a network facing

process, its dependency graph is too coarse grained to be used to

recognize malicious objects in a cluster fashion since it might

contain both benign and malicious objects. In other words, we

cannot determine that all objects in a graph are malicious even if

most of the objects in the graph are recognized as malicious.

Thus, the graph is partitioned into a number of sub graphs, say

clusters, so that each cluster contains either only benign or only

malicious objects.

Fig. 2. Dependency graph samples and obtained clusters

The malware programs break into a host through three basic

attack channels. The first is that, malware programs exploit bugs

in network-facing daemon programs or client programs and

compromise them, then immediately spawn a shell or back-door

process [3]. After this, the attacker typically tries to download

and install attacking tools and rootkits, as well as performs any

other adversary actions. Accordingly, we give a cluster label to a

process directly spawned by a network-facing process as well as

its descendants, calling them a branch cluster, e.g., the branch

cluster B in Figure 2 (b). A branch cluster corresponds to a sub

graph of a dependency graph which roots from a network facing

process. The other attack channel is that, malware programs lure

users into downloading and launching them [4]. After started,

malware programs copy themselves and make themselves

resident in a host. Consequently, we give a cluster label to the

downloaded executable and its descendants, calling them a

branch cluster as well, e.g., the Branch-cluster A in Figure 2 (b).

The last channel is removable drives. Therefore, we give a

cluster label to an executable file located in a removable drive

and all its descendent objects, calling the formed cluster a drive

cluster, e.g., the Drivecluster A in Figure 2(d). Splitting a

dependency graph into different branch clusters might cause a

piece of malware to be split into two separate processes on

different branch clusters, which could work together to perform

malicious actions and potentially evade SeCom's detection. We

can prevent this evasion at the time to commit a VM.

B. Recognizing Malicious Clusters

To recognize a malicious cluster, an on-line engine has

been built to monitor whether the processes in the cluster exhibit

any malware behaviors. Recent research efforts [5][6] on

behavior based malware detection often employ dynamic data

flow tracing techniques to extract featured malware behaviors.

The racing of dynamic data flow involves a big overhead, which

significantly slows down the system and is thus not applicable

for on-line monitoring [7]. On the other side, to complement

with the traditional signature-based detection, commercial

antivirus software often has an online behavior-based malware

detection engine. However, the engine identifies a malware

program only based on a single suspicious behavior which

might also appear in benign software, and thus frequently

produces false alarms that distract users [8][5]. Different from

existing efforts, our malware detection engine detects malware

by combining the techniques of tracing OS-level information

flow and online malware detection. More specifically, based on

the clusters formulated as a result of tracing OS-level

information flow, the engine monitors all the behaviors of

processes in a cluster and determines whether a cluster is

malicious. A cluster is considered malicious if it exhibits two

behaviors that match a predefined raw-behavior-pair, as shown

in Fig. 3. A raw-behavior-pair (RBP) consists of two

independent raw behaviors. A raw behavior is extracted by

intercepting a single system/API call and its parameters. It can

differentiate malware from benign programs but may result in a

few false positives. For example, “modifying registry for

automatic startup” is such a malware behavior.

 Fig. 3. Malware detection engine

While targeting for online detection, false positive rate can be

reduced, when this detection engine uses a RBP to detect

malware. This will make the false positive rate much lower than

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

53

that generated with commercial online detection techniques in

anti-virus software [8] which only rely on a single raw behavior

to identify malware. If the raw behaviors in a RBP are carefully

selected, the FPR of the RBP-based detection will be as low as

that of the detection based on the featured behaviors. Moreover,

since all clusters derive from dangerous sources, i.e. the network

and removable drives, our detection approach actually considers

not only malware behaviors but also the sources of the process

launching the behaviors when determining a malicious cluster.

