
54

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

OPTIMIZED JOB SCHEDULING BASED ON
WORKLOAD IN HADOOP

#1
Rahul Mistry, Student

*2
and M. Suresh Kumar, Associate Professor

M.E, Department of Information Technology, Sri Sairam Engineering College, Chennai,India
*

M.E, Department of Information Technology, Sri Sairam Engineering College, Chennai, India

Abstract— MapReduce is an important paradigm for
processing very large scale dataset.MapReduce is one of the most
popular methods for processing large dataset it can run on large
distributed commodity hardware clusters like Clouds. The Map
function uses the input Key/value pair for processing and a
reduce function takes the input data in the form of Key/value
format merge all the key/value and write it into Hadoop
Distributed File System (HDFS).Hadoop uses FIFO scheduling
by default. When a flock of jobs is concurrently submitted to a
MapReduce cluster, the overall system performance in terms of
job response times might be seriously degraded.The challenging
issue is that ability of efficient scheduling mechanism for
MapReduce. However, traditional scheduling algorithms used by
Hadoop not always guarantee good average response times under
different workloads. The objective of the research is to study
MapReduce analyze different scheduling algorithms that can be
used to achieve better performance and also provided some
guidelines on how to improve the scheduling in Hadoop
environments.

Keywords— MapReduce,Hadoop,Job Scheduling,HDFS

I. INTRODUCTION

Hadoop [1] is an open source platform developed by Doug
Cutting and Mike Mike Cafarella under the project called
“Nutch” which run on java-based programming framework it
used for processing and storing extremely large datasets in a
distributed environment.Hadoop developed under Apache
project and it sponsored by the Apache Software Foundation.
Hadoop framework allows distributed processing of very large
data set across the different cluster of computers using
MapRedue programming model. It designed to scale-up from
a single server to thousand of independent clusters which can
run on commodity hardware. Rather than rely on hardware to
deliver high-availability, the library itself is designed to detect
and handle failures at the application layer, so that it can
provide highly available service on the top of the cluster.

a) Hadoop

Hadoop makes possible to run any MapReduce [2] application on
thousand of system's with the help of commodity hardware,
facilities and it has the ability to handle the terabytes of data.It
provides fast and reliable analysis of structured data, unstructured
data and semi-structured data. Given its capabilities to handle
large data. Apache Hadoop is a distributed file system[3]
facilitates the brisk transfer of data on

the different nodes and it allows to process the data in case of
any node failure [4] in a cluster.It prevents from unexpected of
data loss, Its even if more than one no of nodes become
inoperatiIt's a foundation of big data processing such as
scientific analytics, business, and sales planning and
processing it is essentially a framework that allows for the
distributed processing of large datasets across clusters of
computers using a simple programming model. It can scale up
from the single node to thousands of nodes, each node will
offer local computation and storage.

Hadoop was created by two computer scientists Doung
Cutting and Mike Cafarella in the year 2006 under the project
Nutch.It inspired by the good MapReduce software framework
which breaks the files into small chunks and process them
individually in the different cluster and once the processing is
done combine them all together.Hadoop was developed under
the OpenPGP (standard as defined by RFC4880 also known as
PGP) and its an open source technology, the latest release of
Hadoop version is 3.0.0-alpha2 on 25 January 2017.

b) MapReduce
Defin MapReduce is an important high performance
computing paradigm software framework used for easy writing
of applications which process large-scale data processing [5]
in various clusters.Apache Hadoop is an opensource
implementation of MapReduce programming model it has
been deployed in a large cluster containing thousand of
machines. A MapReduce job usually splits the input data-set
into two independent chunks which are processed by the
mapper and reducer in a completely parallel manner. The
MapReduce framework sorts the outputs of the mapper, which
are then inputted to the reducer. Typically both the input and
the output of the job are stored in a file system called Hadoop
distributed file system (HDFS). Hadoop enables resilient,
distributed processing of extensive unstructured data sets
across commodity computer clusters, The each node in the
cluster are used his own storage. MapReduce serves two
essential functions: It send out the map output into many
clusters, and it organizes and reduces the results from each
node into a cohesive answer to a query.