However, there is a big challenge to realize the system using

RBP to detect malware. Commercial online engines [8] cannot

achieve the goal because they cannot correlate two behaviors

which may exhibit at different time and associate them with a

single malware program. For example, two behaviors may be

launched by a malware program’s two distinct processes

respectively. Although data flow tracing techniques [5] can find

potential dependency between the behaviors, these techniques

will levy unacceptable heavy overhead on the system. Instead,

with an intelligent tracing of OS-level information flow, our

detection engine can correlate the two processes and then

naturally associate the two behaviors together. We determine a

cluster as malicious if it exhibits two different types of raw

behaviors. After breaking into a system, a malware program

generally fulfills malicious tasks through four basic steps:

(I) Making itself to auto-start after system booting,

(II) Propagating itself across the system,

(III) Hiding itself from users and antimalware tools,

(IV) Achieving malicious goals.

Each step can be fulfilled by a type of behaviors.

Accordingly, malware behaviors can be divided into four types.

Although not every malware program requires all the four types

of behaviors, a malware program does invoke at least a few

types of the behaviors. Therefore, a RBP can be constructed

with any two raw behaviors that belong to different types

respectively. This way, we do not need to maintain a long RBP

list to search, but only make detection based on the types of the

behaviors. A crafted malware program might exhibit only one

type of raw behaviors instead of two to avoid matching any

RBP. Then, it waits until it is committed to the host environment

to perform malicious behaviors. Only by setting up an ASEP, a

malware program can make itself resident in a host. To fight

against such malware programs, at the committing stage, we

will discard any changes on ASEP if the corresponding cluster is

not derived from a trusted source. Thus, such malware programs

will be disabled after the commitment without setting an ASEP

in advance. If the process launching the current raw behavior

does not belong to any cluster, i.e., the process is not derived

from dangerous sources including the network and removable

drives, the engine will not trigger any action. (2) If the process

belongs to a cluster and the cluster does not exhibit any raw

behavior so far, the engine will record the type of the current

behavior into the cluster. (3) If the types of the current and the

recorded behaviors of the cluster are different, the engine will

mark the cluster as malicious. (4) If the types of the behaviors

are the same, the engine will not take any action. (5) If the

current behavior is a bypassing behavior, the engine will mark

the cluster as malicious and at the same time refuse it.

C. Committing the Benign Clusters

When a VM is stopped and the user requires deleting or

committing the VM, SeCom invokes the commitment function.

Since the VM has been terminated, there is not any pending task

or job in the VM. Meanwhile, all of the processes and other

volatile objects, e.g., IPC objects, within a VM have already

been erased from the OS and thus do not need to be committed.

Only the permanent objects, e.g. files, directories, registry

entries, need to be considered. The commitment procedure is

completed following three steps. First, all benign clusters are

checked and a benign cluster has been marked as malicious if it

contains an ASEP but does not derive from a trusted source.

Thus, we can prevent the potential evasion to SeCom mentioned

above, i.e., a malware program merely sets up an ASEP and

waits for the commitment to execute the rest of the behaviors in

the host environment. We introduce a Remote Administration

Point (RAP) to represent a trusted source. A RAP is a special

application dedicated to install software or manage the system

from the remote. It applies the principle of diversity [12][13]

and integrity protection techniques. Specifically, we install two

different forms of programs with the same function, e.g.,

different kinds of web browsers. One is for daily use while the

other is for RAP. Thus, we can set tight restrictions on the RAP

program without affecting usability since one can use the other

program. The RAP program is configured to have the highest

security protection level, and only communicate with a few

remote hosts through secure protocols. Moreover, SeCom

discards any changes made on the configurations and files of the

RAP program so as to strictly preserve the integrity of the RAP

program.

Second, every ASEP in malicious clusters has been

checked to see whether the corresponding auto-start executables

are placed in other benign clusters, and then mark such benign

clusters as malicious. Thus, we can completely remove the

malware programs that intentionally distribute ASEP hooks and

the auto-start executables into different clusters. Third, all the

objects in malicious clusters are discarded and merge the objects

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

54

in benign clusters into the host. Meanwhile, the objects not

included in any cluster also need to be merged as they are not

derived from the network or removable drives and thus benign.

III. EVALUATION

To demonstrate the applicability of the OS-level VM

commitment approach, we have successfully developed a

prototype under the framework of Feather-Weight Virtual

Machine [14], which partitions the name space of a single

Windows OS to form a number of virtual machines.