• MapReduce is composed of several
components, including:

• JobTracker -- the master node that manages all jobs
and resources in a cluster)

55

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN:
0976-1353 Volume 24 Issue 2 – FEBRUARY 2017.

• TaskTrackers -- agents deployed to each machine in
the cluster to run the map and reduce tasks

c) Job Tracker
Job tracker runs on Apache MapReduce engine ,it is
responsible for accepting the client request.Once the requested
has been accepted it assign to the TaskTracker where the data
locally reside.JobTracker [6] fails to assign the request to the
TaskTracker then it will assign the task within same rack
where the data locally present. If the TaskTracker fails then
JobTracker assign a new Task where the replica of the data
exits by default it makes three replica.

• Job Tracker Process

DataNodes. The JobTracker places the client
program in the HDFS. Once it placed, JobTracker
will assign tasks to TaskTrackers on the DataNodes
based on data locality.

ii) TaskTracker handling the starting the Map task on
the DataNode by picking up the client program
from HDFS.

iii) After completion of Map task an intermediate
file created on HDFS.
iv) Result of Map task given as input to Reduce task.
v) Reduce task will works on all data received from

map tasks and writes the final output to HDFS.
vi) Once the task executed the intermediate data

generated by the TaskTracker will be deleted.

e) Hadoop Distributed File System (HDFS)
Hadoop Distributes File sytem [7] is a distributed storage
which is design to run on a cluster of commodity hardware.
The HDFS id pretty much similar to the existing distributed
file system, but the differences are significant. It has highly
fault-tolerant freature and low cost freature which makes it
different from distributed file system.HDFS are originally
build by the Apache under the project called NUTCH web
search engine project. It has two main component NameNode
and DataNode which manages all these operation

i) Accept Job request from client.
ii) JobTracker consults with NameNode in order to

determine the location of the data.
iii) JobTracker locate the TaskTracker where the data

reside and submit the task.
iv) The TaskTracker perform the execution of task and

send the heartbeat signal to JobTracker.If task
tracker fails then JobTracker will again restart the
task in some different TaskTracker.

v) One the job has been completed it update its status Job
completes.

vi) After completion of task client can pull information
from TaskTracker.

d) Task Tracker

TaskTracker is a cluster node which accept the task from
(Map,Reduce and Shuffle) from JobTracker.It keep on sending
the heartbeat to the JobTracker to notify that it is alive.Along
with this information it is also send the free slots available
within it to process tasks.

• Task Tracker Process includes

f) Name Node
NameNode [8] is the central component of HDFS file system,
it keeps the metadata and the directory tree of all files in the
file system, and tracks all the cluster where the data file is
kept. It does not store the data of these files itself.

Client application directly interacts with the NameNode when
they need to locate any file or when they want to copy or
delete any file, interact Namenode will redirect the client
directly to the Datanode where the real files are stored so that
client can directly interact with DataNode.

NameNode is a single point failure for HDFS, where the
NameNode fail that time entire filesystem goes offline.The

i) The JobTracker will collect information from the
NameNode about the data which is reside in

optional is to keep a secondary NameNode on a seperate

56

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

machine to create checkpoints if NameNode fails then files
can be retrieved through this check points.

g) Data Node
A is DataNode [9] where the actual data reside, A functional
filesystem has more that one DataNode distributed over
multiple clusters.To keep track of DataNode it sends a
heartbeat signal to the NameNode to say that DataNode is
alive, if NameNode doesn’t send any heartbeat then it is
considered to be dead and initiate replication of blocks which
stored on the DataNode.

At the time of storing data block, it maintains a checksum for
that data block. The DataNode keep on updating the
NameNode with the block of information periodically, The
NameNode will verify the checksum if it matches with the
DataNode then it will update that checksum if it doesn't match
that means data is corrupted. In this way, NameNode is always
aware of any data corruption on DataNode.