A. Secure Commitment

To recognize malicious clusters, we configured

following raw behaviors into the detection engine: Type (I):

Modifying registry for auto-startup, Creating or modifying

Windows services, Installing or modifying Windows drivers.

Type (II): Self replication, Injecting into other processes,

Creating processes abnormally. Type (III): Modifying registry to

hide its presence, lowering security settings, disabling the host

Firewall, Killing anti-malware processes, Compromising

antimalware files or settings, closing system restoring

mechanism. Type (IV): Stealing confidential information. For

every malware sample, we perform a three-step experiment.

First we run the malware sample in a newly created VM without

turning on the SeCom and record what objects it creates or

modifies. Then, we enable the SeCom, run the same malware

sample and other arbitrary benign applications together in a new

VM, and eventually commit the VM. When performing the

commitment, we make the VM committing module to print out

the names of discarded objects. Lastly, we run the benign

applications committed in the host environment in order to

check whether the commitment process damages the internal

consistency of the benign applications. The false positives are

resulted because two benign programs exhibited behaviors of

type(I) and (IV), i.e., modifying registry for auto-startup and

reading sensitive files. Hence, the FN rate and FP rate of SeCom

are 0% and 4% respectively. Moreover, all of the benign

applications which were mixed together with the malware

samples can work smoothly after being committed into the host

environment. In other words, the commitment process does not

have impact on the internal consistency of the benign changes

that coexist with malicious ones in the same VM.

B. Comparison with Commercial Tools

To further evaluate SeCom, another experiment has

been performed using two popular commercial anti-malware

tools: Kaspersky and VIPRE. First, we use both commercial

tools to scan the commitment results of SeCom in the host

environment after running a malware sample. For each sample,

neither commercial tool could detect the malware in the host

environment. Thus, we conclude that SeCom has removed the

malware to the satisfaction of the commercial tools. Second, we

test all of the samples, using the signature-based module and

behavior-based module of every antimalware tool. Fig. 5 shows

the FP rates obtained from running five categories of benign

samples. S and B represent signature based module and

behavior-based module respectively. From the Fig. 6, FP rate of

SeCom is slightly higher than that of signature based modules

while much lower than that of behavior-based modules. The

reason is that, behavior-based technique often causes a higher

FP rate than signature-based scheme (which cannot detect

unknown malware programs), but considering double behaviors

and the originators of the processes exhibiting the behaviors will

dramatically reduce FPs. Fig 6 shows the FN rates of detecting

five categories of malicious samples. In the figure, both

commercial tools only detect 50~75% of malicious changes

regardless of what techniques they use. However, SeCom

identifies all of the changes imposed by different categories of

malicious samples. In other words, SeCom successfully clears

all malicious changes when committing a VM.

Fig 5. Detecting results of the benign samples using commercial tools and

SeCom

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

55

Fig. 6 Detecting results of the changes made by malware samples using
commercial tools and SeCom

IV. RELATED WORK

There is no such a project that can securely commit

VM on an OS level virtual machine platform in the literature.

Popular OS-level VM technologies, e.g. FreeBSD Jail [15],

Linux-VServer [16], Solaris Zones [17], OpenVZ [18] and

Virtuozzo [19], do not provide the functionality to securely

commit VM. Feather-weight Virtual Machine (FVM) [14] only

checks and abandons the resource updates under the

securityrelated file directory and registry entry within a VM to

eliminate side effects left by malicious programs before VM

commitment. However, simply examining special resource

updates confined inside a VM is not sufficient to detect all the

suspicious behaviors or to recognize the exact scope of the

attack due to malware execution. Sun et al. [20] present an

approach for realizing a safe execution environment (SEE) that

enables users to “try out” new software without the fear of

damaging the system in any manner. It implemented a

commitment approach to ensure semantic consistency of the

committed results. Before commitment, user needs to make his

own decision on whether the running results contained in a SEE

are safe to commit. SeCom, however, aims at automatically

identifying unsafe results inside a VM before commitment.