II. HADOOP SCHEDULING

HADOOP SCHEDULER MAINLY DEVELOPED TO RUN THE VERY LARGE

BATCH JOB LIKE WEB INDEXING AND LOG MINING.USER SUBMITS THEIR

JOB TO THE SCHEDULER IN A QUEUE, AND CLUSTER RUN THIS JOBS IN

ORDER.BY DEFAULT, HADOOP USES THE FIFO SCHEDULING IN ORDER

TO RUN THE JOBS. SINCE HADOOP BECAME PLUGGABLE, SEVERAL

SCHEDULING ALGORITHMS DEVELOPED FOR IT. THE RESULT WAS TWO

SCHEDULING ALGORITHM WAS DEVELOPED FOR MULTI-USER WORKLOAD

APPROACH. THE FAIR SCHEDULING WHICH IS DEVELOPED BY

FACEBOOK AND CAPACITY SCHEDULING WHICH IS DEVELOPED AT

YAHOO.

a) FIFO SCHEDULING

By default Hadoop is using FIFO scheduling, in these, all the
user submits their jobs to a queue.Once the job is divided into
independent tasks among all the cluster, once the task has been
divided the JobTracker allocate the free slot which is available
in TaskTracker.One of the better way to implement the FIFO
scheduling with the help of parity based. The FIFO scheduling
doesn't give the guarantee good response time so it is not
useful for an interactive user.
The problem with the FIFO scheduling approach is that the
small jobs are stuck behind the big jobs, it causes of poor
utilization of the cluster.

b) FAIR SCHEDULING

Fair scheduling approach [10] is developed bt Facebook to
manage their cluster.In Fair scheduling approach the resource
is divided into jobs in a such a way that all the job get the
average and equal share of a viable resource.If there is a single
job running in then all the resource allocated to that single
job.The Fair scheduling divide the jobs into different jobs
pools, and divide the resource among all these pools.The Fair
scheduling allow grantee minimum share to pools, so that it is
easily restrict the user to allocate resource based on their jobs
or group. if the pool share minimum and it is not meeting for

the period of time, then scheduler optionally support
preemption of jobs which is running in other job pools. It will
make room to run the high parity jobs with preemption. When
Fair scheduling preemption it will choose the task which
launches most recently. Fair scheduling can limit the
concurrent task running in the per user and per pool. It will be
useful when any user will submit the 100 of the task at a time
and it will also ensure the intermediate data not full the cluster
disk when the several others task is running off the same
cluster.

c) Fair Share with Delay Scheduling
In [11], however, there is always a conflict between fairness
and data locality(launching reduce task one the node where
input data is present).To address this problem we propose an
algorithmic delay scheduling in this first slot we are giving to
a task is unlike to have data for it finish, once the finishes so
quickly that some slot with data will be free within few
second.
In this section, we consider the delay scheduling it allows the
job upto T times.
Pseudocode for this algorithm is shown below:

Algorithm 1 Fair Sharing with Simple Delay Scheduling

Initialize jb.skip_count to 0 for all jobs jb.
While receiving heartbeat from node N:

If node N has free slot then
sort jobs increasing order by no of running task
for j in jobs do

if jb has un-launched task t with data on N node then
launch t on N
set j.skip_count = 0

else if jb has un-launched task t
then if jb.skip_count[] T then

launch t on N
else

set j.skip_count = jb.skip_count +1
end if

end if
end for

end if

Once the job has been skipped by T times, we will launch the
arbitary non local task without resetting skip_count.If the job
manage to launch the local task again we will set the
skip_count back to 0.

The Fair scheduling can be useful for the job with different
size and it also supports the preemption.It has the ability to
limit the no of concurrent task running per user or per pool.
This can be very effective when jobs have their dependency
on external factors like web services or Database.
In fair scheduling approach[12][13], there is always a conflict
between the fairness and data locality (placing the task on a
node where the input data actually reside).To achieve the fair
sharing goal two methods are there.

57

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

(a) Kill the currently running task and make the slot available
for a new task.
(a) Kill the currently running task and make the slot available
for a new task.
Killing the currently running task has a disadvantage wasting
of work of killing the task.On other hand waiting for currently
running job to complete have negative effects on fairness, and
it has to wait for an unending amount of time and the new job
may not have any input data on that node.The Delay
scheduling helps to resolve all these issues by statistically
multiplex clusters while the minimum impact on fairness
(giving the fair share to new jobs quickly) and archiving the
data locality. To reassign the resource to new job reassigning
resources approach (killing task from the previous job and
make room for the new job) is used and waiting for tasks to
finish to assign slots to new jobs. In data, the locality has two
problem head-of-line scheduling and sticky slots.

Scan jobs in order given by queuing policy and picking first
that is permitted to launch a task, Jobs must wait before being
permitted to launch non-local tasks.

If wait < T1, only allow node‐local tasks
If T1 < wait < T2, also allow rack-local
If wait > T2, also allow off-rack

The Delay scheduling used temporarily relaxes fairness to
improve locality, I t will wait for until the local data node is
free.

III. RELATED WORK

Scheduling in Hadoop system has already received lots of
attention.Early research by Matei Zaharia et al [14] proposed
fair scheduling algorithm to assign resource equally to each
user and provide better performance isolation among the user,
however, the main objective is not to optimize the system
performance.In delay, scheduling was proposed to improving
the fair scheduling by increasing the data locality.The [15]
quincy scheduler fair assignment is done by considering the
data locality by solving minimum network flow problem

however, this is very limited because it includes a huge
amount of computation complexity.There are several other
researchers has done to enhance the MapReduce
framework.The Sawzall programming language [16] aim is
automatically analyzing huge distributed data files.The
difference between Sawzall and MapReduce is that it
distributes the reduction in a hierarchical topology-based
manner.The Matchmaking scheduling [17] approach makes
scheduling decision in round manner, non-local the data local
task will be in the first round and non-localtask will be in the
second round to avoid the wasting of computation resource.
Finally, Condie et al. [18] recently extended the MapReduce
architecture to work efficiently for online jobs in addition to
batch jobs. Instead of materializing the intermediate data of
key/value pairs within every map task, they have proposed
pipelining these data directly to the reduce tasks. They further
extended this pipeline MapReduce to support interactive data
analysis through online aggregation and continuous query
processing.Finally to conclude that our proposed algorithm are
orthogonal among all the above algorithms are sophisticated
and scalable, they do not deal with data locality, as they share
only one resource.

IV. EXPERIMENTAL SETUP

In this section, we present a rigorous performance evaluation
of our proposed techniques. The details of the system
configurations are given along with the conducted experiments
with dual 2.20GHz Intel(R) Core(TM)i5-5200U processors,
4GB RAM, and 80GB hard drives.To compute the
performance we have install Hadoop 1.1.2 version.The HDFS
block size is 128 MB, by default replication of 3.Each
TaskTracker has 2 Map slots and one Reduce slot.Our
scheduler operates one this parameter: set the size S for both
map and reduce slot and the time out the estimate of the size is
10sec.
Workload: we have performed two operation wordcount and
maximum and minimum temperature.First, we aim to study
the scalability of the different reducing approach in terms of
counter and the size of the Map and Reduce.In order to
evaluate the system performance, we have compared our
scheduling algorithm with native Fair scheduling.We have
generated four datasets of 1GB,2GB, and 3GB.

V. CONCLUSION

Apache Hadoop software framework is used for processing
large data set organization like Facebook Yahoo are
processing Petabytes of data in a day.For processing, these
dataset MapReduce paradigm is used.In this paper, we have
seen different types of job scheduling like FIFO, this
scheduling method is not suitable for small jobs and average
job response time is significantly decrease under the case of
high variance and this scheduling doesn't consideration other
factors like resource, locality and job latency.To overcome
these drawback the various pluggable scheduler was interduce.
Our work is to improvise the Hadoop Fair scheduling to get

58

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

the better result and improve the data locality where the large
cluster are used for wide range of workload which includes
interactive data processing task.As the consequence, we have
witnessed the rise of deployment best practice resources
among competing jobs.In addition, we have seen the best
practice in which fair sharing resource among competing
jobs.It also demonstrated the best cluster utilization involving
creation os resource pool to accommodate workload and
important tuning efforts.We showed Fair with delay
scheduling performs well, with widely and that precise job
information not essential for scheduler function properly.Our
experiment result we have compared the Fair with the delay
with widely used native Fair scheduling algorithm, it indicates
that both intractive and efficiency for samll and large job size
with good data locality, which have not considered in native
Fair scheduling method.