Hence, SeCom differs from paper [20] and can be a

complementary technology to [20] to help recognize unsafe

results.

As an alternative technology, system call log analysis

is able to detect compromised system resources and prevent

them from being committed. Research efforts demonstrate the

potential capability of log analysis to securely commit VM since

log analysis can identify compromised files or derive malicious

process behaviors [21][22][23]. However, the enforcement of

log recording and analysis often significantly slows down the

system which makes it very inefficient and possibly unusable.

Former work [24] also traces OS-level information flow, but it

aims to block critical malware behaviors instead of committing

safe changes in a VM back to the host. It also does not further

correlate objects into clusters which will facilitate the fast

commitment. SeCom is also different from other candidate

technologies, such as host-based intrusion detection and

antimalware, though all of them are able to recognize malicious

objects. SeCom aims to recognize all side effects of a malware

program imposed on a system while intrusion detection and

anti-malware technologies typically are interested in

determining whether a single file or process is adverse. A recent

approach proposed in [24] can remove all effects of a malware

program, but requires a training stage to generate a remediation

program for cleaning the impacts a specific malware. Therefore,

SeCom meets the requirement of secure commitment better than

these candidate technologies.

V. CONCLUSION

SeCom, a scheme towards securely committing OS

level virtual machines has been proposed, which is required by

intrusion-tolerant applications and system administrations to

save benign changes within a VM to the host environment. So

far, none of the publicly available documents on OS-level

virtualization technologies ever provides a feasible scheme to

securely commit VM. We thus believe that SeCom is the first

secure commitment scheme. The critical challenge behind

securely committing VM is to identify compromised objects

thoroughly and lightly. To address the challenge, SeCom has

been proposed that consists of three steps. First, it correlates

suspicious OS objects within a VM together by tracking OS-

level information flows and grouping them into clusters by

intelligently attaching different labels to objects. Then, it

recognizes a malicious cluster by a behavior based malware

detection engine. Last, it commits VM while discarding

malicious clusters. SeCom has three novel features. First,

SeCom can lightly commit VM using OS-level information

flows and malware behaviors. Second, SeCom detects and

discards malicious changes in a cluster fashion to clean up

malware impacts quickly and thoroughly. Finally, to reduce the

false positive rate, SeCom considers two malware behaviors

which are of different types and the originator of the processes

which exhibit the behaviors when identifying a malicious

cluster. We implemented SeCom under the framework of FVM

and conducted experiments concerning the performance of

commitment and overhead. The experiment results demonstrate

that SeCom can effectively clean up malware impacts when

performing commitment and only causes 0.8% to 8.3%

additional performance overhead on system. Moreover,

compared with commercial anti-malware tools, it can erase

malware more thoroughly and produce a lower false positive

rate. Hence, it fits the task of VM commitment better.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)

ISSN: 0976-1353 Volume 21 Issue 1 – APRIL 2016.

56

REFERENCES

[1] S.T. King and P.M. Chen. Backtracking Intrusions. Proceedings of ACM

aaaSymposium on Operating Systems Principles, pages 223–236, October 2003.

[2]Symantec,Inc,http://www.symantec.com/business/security_response/threatex
plorer/aaathreats.jsp.

[3] N. Li, Z. Mao, H. Chen, "Usable Mandatory Integrity Protection for

aaaOperating Systems," IEEE S&P, pages 164– 178, 2007.
[4] M. Egele , P. Wurzinger , C. Kruegel , E. Kirda, Defending Browsers against

aaaDrive-by Downloads: Mitigating Heap- Spraying Code Injection

aaaAttacks,Proceedings of the 6th International Conference on Detection of
aaaIntrusions and Malware, and Vulnerability Assessment, July 2009, Como,

aaaItaly.

[5] H. Yin , D. Song , M. Egele , C. Kruegel , E. Kirda. Panorama: capturing
aaasystem-wide information flow for malware detection and analysis. CCS2007,

aaapages 116–127, New York, NY, USA, 2007.

[6] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer. Behavior based

aaaspyware detection. In Usenix Security Symposium, 2006.

[7] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X.

aaaWang. Effective and efficient malware detection at the end host. In USENIX
aaaSecurity Symposium, Montr´eal, Canada, August 2009.

[8] O. Sukwong, H. Kim, J. Hoe, "An Empirical Study of Commercial

aaaAntivirus Software Effectiveness", Computer, Jun. 2010. IEEE aaaComputer
aaaSociety.

[9] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-W. Wu, Y. Huang,

aaaand S.-Y. Kuo. Gatekeeper: Monitoring autostart extensibility points (aseps)
aaafor spyware management. In Proceedings of 18th Large Installation System

aaaAdministration Conference, November 2004.

[10] Y. Yu, H. K. Govindarajan, L. Lam, T. Chiueh. Applications of Feather
aaaWeight Virtual Machine. Proceedings of the 2008 ACM SIGPLAN/SIGOPS

aaaInternational Conference on Virtual Execution Environments, Seattle WA,

aaaMarch 2008.
[11] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee, Y.-M.

aaaWang, and R. Roussev. Flight data recorder: monitoring persistent-state
aaainteractions to improve systems management. In Proceedings of the 7th

aaasymposium on Operating systems design and implementation, pages 117–

aaa130, 2006.
[12] B. Littlewood and L. Strigini. Redundancy and diversity in security. In

aaaaProceedings of the 9th European Symposium on Research in Computer

aaaaSecurity (2004), pages 423–438.
[13] E. Totel, F. Majorczyk, and L. Me. COTS diversity baded intrusion

aaaadetection and application to web servers. In Eighth International

aaaaSymposium on Recent Advances in Intrusion Detection, Seattle,
aaaaWashington, September 2005.

[14] Y. Yu, F. Guo, S. Nanda, L. Lam, T. Chiueh. A Featherweight Virtual

aaaaMachine for Windows Applications. In Proceedings of the 2nd
aaaaACM/USENIX Conference on Virtual Execution nvironments. Pages 24–

aaaa34, Ottawa, 2006

[15] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. In
aaaaProceedings of the 2nd International SANE Conference, 2000.

[16] S. Soltesz , H. Pötzl , M. E. Fiuczynski , A. Bavier , L. Peterson.

aaaContaineraaaabased operating system virtualization: a scalable, high-
aaaperformance alternative to hypervisors. In proceedings of the 2nd ACM

aaaaSIGOPS/EuroSys European Conference on Computer Systems 2007,

aaaLisbon.
[17] D. Price and A. Tucker. Solaris Zones: Operating system support for

aaaaconsolidating commercial workloads. In Proceedings of the 18th Large

aaaInstallation System Administration Conference (LISA 2004), pages 241–
[18] OpenVZ. Unique features of OpenVZ.

aaahttp://openvz.org/documentation/tech/features.

[19] SWsoft. Virtuozzo server virtualization.
aaahttp://www.swsoft.com/en/products/virtuozzo.

[20] W. Sun, Z. Liang, V. Venkatakrishnan, and R. Sekar. Oneway isolation: An

aaaeffective approach for realizing safe execution environments. In Proceedings
aaaof 12th Annual Network and Distributed System Security Symposium, 2005,

aaapages 265–278. [21] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to

aaathe Future: A Framework for Automatic Malware Removal. In Proc. Annual
aaaComputer Security Applications Conference, 2006.

[22] N. Zhu, and T. Chiueh. Design, implementation, and evaluation of
aaaarepairable file service. In Proceedings of the 2003 International Conference

aaaon Dependable Systems and Networks, pages 217–226, June 2003.

[23] O. Sukwong, H. Kim, J. Hoe, "An Empirical Study of Commercial
aaaaAntivirus Software Effectiveness", Computer, Jun. 2010. IEEE Computer

aaaSociety.

[24] R. Paleari, L. Martignoni, E. Passerini, D. Davidson, M. Fredrickson, J.
aaaGiffin, and S. Jha, "Automatic generation of remediation procedures for

aaamalware", USENIX Security Symposium, Washington DC, August 2010.