REFERENCES

[1] Apache Hadoop. (2014). [Online]. Available: http://hadoop.apache.org/

[2] Mahwish Arif,Hans Vandierendonck and Dimitrios S. Nikolopoulos "A
scalable and composable map-reduce system"DOI:
10.1109/BigData.2016.7840854,Date Added to IEEE Xplore: 06
February 2017.

[3] Kaiyang Qu,Luoming Meng and Yang Yang "A dynamic replica
strategy based on Markov model for hadoop distributed file system
(HDFS)"DOI: 10.1109/CCIS.2016.7790280,IEEE Xplore.

[4] Kapil Pandey, Anand Gadwal and Prashant Lakkadwala "Hadoop multi
node cluster resource analysis" DOI: 10.1109/CDAN.2016.7570925,
IEEE Xplore.

[5] Srinath Perera "Large scale data processing in real world: From analytics
to predictions" DOI: 10.1109/ICTER.2014.7083870 ,IEEE Xplore.

[6] Jisha S. Manjaly,Varghese S. Chooralil "TaskTracker Aware Scheduling
for Hadoop MapReduce" DOI: 10.1109/ICACC.2013.103 ,Publisher:
IEEE.

[7] Farag Azzedin "Towards a scalable HDFS architecture" DOI:
10.1109/CTS.2013.6567222,Publisher: IEEE.

[8] https://wiki.apache.org/hadoop/NameNode

[9] https://wiki.apache.org/hadoop/DataNode

[10] Yi Yao,Jianzhe Tai and Bo Sheng "LsPS: A Job Size-Based
Scheduler for Efficient Task Assignments in Hadoop" DOI:
10.1109/TCC.2014.2338291 ,Publisher: IEEE.

[11] Matei Zaharia,Dhruba Borthakur,Joydeep Sen Sarma "Delay
Scheduling: A Simple Technique for Achieving Locality and Fairness
in ClusterScheduling" ISBN:978-1-2344-577-2.

[12] Matei Zaharia,Dhruba Borthakur,Joydeep Sen Sarma "Delay
Scheduling: A Simple Technique for Achieving Locality and Fairness
in Cluster Scheduling" ISBN: 978 -1-60558-577-2
,doi10.1145/1755913.1755940.

[13] Asmath Fahad Thaha,Anang Hudaya Muhamad Amin and Subarmaniam
Kannan "Data location aware scheduling for virtual Hadoop cluster
deployment on private cloud computing environment" DOI:
10.1109/APCC,Publisher: IEEE.2016.7581422.

[14] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,and I.
Stoica, “Job scheduling for multi-user mapreduce clusters,” University
of California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2009-55 ,
Apr. 2009.

[15] M. Isard, Vijayan Prabhakaran, J. Currey, U. Wieder, K. Talwar,and A.
Goldberg, “Quincy: Fair scheduling for distributed computing clusters,”
in Proc. 5th Eur. Conf. Comput. Syst., 2009, pp. 261–276.

[16] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan.
Interpreting the data: Parallel analysis with sawzall. Sci.
Program.,13(4):277–298, 2005.

[17] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new mapreduce
scheduling technique,” in IEEE Cloudcom. IEEE, 2011.

[18] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein,Khaled Elmeleegy, and Russell Sears. Mapreduce online.
Technical Report UCB/EECS-2009-136, University of California at
Berkeley,2009.

International Journal of Emerging Technology in Computer Science & Electronics
(IJETCSE)

ISSN: 0976-1353 Volume 24 Issue 6 – APRIL 2017.

